Measurement of distal end dimension of catheters using magnetic fields

Information

  • Patent Grant
  • 12201786
  • Patent Number
    12,201,786
  • Date Filed
    Thursday, December 17, 2020
    4 years ago
  • Date Issued
    Tuesday, January 21, 2025
    9 months ago
Abstract
In one embodiment, a system includes generator coils to generate respective magnetic fields, a catheter including a distal end, which includes magnetic coil sensors to output electrical signals based on detection of the respective magnetic fields, and processing circuitry to receive the electrical signals from the magnetic coil sensors, select at least one of magnetic fields having a magnetic field gradient as a function of at least one of the received electrical signals, compute a difference between magnetic field magnitudes of the at least one selected magnetic field detected by the first magnetic coil sensor and the second magnetic coil sensor as a function of the electrical signals, and compute a dimension of the distal end, based on the difference between the magnetic field magnitudes of the at least one selected magnetic field and the magnetic field gradient of the at least one selected magnetic field.
Description
FIELD OF THE INVENTION

The present invention relates to medical systems, and in particular, but not exclusively, to catheter devices.


BACKGROUND

A wide range of medical procedures involve placing probes, such as catheters, within a patient's body. Location sensing systems have been developed for tracking such probes. Magnetic location sensing is one of the methods known in the art. In magnetic location sensing, magnetic field generators are typically placed at known locations external to the patient. A magnetic field sensor within the distal end of the probe generates electrical signals in response to these magnetic fields, which are processed to determine the coordinate locations of the distal end of the probe. These methods and systems are described in U.S. Pat. Nos. 5,391,199, 6,690,963, 6,484,118, 6,239,724, 6,618,612 and 6,332,089, in PCT International Publication No. WO 1996/005768, and in U.S. Patent Application Publications Nos. 2002/0065455 and 2003/0120150 and 2004/0068178. Locations may also be tracked using impedance or current based systems.


One medical procedure in which these types of probes or catheters have proved extremely useful is in the treatment of cardiac arrhythmias. Cardiac arrhythmias and atrial fibrillation in particular, persist as common and dangerous medical ailments, especially in the aging population.


Diagnosis and treatment of cardiac arrhythmias include mapping the electrical properties of heart tissue, especially the endocardium and the heart volume, and selectively ablating cardiac tissue by application of energy. Such ablation can cease or modify the propagation of unwanted electrical signals from one portion of the heart to another. The ablation process destroys the unwanted electrical pathways by formation of non-conducting lesions. Various energy delivery modalities have been disclosed for forming lesions, and include use of microwave, laser and more commonly, radiofrequency energies to create conduction blocks along the cardiac tissue wall. In a two-step procedure, mapping followed by ablation, electrical activity at points within the heart is typically sensed and measured by advancing a catheter containing one or more electrical sensors into the heart, and acquiring data at a multiplicity of points. These data are then utilized to select the endocardial target areas at which the ablation is to be performed.


Electrode catheters have been in common use in medical practice for many years. They are used to stimulate and map electrical activity in the heart and to ablate sites of aberrant electrical activity. In use, the electrode catheter is inserted into a major vein or artery, e.g., femoral vein, and then guided into the chamber of the heart of concern. A typical ablation procedure involves the insertion of a catheter having a one or more electrodes at its distal end into a heart chamber. A reference electrode may be provided, generally taped to the skin of the patient or by means of a second catheter that is positioned in or near the heart. RF (radio frequency) current is applied between the tip electrode(s) of the ablating catheter, and the reference electrode, flowing through the media between the electrodes it, i.e., blood and tissue. The distribution of current depends on the amount of electrode surface in contact with the tissue as compared to blood, which has a higher conductivity than the tissue. Heating of the tissue occurs due to its electrical resistance. The tissue is heated sufficiently to cause cellular destruction in the cardiac tissue resulting in formation of a lesion within the cardiac tissue which is electrically non-conductive.


SUMMARY

There is provided in accordance with an embodiment of the present disclosure, a medical system including generator coils configured to generate respective magnetic fields having respective different frequencies in a region of a body part of a living subject, a catheter configured to be inserted into the body part of the living subject, and including a distal end, which includes magnetic coil sensors configured to output electrical signals as a function of detecting the respective magnetic fields, and including a first magnetic coil sensor having a first axis and a second magnetic coil sensor having a second axis, the magnetic coil sensors being disposed on the distal end with the first axis being substantially parallel with the second axis, and processing circuitry configured to receive the electrical signals from the magnetic coil sensors, select at least one of the magnetic fields having a magnetic field gradient as a function of at least one of the received electrical signals, compute a difference between magnetic field magnitudes of the at least one selected magnetic field detected by the first magnetic coil sensor and the second magnetic coil sensor based on the received electrical signals, and compute a dimension of the distal end, which is a function of a distance between the magnetic coil sensors, based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field and the magnetic field gradient of the at least one selected magnetic field.


Further in accordance with an embodiment of the present disclosure the computed dimension is the distance between the magnetic coil sensors.


Still further in accordance with an embodiment of the present disclosure the computed dimension is a dimension of a shape of the distal end of the catheter.


Additionally, in accordance with an embodiment of the present disclosure the processing circuitry is configured to compute the dimension of the distal end based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field divided by the magnetic field gradient of the at least one selected magnetic field.


Moreover, in accordance with an embodiment of the present disclosure the at least one selected magnetic field includes one of the magnetic fields having a highest magnetic field gradient of the magnetic fields, and the processing circuitry is configured to compute the dimension of the distal end based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field and the highest magnetic field gradient.


Further in accordance with an embodiment of the present disclosure the catheter has a longitudinal axis, and the distal end of the catheter includes an expandable distal end assembly, the magnetic field sensors being configured to move with respect to each other along the longitudinal axis of the catheter as the expandable distal end assembly is expanded and collapsed, when the expandable distal end assembly is collapsed the distance between the magnetic coil sensors increases, and when the expandable distal end assembly is deployed the distance between the magnetic coil sensors decreases.


Still further in accordance with an embodiment of the present disclosure the first axis, second axis, and the longitudinal axis are substantially coaxial.


Additionally, in accordance with an embodiment of the present disclosure the expandable distal end assembly is a basket distal end assembly including a plurality of flexible strips and electrodes disposed on the flexible strips.


Moreover, in accordance with an embodiment of the present disclosure, the system includes a display, and wherein the processing circuitry is configured to find a shape of the distal end assembly based on at least the computed dimension, and render to the display a representation of the distal end assembly based on the found shape of the distal end assembly.


Further in accordance with an embodiment of the present disclosure the computed dimension is the distance between the magnetic coil sensors.


Still further in accordance with an embodiment of the present disclosure the processing circuitry is configured to compute a relative orientation between the first axis of the first magnetic coil sensor and the second axis of the second magnetic coil sensor, and estimate a shape of the distal end assembly based on the computed relative orientation.


There is also provided in accordance with another embodiment of the present disclosure, a medical method, including generating magnetic fields having respective different frequencies in a region of a body part of a living subject, inserting a catheter into the body part of the living subject, magnetic coil sensors with substantially parallel axes disposed on a distal end of the catheter outputting electrical signals as a function of detecting the respective ones of the magnetic fields, and receiving the electrical signals from the magnetic coil sensors, selecting at least one of the magnetic fields having a magnetic field gradient based on at least one of the received electrical signals, computing a difference between magnetic field magnitudes of the at least one selected magnetic field detected by a first one of the magnetic coil sensors and a second one of the magnetic coil sensors based on the received electrical signals, and computing a dimension of the distal end, which is a function of a distance between the magnetic coil sensors, based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field and the magnetic field gradient of the at least one selected magnetic field.


Additionally, in accordance with an embodiment of the present disclosure the computed dimension is the distance between the magnetic coil sensors.


Moreover, in accordance with an embodiment of the present disclosure the computed dimension is a dimension of a shape of the distal end of the catheter.


