This invention relates to ignition systems for spark ignited engines, and more particularly to measuring energy delivered from a spark plug so that spark ignition systems can be better designed and evaluated.
The government, as well as consumers, have stepped up their demands for low emissions and high fuel economy engines. In response, manufacturers are considering many new design options. One option is to use a highly dilute (EGR or air dilution) pre-mixed charge to increase engine efficiency and reduce emissions.
Today's engines equipped with conventional spark ignition systems have serious limitations as to the amount of dilution that is tolerable before unstable operation occurs. Ignition systems that are capable of delivering high levels of energy to the air/fuel mixture are a key factor in redesigning engines to run at highly dilute conditions.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
One aspect of spark plug design is the amount of energy delivered by the spark plug. Measuring the energy delivered to the plug is fairly easily accomplished using voltage and current probes. However, converting this electrical energy measurement to a thermal energy value is inefficient and depends on the design of the spark plug.
A non-invasive method of measuring the amount of energy delivered to the air would allow rapid testing of different spark ignition designs. The various designs can then be more effectively evaluated.
The method described herein is non-invasive and uses an optical chamber. It allows the measurement of spark energy in the presence of a flow field as well as a quiescent chamber. Thus, ignition system testing in accordance with the invention more realistically approaches the conditions encountered during engine operation. The method can be implemented in situ or as a benchtop rig.
Chamber 106 is similar in performance to a real combustion chamber, except that energy from igniter 105 is optically accessible by lenses 101 of system 100. This optical accessibility may be achieved by making all or a portion of the chamber wall from a material that will pass at least the optical wavelength of interest (here a wavelength of 388 nanometers). For example, cylinder 106 may have a window or wall of quartz.
The use of a realistic cylinder 106 will enhance testing in the sense that actual air flow patterns occur. For example, cylinder 106 may be shaped like a cylinder of an internal combustion engine, such that igniter 106 is enclosed in a geometry that simulates its configuration in an actual engine.
However, any chamber in which igniter 105 may operate to combust fuel can be used, so long as it is optically accessible by system 100. The optical accessibility may be the result of a window 106a that is open to the atmosphere outside the cylinder 106a. Alternatively, the window 106a may be made from a material that is optically conductive to cyanogen emissions, for the reasons explained below.
System 100 consists of a system of collecting lenses (one or more lenses) 101 in an optical path with a bandpass filter 102 and a high-speed, UV sensitive detector 103.
A known gas of known composition is used for the combustion of igniter 105. This ignitable mixture has a fixed and known A/F (air/fuel) and equivalence ratio (the actual air/fuel ratio divided by the air/fuel ratio at stoichiometry). Processor 107 may be used to control the delivery of gas to igniter 105. Comparisons of different igniters may be performed by using a combustion gas with constant characteristics (such as air-fuel and equivalence ratios). Known types of injectors 106b or similar devices may be used to deliver fuel into chamber 106.
In the example of this description, a spark plug is the ignition device (igniter 105), but the same concepts apply to any “igniter” of an engine ignition system. Typically, the igniter is of the type used for an internal combustion engine.
A test spark plug 105 is connected to means for igniting the plug 105, such as an electrical connection to an electrical power source (Vin). The plug 105 is fired, and the emissions from the spark gap are collected by lens system 101. The wavelength of interest is passed by filter 102, and is the wavelength associated with cyanogen (CN) emissions. Specifically, the wavelength is of the emission (388 nm) from the CN radical created during the spark discharge.
The level of CN emissions is detected by detector 103. Detector 103 may be any device sensitive to the wavelength of interest. Suitable devices include photodiode and photomultiplier tube devices.
Depending on spark plug design (hardware and electronics), different spark plugs (igniters) have different delivered energy levels. Because the A/F ratio is constant between each igniter, system-to-system differences can be measured by the level of CN emissions from the igniter under test. A large ionization volume and/or increased energy release both result in improved ignition system performance. Both of these factors will cause the CN emissions to increase.
Using processor 107, the signal from the CN radicals formed by the igniter 105, such as in the spark gap of a spark plug, can be integrated over the duration of the spark event. The level of emission is then correlated to the amount of energy released by the ignition system.
Processing system 207 receives and processes the image, and is programmed to provide spark plug energy characteristics as described above.
The method can be distinguished from methods used to measure the equivalence ratio in the spark gap in spark ignited engines. For these methods, the ignition system provides the same energy to the fresh charge on every cycle. The discharge is the same for every test, and variations in the CN emissions signal are related to differences in the A/F ratio in the spark gap.
As stated above, in the present system, the A/F ratio is fixed and the energy emitted in the spark gap is the measurement of interest. By measuring the amount of energy released, the design of both the spark plug hardware and electronic circuitry can be improved. The non-invasive technique improves the speed of ignition system characterization.
This application claims the benefit of U.S. Provisional Application No. 60/653,021 filed on Feb. 15, 2005, entitled “Measurement of CN Emissions from Engine Spark Igniter for Characterization of Spark Igniter Energy”, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60653021 | Feb 2005 | US |