This disclosure relates generally to the assessment of the responsiveness of a subject, especially the responsiveness of a subject with lowered level of consciousness.
One of the special applications of electroencephalography (EEG), which has received attention recently, is the use of a processed EEG signal for objective quantification of the amount and type of brain activity for the purpose of determining the level of consciousness of a patient. In its simplest form, the utilization of an EEG signal allows automatic detection of the alertness of an individual, i.e. if he or she is awake or asleep. This has become an issue of increased interest, both scientifically and commercially, in the context of measuring the level of unconsciousness induced by anesthesia during surgery.
Another important component of balanced anesthesia is analgesia, i.e. prevention of pain reactions of a patient by administration of pain medication. Adequate analgesia reduces surgical stress and there is firm evidence that it decreases postoperative morbidity. Awareness during surgery with insufficient analgesia may lead to a post-traumatic stress disorder. Low quality pre- and intra-operative analgesia makes it difficult to select the optimal pain management strategy later on. More specifically, it may cause exposure to unwanted side effects during the recovery from the surgery.
If the anesthesia is too light and involves insufficient level of unconsciousness, it may cause traumatic experiences both for the patient and for the anesthesia personnel. From an economical point of view, if the anesthesia is too deep, it may cause increased perioperative costs through extra use of drugs and time, and extend the time required for post-operative care.
Virtually every patient being cared for in an intensive care unit (ICU), for example, receives some form of sedation, i.e. administration of sedative drugs that aim to induce calmness, relaxation, and sleepiness. However, the control of the depth of the sedation administered to a patient is still problematic, and therefore oversedation and undersedation are both rather common occurrences in intensive care units. At present, monitoring the level of sedation is mainly handled by using subjective observations from the patient. Various observational scoring systems have been developed, in which the response of the patient to an intentionally generated stimulus is assessed subjectively. Such scoring systems include the Ramsay Scale, the Glasgow Coma Scale (GCS), and the Richmond Agitation Sedation Scale (RASS).
The level of (un)consciousness is not directly measurable. Therefore, drug delivery systems have to derive the level of (un)consciousness from a surrogate signal or from indirectly measured parameters. The most common and popular surrogate signal for this purpose is the EEG, from which several parameters may be determined. The basic reason for the insufficiency of a single parameter is the variety of drugs and the complexity of the drug effects on the EEG signal in human brains. However, during the past few years, some commercial validated devices for measuring the level of consciousness and/or awareness in clinical set-up during anesthesia or sedation have become available.
In addition to the EEG signal data, electromyographic (EMG) signal data obtained from facial muscles (fEMG) of the forehead is used for monitoring purposes during anesthesia. Recovering facial muscle activity is often the first indicator of the patient approaching consciousness. When this muscle activity is sensed by electrodes placed appropriately, it provides an early indication that the patient is emerging from anesthesia. Similarly, these electrodes can sense pain reactions when the anesthesia is not adequate due to inadequate analgesia. So, the EMG signals give an early warning of the arousal of the patient, and they may also be indicative of inadequate analgesia.
The lowered level of the consciousness of a patient is thus typically induced by one or more anesthetic and/or sedative drugs, but may also be caused by a neurological disorder. Recently, various automatic mechanisms have been suggested for assessing the responsiveness of a patient. In some systems, well-defined stimulus signals are supplied either automatically or manually to the patient and a measurement signal derived from the patient is monitored to determine how the characteristics of the measurement signal are changed in response to the stimulus signals. However, active stimulation provides only intermittent information and its use as a primary mechanism for assessing the responsiveness may be problematic if the patient needs rest and sleep. For example, getting enough sleep is a problem in the ICU, which limits the use of active stimulation for assessing the responsiveness.