Further in accordance with an embodiment of the present disclosure the computing the dimension includes computing the dimension of the distal end based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field divided by the magnetic field gradient of the at least one selected magnetic field.


Still further in accordance with an embodiment of the present disclosure the at least one selected magnetic field includes one of the magnetic fields having a highest magnetic field gradient of the magnetic fields, and the computing the dimension includes computing the dimension of the distal end based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field and the highest magnetic field gradient.


Additionally, in accordance with an embodiment of the present disclosure, the method includes moving the magnetic field sensors with respect to each other along a longitudinal axis of the catheter as an expandable distal end assembly of the catheter is expanded and collapsed.


Moreover, in accordance with an embodiment of the present disclosure the first axis, second axis, and the longitudinal axis are substantially coaxial.


Further in accordance with an embodiment of the present disclosure, the method includes finding a shape of the distal end assembly based on at least the computed dimension, and rendering to a display a representation of the distal end assembly based on the found shape of the distal end assembly.


Still further in accordance with an embodiment of the present disclosure the computed dimension is the distance between the magnetic coil sensors.


Additionally, in accordance with an embodiment of the present disclosure, the method includes computing a relative orientation between the first axis of the first magnetic coil sensor and the second axis of the second magnetic coil sensor, and estimating a shape of the distal end assembly based on the computed relative orientation.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood from the following detailed description, taken in conjunction with the drawings in which:



FIG. 1 is a schematic, pictorial illustration of a system for electro-anatomical mapping comprising a catheter, in accordance with an embodiment of the present invention;



FIG. 2A is a schematic view of a distal end of a basket catheter in a collapsed formation;



FIG. 2B is a schematic view of the distal end of the basket catheter of FIG. 2A in a deployed formation; and



FIG. 3 is a flowchart including steps in a method of operation of the system of FIG. 1.





DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

The Carto®3 system (produced by Biosense Webster, Inc., Irvine, California) applies Advanced Catheter Location (ACL) hybrid position-tracking technology. In ACL technology, distribution of measured currents associated with probe electrodes on a catheter are correlated with a current-to-position matrix (CPM), which maps the current distribution to a position of the catheter that was previously acquired from magnetic location-calibrated position signals. The ACL technology enables locating and visualizing a catheter (even a catheter which does not have a magnetic field sensor), but only in the volume(s) where the CPM has been computed, using a catheter with a magnetic coil sensor. A prerequisite for building the CPM is to insert a magnetic-field sensor-equipped catheter into a body and move the catheter in a volume of the body, in order to compute the CPM for that volume.


Additionally, ACL technology may be used to track a basket catheter which has electrodes on the basket. However, ACL technology, which measures currents or impedances, may not provide high enough accuracy in some situations.


One solution is to use signals from magnetic sensors disposed on a catheter to compute the elongation of an expandable distal end assembly (such as a basket distal end assembly or a balloon distal end assembly) based on a distance between the magnetic sensors. The magnetic sensors can be placed on the catheter in such a manner that the distance between the sensors provides an indication of the elongation, and therefore the shape, of the distal end assembly. Magnetic sensors generally provide a more accurate position than using ACL. Nevertheless, the locations measured by the magnetic sensors are subject to errors, of the order of millimeters (e.g., 2 or 3 mm) and in some applications even these errors may be too large. For example, for a small basket catheter the distance between the magnetic sensors may change by about 10 or 15 millimeters between the basket being collapsed and the basket being deployed. Therefore, an error of 3 mm may be considered a large error. Errors may be reduced by using a Dual-Axis Sensor (DAS) or a Triple-Axis Sensor (TAS), which generally provide more accurate position measurements. However, in many applications, the catheter may not be able to accommodate two DASs or TASs or even one DAS or TAS. Details of magnetic location sensing are provided in commonly owned U.S. Pat. Nos. 5,391,199; 5,443,489, 5,558,091; 6,172,499; 6,690963; 6,788,967; and 6,892,091, which are hereby incorporated by reference with a copy provided in the Appendix.


Embodiments of the present invention provide a system and method which accurately compute a dimension of a distal end (e.g., an expandable distal end assembly such as a basket or balloon distal end assembly) of a catheter using magnetic-based tracking technology based on two magnetic coil sensors and magnetic field generators that generate respective alternating magnetic fields (of different frequencies) for detection by the sensors. The magnetic fields detected by the sensors are indicative of the position of the sensors within a given coordinate space.


The accuracy of the computation is based on two factors including the positioning of the two magnetic coil sensors and an accurate error-canceling computational method.


The magnetic coil sensors are placed along a longitudinal axis of the distal end of the catheter so that the axes of the two sensors are substantially parallel, and in some embodiments the two sensors are placed to be substantially coaxial with the longitudinal axis. In this way, both sensors sense the different alternating magnetic fields in a similar way (e.g., with respect to magnetic field gradients) so that in the computation described in more detail below one of the alternating magnetic fields may be used for both sensors and error-canceling between the two sensors may take effect. The term “substantially parallel”, as used in the specification and claims, is defined as parallel within a tolerance of 10 degrees. However, the closer the axes of the two sensors are to being exactly parallel, the computations performed based on the output of the sensors will be more accurate. The term “substantially coaxial”, as used in the specification and claims, is defined as the axes of the sensors being within 10 degrees of the longitudinal axis and the region between the windings of the sensors intersecting the longitudinal axis.


The error-canceling computation method includes computing respective magnetic field gradients of the respective magnetic fields (in a direction parallel to the axes of the sensors) which is detected at the distal end (e.g., at one or more of the sensors). The term “magnetic field gradient”, as used in the specification and claims, is defined as the change of a magnetic field over distance in a particular direction. In some embodiments, an approximate position of one or more of the magnetic field sensors may be computed using any suitable method and then based on a known function of the different magnetic fields over three-dimensional (3D) space, the magnetic field gradients at the distal end (in a direction parallel to the axes of the sensors) may be found for each of the magnetic fields.


One of the magnetic fields is selected (e.g., the magnetic field having the highest magnetic field gradient). In some embodiments, a subset of the magnetic fields is selected (e.g., having the highest magnetic field gradients) and an average magnetic field gradient of the selected magnetic fields is computed.


A difference between magnetic field magnitudes of the selected magnetic field detected by the sensors is computed. When a subset of magnetic fields is selected, an average difference between magnetic field magnitudes of the selected magnetic fields detected by the sensors is computed.


The distance between the sensors may then be computed based on the (average) magnetic field gradient of the selected magnetic field(s) and the (average) difference between the magnetic field magnitudes of the selected magnetic field(s). In some embodiments, the distance may be computed based on dividing the (average) difference between the magnetic field magnitudes of the selected magnetic field(s) by the (average) magnetic field gradient of the selected magnetic field(s). Another dimension of the distal end assembly may be computed from the computed distance between the sensors. The distance and/or the dimension may then be used to find a shape of the distal end assembly so that a representation of the distal end assembly may be rendered to a display.


System Description

Reference is now made to FIG. 1, which is a schematic, pictorial illustration of a catheter tracking system 20, in accordance with an embodiment of the present invention. The system 20 includes a catheter 40 configured to be inserted into a body part of a living subject (e.g., a patient 28). A physician 30 navigates the catheter 40 (for example, a basket catheter produced by Biosense Webster, Inc. of Irvine, CA, USA), seen in detail in inset 45, to a target location in a heart 26 of the patient 28, by manipulating a deflectable segment of an insertion tube 22 of the catheter 40, using a manipulator 32 near a proximal end 29 of the insertion tube 22, and/or deflection from a sheath 23. In the pictured embodiment, physician 30 uses catheter 40 to perform electro-anatomical mapping of a cardiac chamber.


The catheter 40 includes a distal end 33. The distal end 33 of the catheter 40 includes an assembly 35 (e.g., a basket assembly as shown in FIG. 1 or a balloon assembly) on which multiple electrodes 48 (only some labeled for the sake of simplicity) are disposed. The assembly 35 is disposed distally to the insertion tube 22 and may be connected to the insertion tube 22 via a coupling member of the insertion tube 22 at the distal end 33. The coupling member of the insertion tube 22 may be formed as an integral part of the rest of the insertion tube 22 or as a separate element which connects with the rest of the insertion tube 22.


The assembly 35 further comprises multiple flexible strips 55 (only two labeled for the sake of simplicity), to each of which are coupled the electrodes 48. The assembly 35 may include any suitable number of electrodes 48. In some embodiments, the assembly 35 may include ten flexible strips 55 and 120 electrodes, with twelve electrodes disposed on each flexible strip 55.


The catheter 40 includes a pusher 37. The pusher 37 is typically a tube that is disposed in a lumen of the insertion tube 22 and spans from the proximal end 29 to the distal end 33 of the insertion tube 22. A distal end of the pusher 37 is connected to first ends of the flexible strips 55, typically via a coupling member of the pusher 37. The coupling member of the pusher 37 may be formed as an integral part of the rest of the pusher 37 or as a separate element which connects with the rest of the pusher 37. The distal end of the insertion tube 22 is connected to second ends of the flexible strips 55, typically via the coupling member of the distal end 33. The pusher 37 is generally controlled via the manipulator 32 to deploy the assembly 35 and change an ellipticity of the assembly 35 according to the longitudinal displacement of the pusher 37 with respect to the insertion tube 22.


The actual basket assembly 35 structure may vary. For example, flexible strips 55 may be made of a printed circuit board (PCB), or of a shape-memory alloy.


Embodiments described herein refer mainly to a basket distal-end assembly 35, purely by way of example. In alternative embodiments, the disclosed techniques can be used with a catheter having a balloon-based distal-end assembly or of any other suitable type of distal-end assembly.


Catheter 40 is inserted in a folded configuration, through sheath 23, and only after the catheter 40 exits sheath 23 is catheter 40 able to change shape by retracting pusher 37. By containing catheter 40 in a folded configuration, sheath 23 also serves to minimize vascular trauma on its way to the target location.


The distal end 33 of the catheter 40 comprises magnetic coil sensors 50A and 50B. The magnetic coil sensor 50A is shown in inset 45 at the distal edge of insertion tube 22 (i.e., at the proximal edge of basket assembly 35). The sensor 50A may be a Single-Axis Sensor (SAS), or a DAS or a TAS. Similarly, the sensor 50B may be a SAS, DAS, or TAS. Magnetic coil sensors 50A and 50B and electrodes 48 are connected by wires running through insertion tube 22 to various driver circuitries in a console 24.


In some embodiments, system 20 comprises a magnetic-sensing sub-system to estimate an ellipticity of the basket assembly 35 of catheter 40, as well as its elongation/retraction state, inside a cardiac chamber of heart 26 by estimating the elongation of the basket assembly 35 from the distance between sensors 50A and 50B as described in more detail with reference to FIGS. 2B and 3. Patient 28 is placed in a magnetic field generated by a pad containing multiple magnetic field generator coils 42, which are driven by a unit 43. The magnetic field generator coils 42 are configured to generate respective alternating magnetic fields, having respective different frequencies, into a region where a body-part (e.g., the heart 26) of a living subject (e.g., the patient 28) is located. The magnetic coil sensors 50A and 50B are configured to output electrical signals as a function of detecting the respective magnetic fields. For example, if there are nine magnetic field generator coils 42 generating nine respective different alternating magnetic fields with nine respective different frequencies, the electrical signals output by the magnetic coil sensors 50 will include components of the nine different frequency alternating magnetic fields. The magnitude of each of the magnetic fields varies with distance from the respective magnetic field generator coils 42 such that the location of the magnetic coil sensors 50 may be determined from the magnetic fields sensed by the magnetic coil sensors 50. Therefore, the transmitted alternating magnetic fields generate the electrical signals in sensors 50A and 50B, so that the electrical signals are indicative of position and orientation of the magnetic coil sensors 50. The magnetic coil sensors 50A and 50B are described in more detail with reference to FIG. 2B.


The generated signals are transmitted to console 24 and become corresponding electrical inputs to processing circuitry 41. The processing circuitry 41 may use the signals to compute: the elongation of the basket assembly 35, in order to estimate basket ellipticity and elongation/retraction state from the calculated distance between sensors 50A and 50B, described in more detail below with reference to FIGS. 2B and 3; and compute a relative orientation between the axes of the sensors 50A and 50B to estimate a shape of the expandable distal end assembly 35 (e.g., a basket shape) based on the relative orientation, as described in more detail below.


The bow of the flexible strips 55 and/or the positions of the electrodes 48 (or other features) on the flexible strips 55 with respect to a fixed point on the catheter 44 (such as the distal tip of the insertion tube 22) may be measured for various distances between the magnetic sensors 50A, 50B and for various relative orientation angles between the magnetic sensors 50A, 50B. For example, the positions of the electrodes 48 with respect to the fixed point on the catheter 40 may be measured for every 0.2 mm movement of the pusher 37 with respect to the insertion tube 22 and for every 1 degree of relative orientation between the magnetic sensors 50A, 50B (up to a maximum sideways movement of the assembly 35). At each different distance/relative-orientation combination, the computed distance and computed relative orientation angle between the magnetic sensors 50A, 50B is recorded along with the position data of the electrodes 48. This data may then be used to estimate the bow of the flexible strips 55 and/or the positions of the electrodes 48 (or other features) on the flexible strips 55 with respect to a fixed point on the catheter 40 (such as the distal tip of the insertion tube 22) based on the computed distance and relative orientation angle between the magnetic sensors 50A, 50B.


Additionally, or alternatively, the bow of the flexible strips 55 may be estimated based on the following assumptions: (a) each of the flexible strips 55 is of a fixed and known length; (b) each of the flexible strips 55 is connected to the pusher 37 via a coupler, with the distal ends of the flexible strips 55 being substantially perpendicular (within an error of plus or minus 10 degrees) to the longitudinal axis 58; (c) each of the flexible strips 55 is connected to the insertion tube 22 via a coupler, which couples the proximal ends of the flexible strips 55 to the insertion tube 22, substantially parallel (within an error of plus or minus 10 degrees) to the longitudinal axis 58 of the insertion tube 22. Based on the above assumptions (a)-(c), and the computed positions of the couplers based on the computed positions of the magnetic sensors 50A, 50B, the bow of each of the flexible strips 55 may be computed using a third-degree polynomial. In some embodiments, the bow of the flexible strips 55 and/or the positions of the electrodes 48 (or other features) on the flexible strips 55 with respect to a fixed point on the catheter 40 (such as the distal tip of the insertion tube 22) may be computed based on the computed distance and orientation between the magnetic sensors 50A, 50B and a model of the catheter 40 which provides the bow of the flexible strips 55 and/or the positions of the electrodes 48 for the computed distance based on the mechanical properties and dimensions of the flexible strips 55.


A method of position and/or direction sensing using external magnetic fields and magnetic coil sensors, such as sensors 50A and 50B, is implemented in various medical applications, for example, in the CARTO® system, produced by Biosense-Webster, and is described in detail in U.S. Pat. Nos. 5,391,199, 6,690,963, 6,484,118, 6,239,724, 6,618,612 and 6,332,089, in PCT Patent Publication WO 96/05768, and in U.S. Patent Application Publications 2002/0065455 A1, 2003/0120150 A1 and 2004/0068178 A1.


Processing circuitry 41, typically part of a general-purpose computer, is further connected via a suitable front end and interface circuits 44, to receive signals from body surface-electrodes 49. Processing circuitry 41 is connected to surface-electrodes 49 by wires running through a cable 39 to the chest of patient 28. The catheter 40 includes a connector 47 disposed at the proximal end 29 of the insertion tube 22 for coupling to the processing circuitry 41.


In some embodiments, processing circuitry 41 renders to a display 27, a representation 31 of at least a part of the catheter 40 and a body-part, (e.g., from a mapping process or from a scan (e.g., CT or MRI) of the body-part previously registered with the system 20), based on computed position coordinates of the insertion tube 22 and the flexible strips 55, described in more detail with reference to FIG. 3.


Processing circuitry 41 is typically programmed in software to carry out the functions described herein. The software may be downloaded to the computer in electronic form, over a network, for example, or it may, alternatively or additionally, be provided and/or stored on non-transitory tangible media, such as magnetic, optical, or electronic memory.


The example illustration shown in FIG. 1 is chosen purely for the sake of conceptual clarity. FIG. 1 shows only elements related to the disclosed techniques for the sake of simplicity and clarity. System 20 typically comprises additional modules and elements that are not directly related to the disclosed techniques, and thus are intentionally omitted from FIG. 1 and from the corresponding description. The elements of system 20 and the methods described herein may be further applied, for example, to control an ablation of tissue of heart 26.


Reference is now made to FIGS. 2A and 2B. FIG. 2A is a schematic view of a distal end 33 of the basket catheter 40 in a collapsed formation. FIG. 2B is a schematic view of the distal end 33 of the basket catheter 40 of FIG. 2A in a deployed formation.


The assembly 35 is typically an expandable distal end assembly (e.g., basket distal end assembly) comprising the flexible strips 55 (only some labeled for the sake of simplicity) disposed circumferentially around a distal portion 52 of the pusher 37 with first ends of the strips 55 connected to the distal end 33 (e.g., the coupling member of the distal end 33) of the insertion tube 22 and second ends of the strips 55 connected to the distal portion 52 (e.g., the coupling member of the distal portion 52) of the pusher 37. The flexible strips 55 are configured to bow radially outward when the pusher 37 is retracted. A plurality of the electrodes 48 (only some labeled for the sake of simplicity) are disposed on each of the flexible strips 55.


The magnetic coil sensor 50A is a coil-based position sensor disposed at the distal end 33 of the insertion tube 22, for example, in the coupling member at the distal end 33. The magnetic coil sensor 50A includes a coil 54A having an axis 56A. The magnetic coil sensor 50B is a coil-based position sensor disposed on the distal portion 52 of the pusher 37, for example, in a coupling member of the distal portion 52, coupling the distal ends of the flexible strips 55 to pusher 37. The magnetic coil sensor 50B includes a coil 54B having an axis 56B. The distal end 33 of the catheter 40 has a longitudinal axis 58. The magnetic coil sensors 50A, 50B are disposed on the distal end 33 with the axis 56A being substantially parallel with the axis 56B. In some embodiments, the axis 56A, the axis 56B, and the longitudinal axis 58 are substantially coaxial.


The pusher 37 is configured to be advanced and retracted through the insertion tube 22. The magnetic field sensors 50A, 50B are configured to move with respect to each other along the longitudinal axis 58 of the catheter 40 as the expandable distal end assembly 35 is expanded and collapsed. When the expandable distal end assembly 35 is collapsed a distance, d, between the magnetic coil sensors 50A, 50B increases, and when the expandable distal end assembly 35 is deployed (i.e. expanded) the distance, d, between the magnetic coil sensors 50A, 50B decreases.


Each sensor 50A, 50B may be a SAS, DAS or TAS. The sensors 50A, 50B may be the same type of sensor, or different types of sensors. If both of the sensors 50A, 50B are single-axis sensors, the catheter 40 generally includes another position sensor to track a roll of the assembly 35.


Reference is now made to FIG. 3, which is a flowchart 100 including steps in a method of operation of the system 20 of FIG. 1. Reference is also made to FIG. 2B.


As previously mentioned, the magnetic coil sensors 50A and 50B are configured to output electrical signals due to the inductive effect of each coil in response the respective magnetic fields. For example, if there are nine magnetic field generator coils 42 generating nine respective different alternating magnetic fields with nine respective different frequencies, the electrical signals output by the magnetic coil sensors 50 will include components of the nine respective different frequency alternating magnetic fields. The magnitude of each of the magnetic fields varies with distance from the respective magnetic field generator coils 42 such that the location of the magnetic coil sensors 50 may be determined from the magnetic fields sensed by the magnetic coil sensors 50. Therefore, the transmitted alternating magnetic fields generate electrical signals in sensors 50A and 50B, such that the electrical signals are indicative of positions and orientation of the magnetic coil sensors 50. The processing circuitry 41 is configured to receive (block 102) the electrical signals from the magnetic coil sensors 50A, 50B.


The processing circuitry 41 is configured to compute (block 104) the magnetic fields detected by the magnetic coil sensor 50A and the magnetic coil sensor 50B, and respective magnetic field gradients (e.g., parallel to the direction of the axes 56A, 56B of the coils 54A, 54B) of respective ones of the magnetic fields detected at the distal end 33. That is, the processing circuitry 41 computes the magnetic field and associated magnetic field gradient from at least one of the electrical signals received by the circuitry 41 from one of more of the magnetic coil sensors 54A and 54B. In some embodiments, an approximate position (location and orientation) of one or more of the magnetic field sensors 50A, 50B may be computed using any suitable method and then based on a known function of the different magnetic fields over three-dimensional (3D) space, the magnetic field gradients at the distal end 33 (e.g., parallel to the direction of the axes 56A, 56B of the coils 54A, 54B) may be found for each of the magnetic fields. The position of the distal end 33 may be computed based on an average position of the magnetic coil sensors 50A, 50B or based on the most accurate sensor of the magnetic coil sensors 50A, 50B. For example, if the sensor 50B is a DAS or TAS, then the location and orientation of sensor 50B may be computed based on all or some of the sensing coils of that sensor.


The processing circuitry 41 is configured to select (block 106) one of magnetic fields having a respective one of the computed magnetic field gradients. In some embodiments, the selected magnetic field has a highest computed magnetic field gradient of the computed magnetic field gradients (i.e. the magnetic field with the highest gradient is selected). The highest magnetic field gradient generally indicates that the selected magnetic field will provide the highest sensitivity in the direction parallel to the axes 56A, 56B of the coils 54A, 54B of the magnetic coil sensors 50A, 50B and will therefore provide the highest accuracy in computing the distance, d, between the sensors 50A, 50B.


In some embodiments, the processing circuitry 41 is configured to select a subset of the magnetic fields (e.g., having the highest magnetic field gradients among the magnetic fields) and compute an average magnetic field gradient of the selected magnetic fields. Therefore, the processing circuitry 41 is configured to select at least one of the magnetic fields having a magnetic field gradient (e.g., an average computed magnetic field gradient) as a function of at least one of the electrical signals received by the circuitry 41 from the coils (which are used to compute the magnetic fields and the magnetic field gradients of the respective magnetic fields). The processing circuitry 41 is configured to compute (block 108) a difference between magnetic field magnitudes of the selected magnetic field (e.g., the magnetic field with the highest gradient) detected by the magnetic coil sensor 50A and the magnetic coil sensor 50B. For example, if the magnetic field magnitude of the selected magnetic field detected by the magnetic coil sensor 50A is equal to B1 and the magnetic field magnitude of the selected magnetic field detected by the magnetic coil sensor 50B is equal to B2, the difference magnetic field magnitudes of the selected magnetic field (e.g., the magnetic field with the highest gradient) detected by the magnetic coil sensor 50A and the magnetic coil sensor 50B is equal to B2 minus B1.


In some embodiments, when a subset of magnetic fields are selected, the processing circuitry 41 is configured to compute a difference (which is an average difference) between magnetic field magnitudes of the selected magnetic fields (e.g., the magnetic field with the highest gradients) detected by the magnetic coil sensor 50A and the magnetic coil sensor 50B. For example, if the average magnetic field magnitude of the selected magnetic fields detected by the magnetic coil sensor 50A is equal to B3 and the average magnetic field magnitude of the selected magnetic fields detected by the magnetic coil sensor 50B is equal to B4, the average difference magnetic field magnitudes of the selected magnetic fields (e.g., the magnetic fields with the highest gradient) detected by the magnetic coil sensor 50A and the magnetic coil sensor 50B is equal to B4 minus B3.


The processing circuitry 41 is configured to compute (block 110) a dimension of the distal end 33, which is a function of the distance d between the magnetic coil sensors 50A and 50B, as a function of the computed difference (e.g., average difference) between the magnetic field magnitudes of the selected magnetic field(s) (e.g., B2 minus B1 or B4 minus B3) and the respective computed magnetic field (average) gradient (e.g., highest computed magnetic field gradient(s)) of the selected magnetic field(s). In some embodiments, the processing circuitry 41 is configured to compute the dimension of the distal end 33 based on the computed (average) difference between the magnetic field magnitudes of the selected magnetic field(s) (e.g., B2 minus B1 or B4 minus B3) divided by the respective computed (average) magnetic field gradient (e.g., highest computed magnetic field gradient(s)) of the selected magnetic field(s). The computed dimension may be the distance between the magnetic coil sensors 50A, 50B. In some embodiments, the computed dimension is a dimension of a shape of the distal end 33 of the catheter, for example, the distance between the proximal and distal points of the distal end assembly 35 or a circumference at the equator of the assembly 35. The processing circuitry 41 is configured to find (block 112) (e.g., by computation or from a lookup table) a shape of the distal end assembly 35 as a derivation from the computed dimension. The processing circuitry 41 is optionally configured to compute a relative orientation between the axes of the sensors 50A and 50B to estimate or derive the shape of the expandable distal end assembly 35 (e.g., a basket shape) based on the relative orientation. The processing circuitry 41 is configured to render (block 114) to the display 27 the representation 31 (FIG. 1) of the distal end assembly 35 as a derivation of the found shape of the distal end assembly 35. One technique for deriving a shape of the expandable distal end assembly 35 based on the distances between magnetic location sensors can be found in U.S. patent application Ser. No. 16/854,538 filed Apr. 21, 2020, which is incorporated by reference with a copy attached in the Appendix.


As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values ±20% of the recited value, e.g. “about 90%” may refer to the range of values from 72% to 108%.


Various features of the invention which are, for clarity, described in the contexts of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable sub-combination.


The embodiments described above are cited by way of example, and the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.

Claims
  • 1. A medical system, comprising: generator coils configured to generate respective magnetic fields having respective different frequencies in a region of a body part of a living subject;a catheter collapsible and expandible between a collapsed formation and a deployed formation along a longitudinal axis of the catheter and being configured to be inserted into the body part of the living subject, and comprising: an insertion tube connected to an expandable distal end assembly, andmagnetic coil sensors configured to output electrical signals in response to the respective magnetic fields, the magnetic coil sensors comprising:a first magnetic coil sensor having a first axis, the first magnetic coil sensor being disposed on a distal end of the insertion tube, anda second magnetic coil sensor having a second axis, the second magnetic coil sensor being disposed on a pusher tube inside the expandable distal end assembly, the respective axes of the first and second magnetic coil sensors being substantially parallel with each other,the first and second magnetic coil sensors being configured to move with respect to each other along the longitudinal axis of the catheter as the expandable distal end assembly is expanded and collapsed such that (i) when the expandable distal end assembly collapses towards the collapsed formation, a distance between the first and second magnetic coil sensors increases, and (ii) when the expandable distal end assembly expands towards the deployed formation, the distance between the first and second magnetic coil sensors decreases; andprocessing circuitry configured to: receive the electrical signals from the magnetic coil sensors;select at least one of the magnetic fields having a magnetic field gradient defined by at least one of the received electrical signals;compute a difference between magnetic field magnitudes of the at least one selected magnetic field detected by the first magnetic coil sensor and the second magnetic coil sensor based on the received electrical signals; andcompute a dimension of the expandable distal end assembly, which is a function of a distance between the magnetic coil sensors, based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field and the magnetic field gradient of the at least one selected magnetic field.
  • 2. The medical system according to claim 1, wherein the computed dimension is the distance between the first and second magnetic coil sensors.
  • 3. The medical system according to claim 1, wherein the computed dimension is a dimension of a shape of the expandable distal end assembly of the catheter.
  • 4. The medical system according to claim 1, wherein the processing circuitry is configured to compute the dimension of the expandable distal end assembly as a function of the computed difference between the magnetic field magnitudes of the at least one selected magnetic field divided by the magnetic field gradient of the at least one selected magnetic field.
  • 5. The medical system according to claim 1, wherein: the at least one selected magnetic field includes one of the magnetic fields having a highest magnetic field gradient of the magnetic fields; andthe processing circuitry is configured to compute the dimension of the expandable distal end assembly as a function of the computed difference between the magnetic field magnitudes of the at least one selected magnetic field and the highest magnetic field gradient.
  • 6. The medical system according to claim 1, wherein: the first axis and the second axis are substantially parallel in the collapsed formation.
  • 7. The medical system according to claim 6, wherein the first axis, the second axis, and the longitudinal axis are substantially coaxial.
  • 8. The medical system according to claim 6, wherein the expandable distal end assembly is a basket distal end assembly comprising a plurality of flexible strips and electrodes disposed on the flexible strips.
  • 9. The medical system according to claim 6, further comprising a display, and wherein the processing circuitry is configured to: find a shape of the distal end assembly based on at least the computed dimension; andrender to the display a representation of the distal end assembly based on the found shape of the distal end assembly.
  • 10. The medical system according to claim 9, wherein the computed dimension is the distance between the first and second magnetic coil sensors.
  • 11. The medical system according to claim 1, wherein the processing circuitry is configured to: compute a relative orientation between the first axis of the first magnetic coil sensor and the second axis of the second magnetic coil sensor; andestimate a shape of the distal end assembly based on the computed relative orientation.
  • 12. A medical method, comprising: generating magnetic fields having respective different frequencies in a region of a body part of a living subject;inserting a catheter into the body part of the living subject, the catheter being collapsible and expandible between a collapsed formation and a deployed formation along a longitudinal axis of the catheter, the catheter comprising: an insertion tube connected to an expandable distal end assembly; anda first magnetic coil sensor and a second magnetic coil sensor, each being configured to output electrical signals as a function of respective magnetic fields, the first and second magnetic coil sensors having respective first and second axes substantially parallel with each other, the first magnetic coil sensor being disposed on a distal end of the insertion tube, and the second magnetic coil sensor being disposed on a pusher tube inside the expandable distal end assembly,the first and second magnetic coil sensors being configured to move with respect to each other along the longitudinal axis of the catheter as the expandable distal end assembly is expanded and collapsed such that (i) when the expandable distal end assembly collapses towards the collapsed formation, a distance between the first and second magnetic coil sensors increases, and (ii) when the expandable distal end assembly expands towards the deployed formation, the distance between the first and second magnetic coil sensors decreases;detecting respective ones of the magnetic fields with the first and second magnetic coil sensors outputting the electrical signals as the function of the respective magnetic fields;receiving respective electrical signals from the first and second magnetic coil sensors;selecting at least one of the magnetic fields having a magnetic field gradient as a function of at least one of the received electrical signals;computing a difference between magnetic field magnitudes of the at least one selected magnetic field detected by the first magnetic coil sensor and the second magnetic coil sensor as a function of the received electrical signals; andcomputing a dimension of the expandable distal end assembly, which is a function of a distance between the first and second magnetic coil sensors, based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field and the magnetic field gradient of the at least one selected magnetic field.
  • 13. The medical method according to claim 12, wherein the computed dimension is the distance between the first and second magnetic coil sensors.
  • 14. The medical method according to claim 12, wherein the computed dimension is a dimension of a shape of the expandable distal end assembly of the catheter.
  • 15. The medical method according to claim 12, wherein the computing the dimension comprises computing the dimension of the expandable distal end assembly based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field divided by the magnetic field gradient of the at least one selected magnetic field.
  • 16. The medical method according to claim 12, wherein: the at least one selected magnetic field includes one of the magnetic fields having a highest magnetic field gradient of the magnetic fields; andthe computing the dimension comprises computing the dimension of the expandable distal end assembly based on the computed difference between the magnetic field magnitudes of the at least one selected magnetic field and the highest magnetic field gradient.
  • 17. The medical method according to claim 12, further comprising moving the first and second magnetic coil sensors with respect to each other along the longitudinal axis of the catheter as the expandable distal end assembly of the catheter is expanded and collapsed between the collapsed formation and the deployed formation, the first and second axes of the first and second magnetic coil sensors being substantially parallel in the collapsed formation.
  • 18. The medical method according to claim 17, wherein the first axis, the second axis, and the longitudinal axis are substantially coaxial.
  • 19. The medical method according to claim 17, further comprising: finding a shape of the distal end assembly based on at least the computed dimension; and
  • 20. The medical method according to claim 19, wherein the computed dimension is the distance between the first and second magnetic coil sensors.
  • 21. The medical method according to claim 12, further comprising: computing a relative orientation between the first axis of the first magnetic coil sensor and the second axis of the second magnetic coil sensor; andestimating a shape of the distal end assembly based on the computed relative orientation.
US Referenced Citations (403)
Number Name Date Kind
4699147 Chilson et al. Oct 1987 A
4940064 Desai Jul 1990 A
5215103 Desai Jun 1993 A
5255679 Imran Oct 1993 A
5293869 Edwards et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5313943 Houser et al. May 1994 A
5324284 Imran Jun 1994 A
5345936 Pomeranz et al. Sep 1994 A
5365926 Desai Nov 1994 A
5391199 Ben-Haim Feb 1995 A
5396887 Imran Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5411025 Webster, Jr. May 1995 A
5415166 Imran May 1995 A
5443489 Ben-Haim Aug 1995 A
5456254 Pietroski et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5476495 Kordis et al. Dec 1995 A
5499981 Kordis Mar 1996 A
5526810 Wang Jun 1996 A
5546940 Panescu et al. Aug 1996 A
5549108 Edwards et al. Aug 1996 A
5558073 Pomeranz et al. Sep 1996 A
5558091 Acker et al. Sep 1996 A
5577509 Panescu et al. Nov 1996 A
5595183 Swanson et al. Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5609157 Panescu et al. Mar 1997 A
5628313 Webster, Jr. May 1997 A
5681280 Rusk et al. Oct 1997 A
5722401 Pietroski et al. Mar 1998 A
5722403 McGee et al. Mar 1998 A
5725525 Kordis Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5772590 Webster, Jr. Jun 1998 A
5782899 Imran Jul 1998 A
5823189 Kordis Oct 1998 A
5881727 Edwards Mar 1999 A
5893847 Kordis Apr 1999 A
5904680 Kordis et al. May 1999 A
5911739 Kordis et al. Jun 1999 A
5928228 Kordis et al. Jul 1999 A
5968040 Swanson et al. Oct 1999 A
6014579 Pomeranz et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6119030 Morency Sep 2000 A
6172499 Ashe Jan 2001 B1
6216043 Swanson et al. Apr 2001 B1
6216044 Kordis Apr 2001 B1
6239724 Doron et al. May 2001 B1
6332089 Acker et al. Dec 2001 B1
6428537 Swanson et al. Aug 2002 B1
6456864 Swanson et al. Sep 2002 B1
6484118 Govari Nov 2002 B1
6574492 Ben-Haim et al. Jun 2003 B1
6584345 Govari Jun 2003 B2
6600948 Ben-Haim et al. Jul 2003 B2
6618612 Acker et al. Sep 2003 B1
6690963 Ben-Haim et al. Feb 2004 B2
6738655 Sen et al. May 2004 B1
6741878 Fuimaono et al. May 2004 B2
6748255 Fuimaono et al. Jun 2004 B2
6780183 Jimenez, Jr. et al. Aug 2004 B2
6788967 Ben-Haim et al. Sep 2004 B2
6837886 Collins et al. Jan 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6892091 Ben-Haim et al. May 2005 B1
6970730 Fuimaono et al. Nov 2005 B2
6973340 Fuimaono et al. Dec 2005 B2
6980858 Fuimaono et al. Dec 2005 B2
7048734 Fleischman et al. May 2006 B1
7149563 Fuimaono et al. Dec 2006 B2
7255695 Falwell et al. Aug 2007 B2
7257434 Fuimaono et al. Aug 2007 B2
7399299 Daniel et al. Jul 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7522950 Fuimaono et al. Apr 2009 B2
RE41334 Beatty et al. May 2010 E
7846157 Kozel Dec 2010 B2
7930018 Harlev et al. Apr 2011 B2
8007495 McDaniel et al. Aug 2011 B2
8048063 Aeby et al. Nov 2011 B2
8103327 Harlev et al. Jan 2012 B2
8167845 Wang et al. May 2012 B2
8224416 De La Rama et al. Jul 2012 B2
8235988 Davis et al. Aug 2012 B2
8346339 Kordis et al. Jan 2013 B2
8435232 Aeby et al. May 2013 B2
8447377 Harlev et al. May 2013 B2
8498686 Grunewald Jul 2013 B2
8517999 Pappone et al. Aug 2013 B2
8545490 Mihajlovic et al. Oct 2013 B2
8560086 Just et al. Oct 2013 B2
8567265 Aeby et al. Oct 2013 B2
8712550 Grunewald Apr 2014 B2
8755861 Harlev et al. Jun 2014 B2
8825130 Just et al. Sep 2014 B2
8906011 Gelbart et al. Dec 2014 B2
8945120 McDaniel et al. Feb 2015 B2
8979839 De La Rama et al. Mar 2015 B2
9037264 Just et al. May 2015 B2
9131980 Bloom Sep 2015 B2
9204929 Solis Dec 2015 B2
9277960 Weinkam et al. Mar 2016 B2
9314208 Altmann et al. Apr 2016 B1
9339331 Tegg et al. May 2016 B2
9486282 Solis Nov 2016 B2
9554718 Bar-Tal et al. Jan 2017 B2
D782686 Werneth et al. Mar 2017 S
9585588 Marecki et al. Mar 2017 B2
9597036 Aeby et al. Mar 2017 B2
9687297 Just et al. Jun 2017 B2
9693733 Altmann et al. Jul 2017 B2
9782099 Williams et al. Oct 2017 B2
9788895 Solis Oct 2017 B2
9801681 Laske et al. Oct 2017 B2
9814618 Nguyen et al. Nov 2017 B2
9833161 Govari Dec 2017 B2
9894756 Weinkam et al. Feb 2018 B2
9895073 Solis Feb 2018 B2
9907609 Cao et al. Mar 2018 B2
9974460 Wu et al. May 2018 B2
9986949 Govari et al. Jun 2018 B2
9993160 Salvestro et al. Jun 2018 B2
10014607 Govari et al. Jul 2018 B1
10028376 Weinkam et al. Jul 2018 B2
10034637 Harlev et al. Jul 2018 B2
10039494 Altmann et al. Aug 2018 B2
10045707 Govari Aug 2018 B2
10078713 Auerbach et al. Sep 2018 B2
10111623 Jung et al. Oct 2018 B2
10130420 Basu et al. Nov 2018 B2
10136828 Houben et al. Nov 2018 B2
10143394 Solis Dec 2018 B2
10172536 Maskara et al. Jan 2019 B2
10182762 Just et al. Jan 2019 B2
10194818 Williams et al. Feb 2019 B2
10201311 Chou et al. Feb 2019 B2
10219860 Harlev et al. Mar 2019 B2
10219861 Just et al. Mar 2019 B2
10231328 Weinkam et al. Mar 2019 B2
10238309 Bar-Tal et al. Mar 2019 B2
10278590 Salvestro et al. May 2019 B2
D851774 Werneth et al. Jun 2019 S
10314505 Williams et al. Jun 2019 B2
10314507 Govari et al. Jun 2019 B2
10314648 Ge et al. Jun 2019 B2
10314649 Bakos et al. Jun 2019 B2
10349855 Zeidan et al. Jul 2019 B2
10350003 Weinkam et al. Jul 2019 B2
10362991 Tran et al. Jul 2019 B2
10375827 Weinkam et al. Aug 2019 B2
10376170 Quinn et al. Aug 2019 B2
10376221 Iyun et al. Aug 2019 B2
10398348 Osadchy et al. Sep 2019 B2
10403053 Katz et al. Sep 2019 B2
10441188 Katz et al. Oct 2019 B2
10470682 Deno et al. Nov 2019 B2
10470714 Altmann et al. Nov 2019 B2
10482198 Auerbach et al. Nov 2019 B2
10492857 Guggenberger et al. Dec 2019 B2
10542620 Weinkam et al. Jan 2020 B2
10575743 Basu et al. Mar 2020 B2
10575745 Solis Mar 2020 B2
10582871 Williams et al. Mar 2020 B2
10582894 Ben Zrihem et al. Mar 2020 B2
10596346 Aeby et al. Mar 2020 B2
10602947 Govari et al. Mar 2020 B2
10617867 Viswanathan et al. Apr 2020 B2
10660702 Viswanathan et al. May 2020 B2
10667753 Werneth et al. Jun 2020 B2
10674929 Houben et al. Jun 2020 B2
10681805 Weinkam et al. Jun 2020 B2
10682181 Cohen et al. Jun 2020 B2
10687892 Long et al. Jun 2020 B2
10702178 Dahlen et al. Jul 2020 B2
10716477 Salvestro et al. Jul 2020 B2
10758304 Aujla Sep 2020 B2
10765371 Hayam et al. Sep 2020 B2
10772566 Aujila Sep 2020 B2
10799281 Goertzen et al. Oct 2020 B2
10842558 Harlev et al. Nov 2020 B2
10842561 Viswanathan et al. Nov 2020 B2
10863914 Govari et al. Dec 2020 B2
10881376 Shemesh et al. Jan 2021 B2
10898139 Guta et al. Jan 2021 B2
10905329 Bar-Tal et al. Feb 2021 B2
10912484 Ziv-Ari et al. Feb 2021 B2
10918306 Govari et al. Feb 2021 B2
10939871 Altmann et al. Mar 2021 B2
10952795 Cohen et al. Mar 2021 B2
10973426 Williams et al. Apr 2021 B2
10973461 Baram et al. Apr 2021 B2
10987045 Basu et al. Apr 2021 B2
11006902 Bonyak et al. May 2021 B1
11040208 Govari et al. Jun 2021 B1
11045628 Beeckler et al. Jun 2021 B2
11051877 Sliwa et al. Jul 2021 B2
11109788 Rottmann et al. Sep 2021 B2
11116435 Urman et al. Sep 2021 B2
11129574 Cohen et al. Sep 2021 B2
11160482 Solis Nov 2021 B2
11164371 Yellin et al. Nov 2021 B2
20020065455 Ben-Haim et al. May 2002 A1
20030120150 Govari Jun 2003 A1
20040068178 Govari Apr 2004 A1
20040210121 Fuimaono et al. Oct 2004 A1
20060009689 Fuimaono et al. Jan 2006 A1
20060009690 Fuimaono Jan 2006 A1
20060100669 Fuimaono et al. May 2006 A1
20070093806 Desai et al. Apr 2007 A1
20070276212 Fuimaono et al. Nov 2007 A1
20080234564 Beatty et al. Sep 2008 A1
20110118726 De La Rama et al. May 2011 A1
20110160574 Harlev et al. Jun 2011 A1
20110190625 Harlev et al. Aug 2011 A1
20110245756 Arora et al. Oct 2011 A1
20110301597 McDaniel et al. Dec 2011 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172883 Lopes et al. Jul 2013 A1
20130178850 Lopes et al. Jul 2013 A1
20130190587 Lopes et al. Jul 2013 A1
20130296852 Madjarov et al. Nov 2013 A1
20140025069 Willard et al. Jan 2014 A1
20140052118 Laske et al. Feb 2014 A1
20140180147 Thakur et al. Jun 2014 A1
20140180151 Maskara et al. Jun 2014 A1
20140180152 Maskara et al. Jun 2014 A1
20140257069 Eliason et al. Sep 2014 A1
20140276712 Mallin et al. Sep 2014 A1
20140309512 Govari et al. Oct 2014 A1
20150011991 Buysman et al. Jan 2015 A1
20150045863 Litscher et al. Feb 2015 A1
20150080693 Solis Mar 2015 A1
20150105770 Amit Apr 2015 A1
20150119878 Heisel et al. Apr 2015 A1
20150133919 McDaniel et al. May 2015 A1
20150208942 Bar-Tal et al. Jul 2015 A1
20150250424 Govari et al. Sep 2015 A1
20150270634 Buesseler et al. Sep 2015 A1
20150342532 Basu et al. Dec 2015 A1
20160081746 Solis Mar 2016 A1
20160113582 Altmann et al. Apr 2016 A1
20160113709 Maor Apr 2016 A1
20160183877 Williams et al. Jun 2016 A1
20160228023 Govari Aug 2016 A1
20160228062 Altmann et al. Aug 2016 A1
20160278853 Ogle et al. Sep 2016 A1
20160302858 Bencini Oct 2016 A1
20160338770 Bar-Tal et al. Nov 2016 A1
20170027638 Solis Feb 2017 A1
20170065227 Marrs et al. Mar 2017 A1
20170071543 Basu et al. Mar 2017 A1
20170071544 Basu et al. Mar 2017 A1
20170071665 Solis Mar 2017 A1
20170095173 Bar-Tal et al. Apr 2017 A1
20170100187 Basu et al. Apr 2017 A1
20170143227 Marecki et al. May 2017 A1
20170156790 Aujla Jun 2017 A1
20170172442 Govari Jun 2017 A1
20170172455 Pressman Jun 2017 A1
20170185702 Auerbach et al. Jun 2017 A1
20170202515 Zrihem et al. Jul 2017 A1
20170221262 Laughner et al. Aug 2017 A1
20170224958 Cummings et al. Aug 2017 A1
20170265812 Williams et al. Sep 2017 A1
20170281031 Houben et al. Oct 2017 A1
20170281268 Tran et al. Oct 2017 A1
20170296125 Altmann et al. Oct 2017 A1
20170296251 Wu et al. Oct 2017 A1
20170347959 Guta et al. Dec 2017 A1
20170354338 Levin et al. Dec 2017 A1
20170354339 Zeidan et al. Dec 2017 A1
20170354364 Bar-Tal et al. Dec 2017 A1
20180008203 Iyun et al. Jan 2018 A1
20180028084 Williams et al. Feb 2018 A1
20180049803 Solis Feb 2018 A1
20180085064 Auerbach et al. Mar 2018 A1
20180132749 Govari et al. May 2018 A1
20180137687 Katz et al. May 2018 A1
20180160936 Govari Jun 2018 A1
20180160978 Cohen et al. Jun 2018 A1
20180168511 Hall et al. Jun 2018 A1
20180184982 Basu et al. Jul 2018 A1
20180192958 Wu Jul 2018 A1
20180206792 Auerbach et al. Jul 2018 A1
20180235692 Efimov et al. Aug 2018 A1
20180249959 Osypka Sep 2018 A1
20180256109 Wu et al. Sep 2018 A1
20180279954 Hayam et al. Oct 2018 A1
20180303414 Toth et al. Oct 2018 A1
20180310987 Altmann et al. Nov 2018 A1
20180311497 Viswanathan et al. Nov 2018 A1
20180338722 Altmann et al. Nov 2018 A1
20180344188 Govari Dec 2018 A1
20180344202 Bar-Tal Dec 2018 A1
20180344251 Harlev et al. Dec 2018 A1
20180344393 Gruba et al. Dec 2018 A1
20180360534 Teplitsky et al. Dec 2018 A1
20180365355 Auerbach et al. Dec 2018 A1
20190000540 Cohen et al. Jan 2019 A1
20190008582 Govari et al. Jan 2019 A1
20190015007 Rottmann et al. Jan 2019 A1
20190030328 Stewart et al. Jan 2019 A1
20190053708 Gliner Feb 2019 A1
20190059766 Houben et al. Feb 2019 A1
20190069950 Viswanathan et al. Mar 2019 A1
20190069954 Cohen et al. Mar 2019 A1
20190117111 Osadchy et al. Apr 2019 A1
20190117303 Claude et al. Apr 2019 A1
20190117315 Keyes et al. Apr 2019 A1
20190125439 Rohl et al. May 2019 A1
20190133552 Shemesh et al. May 2019 A1
20190142293 Solis May 2019 A1
20190164633 Ingel et al. May 2019 A1
20190167137 Bar-Tal et al. Jun 2019 A1
20190167140 Williams et al. Jun 2019 A1
20190188909 Yellin et al. Jun 2019 A1
20190201664 Govari Jul 2019 A1
20190209089 Baram et al. Jul 2019 A1
20190216346 Ghodrati et al. Jul 2019 A1
20190216347 Ghodrati et al. Jul 2019 A1
20190231421 Viswanathan et al. Aug 2019 A1
20190231423 Weinkam et al. Aug 2019 A1
20190239811 Just et al. Aug 2019 A1
20190246935 Govari et al. Aug 2019 A1
20190298442 Ogata et al. Oct 2019 A1
20190314083 Herrera et al. Oct 2019 A1
20190328260 Zeidan et al. Oct 2019 A1
20190343580 Nguyen et al. Nov 2019 A1
20200000518 Kiernan et al. Jan 2020 A1
20200008705 Ziv-Ari et al. Jan 2020 A1
20200008869 Byrd Jan 2020 A1
20200009378 Stewart et al. Jan 2020 A1
20200015890 To et al. Jan 2020 A1
20200022653 Moisa Jan 2020 A1
20200029845 Baram et al. Jan 2020 A1
20200046421 Govari Feb 2020 A1
20200046423 Viswanathan et al. Feb 2020 A1
20200060569 Tegg Feb 2020 A1
20200077959 Altmann et al. Mar 2020 A1
20200093539 Long et al. Mar 2020 A1
20200129089 Gliner et al. Apr 2020 A1
20200129125 Govari et al. Apr 2020 A1
20200129128 Gliner et al. Apr 2020 A1
20200179650 Beeckler et al. Jun 2020 A1
20200196896 Solis Jun 2020 A1
20200205689 Squires et al. Jul 2020 A1
20200205690 Williams et al. Jul 2020 A1
20200205737 Beeckler Jul 2020 A1
20200205876 Govari Jul 2020 A1
20200205892 Viswanathan et al. Jul 2020 A1
20200206461 Govari et al. Jul 2020 A1
20200206498 Arora et al. Jul 2020 A1
20200289197 Viswanathan et al. Sep 2020 A1
20200297234 Houben et al. Sep 2020 A1
20200297281 Basu et al. Sep 2020 A1
20200305726 Salvestro et al. Oct 2020 A1
20200305946 DeSimone et al. Oct 2020 A1
20200397328 Altmann et al. Dec 2020 A1
20200398048 Krimsky et al. Dec 2020 A1
20210015549 Haghighi-Mood et al. Jan 2021 A1
20210022684 Govari et al. Jan 2021 A1
20210045805 Govari et al. Feb 2021 A1
20210059549 Urman et al. Mar 2021 A1
20210059550 Urman et al. Mar 2021 A1
20210059608 Beeckler et al. Mar 2021 A1
20210059743 Govari Mar 2021 A1
20210059747 Krans et al. Mar 2021 A1
20210077184 Basu et al. Mar 2021 A1
20210082157 Rosenberg et al. Mar 2021 A1
20210085200 Auerbach et al. Mar 2021 A1
20210085204 Auerbach et al. Mar 2021 A1
20210085215 Auerbach et al. Mar 2021 A1
20210085387 Amit et al. Mar 2021 A1
20210093292 Baram et al. Apr 2021 A1
20210093294 Shemesh et al. Apr 2021 A1
20210093374 Govari et al. Apr 2021 A1
20210093377 Herrera et al. Apr 2021 A1
20210100612 Baron et al. Apr 2021 A1
20210113822 Beeckler et al. Apr 2021 A1
20210127999 Govari et al. May 2021 A1
20210128010 Govari et al. May 2021 A1
20210133516 Govari et al. May 2021 A1
20210145282 Bar-Tal et al. May 2021 A1
20210169421 Govari Jun 2021 A1
20210169568 Govari et al. Jun 2021 A1
20210177294 Gliner et al. Jun 2021 A1
20210177356 Gliner et al. Jun 2021 A1
20210178166 Govari et al. Jun 2021 A1
20210186363 Gliner et al. Jun 2021 A1
20210187241 Govari et al. Jun 2021 A1
20210196372 Altmann et al. Jul 2021 A1
20210196394 Govari et al. Jul 2021 A1
20210212591 Govari et al. Jul 2021 A1
20210219904 Yarnitsky et al. Jul 2021 A1
20210278936 Katz et al. Sep 2021 A1
20210282659 Govari et al. Sep 2021 A1
20210307815 Govari et al. Oct 2021 A1
20210308424 Beeckler et al. Oct 2021 A1
20210338319 Govari et al. Nov 2021 A1
20220226046 Mariappan Jul 2022 A1
Foreign Referenced Citations (42)
Number Date Country
111248993 Jun 2020 CN
111248996 Jun 2020 CN
111388085 Jul 2020 CN
0668740 Aug 1995 EP
0644738 Mar 2000 EP
0727183 Nov 2002 EP
0727184 Dec 2002 EP
2783651 Oct 2014 EP
2699151 Nov 2015 EP
2699152 Nov 2015 EP
2699153 Dec 2015 EP
2498706 Apr 2016 EP
2578173 Jun 2017 EP
3238645 Nov 2017 EP
2884931 Jan 2018 EP
2349440 Aug 2019 EP
3318211 Dec 2019 EP
3581135 Dec 2019 EP
2736434 Feb 2020 EP
3451962 Mar 2020 EP
3972510 Mar 2022 EP
9421167 Sep 1994 WO
9421169 Sep 1994 WO
1996005768 Feb 1996 WO
9625095 Aug 1996 WO
9634560 Nov 1996 WO
0182814 May 2002 WO
2004087249 Oct 2004 WO
2012100185 Jul 2012 WO
2013052852 Apr 2013 WO
2013162884 Oct 2013 WO
2013173917 Nov 2013 WO
2013176881 Nov 2013 WO
2014176205 Oct 2014 WO
2016019760 Feb 2016 WO
2016044687 Mar 2016 WO
2018111600 Jun 2018 WO
2018191149 Oct 2018 WO
2019084442 May 2019 WO
2019143960 Jul 2019 WO
2020026217 Feb 2020 WO
2020206328 Oct 2020 WO
Non-Patent Literature Citations (2)
Entry
Translation of CN 111388085 A (Year: 2020).
Extended European Search Report dated May 4, 2022, from corresponding European Application No. 21215040.3.
Related Publications (1)
Number Date Country
20220193370 A1 Jun 2022 US