In another approach for assessing the responsiveness, no active stimulation is used but responses in EEG and/or EMG signals to background stimulation are detected. Background stimulation here refers to the various types of unintentional stimulation signals to which the patient is inexorably exposed in the environment in which responsiveness is measured, such as clinical environment. Such unintentionally caused stimulation may originate from various sources, such as sound/noise sources, lights, caregiving procedures, and ventilation. Background stimulation may also originate internally if the patient is feeling pain or anxiety. The strength and frequency of the responses depend on the level of the background stimulation as well as on the state of the patient. As deepening sedation tends to suppress the naturally occurring arousals, a system measuring responses to background stimulation provides an automatic mechanism for assessing the depth of sedation relative to the stimulus level
Although the above mechanism that monitors responses to background stimulation provides valuable information for clinical decision-making, the information provided is not directly comparable to the information obtained from the scoring systems that are commonly regarded as the “golden standards” for the depth of sedation, such as the Ramsay scale or the RASS. This is at least partly due to the more or less sporadic nature of the background stimulation, which may obscure the real state of the patient. Therefore, it may sometimes be difficult to distinguish between the effect of medication and the effect of the environment on the state of the patient. For example, in certain situations the responsiveness determined based on background stimulation may show low values. This provides an indication for the clinician to check the level of sedative drug administration and to consider reducing it. However, low responsiveness may also be due to a preceding period of low background stimulation; if the patient is comfortable and has no pain, he/she may have fallen asleep. Thus, the nature of the preceding background stimulation may lead to a situation in which the effect of medication on the level of consciousness cannot be deduced directly from the measured responsiveness.
The above-mentioned problems are addressed herein which will be comprehended from the following specification.
In an embodiment, a method for measuring the responsiveness of a subject comprises determining, based on physiological signal data obtained from a subject, a first index indicative of responsiveness of the subject to unintentional background stimulation affecting the subject and defining, based on the physiological signal data, a second index indicative of responsiveness of the subject to intentional stimulation, wherein the determining and defining include making the first index and the second index commensurable to each other.
In another embodiment, an apparatus or arrangement for measuring the responsiveness of a subject comprises a first determination unit configured to determine, based on physiological signal data obtained from a subject, a first index indicative of responsiveness of the subject to unintentional background stimulation affecting the subject and a second determination unit configured to define, based on the physiological signal data, a second index indicative of responsiveness of the subject to intentional stimulation, wherein the first determination unit and the second determination unit are configured to make the first index and the second index commensurable to each other.
In a still further embodiment, a computer program product for an apparatus monitoring the responsiveness of a subject comprises a first program code portion configured to determine, based on physiological signal data obtained from a subject, a first index indicative of responsiveness of the subject to unintentional background stimulation affecting the subject and a second program code portion configured to define, based on the physiological signal data, a second index indicative of responsiveness of the subject to intentional stimulation, wherein the first program code portion and the second program code portion are configured to make the first index and the second index commensurable to each other.
Various other features, objects, and advantages of the invention will be made apparent to those skilled in the art from the following detailed description and accompanying drawings.
Based on the signal data, the process then determines at step 12 a first measure descriptive of a desired property of the signal, such as the current high-frequency EEG power or the entropy of the signal, and stores the calculated value. The EEG/EMG power PEEG/EMG(t) is defined here as the squared value of the instantaneous signal amplitude SEEG/EMG (t) as PEEG/EMG(t)=(SEEG/EMG (t))2, while the power of an epoch of a digitized signal may be defined as the average of such squared amplitudes within the epoch, for example. Instead of EEG entropy, another parameter that characterizes the amount of disorder or irregularity in the EEG signal data may be determined. Generally, the first measure determined may be directly or indirectly indicative of the level of consciousness of the subject. In the former case, high-frequency EEG power may be calculated, while in the latter case high-frequency EMG power may be calculated, for example. Henceforward, high-frequency EEG power is used as an example of the first measure.
The high-frequency EEG power may be derived by calculating the power of the signal data on a frequency band comprising high-frequency EEG components. The power may be derived from the power spectrum of the EEG signal by calculating, for example, the EEG power on a frequency band extending from 50 Hz to 150 Hz. The length of the time window within which the power is determined may correspond to 5 seconds (one epoch), for example. The Fast Fourier Transform, for example, is a computationally effective algorithm for this purpose. Alternatively, the high-frequency EEG power may be calculated straight from the time-domain signal, by utilizing appropriate filters.
A time series representing the first measure is thus obtained from step 12. Although high-frequency EMG power may be determined using the same parameters as in the determination of high-frequency EEG power, it is obvious that the values of the above parameters of high-frequency EEG/EMG power determination may change.
Based on the time series of the first measure, the process then determines two variables of responsiveness, which are in this context termed indices of responsiveness. A common computation algorithm may be used in the determination of the indices, as is shown in the figure. Here, the generation of the time series of the first measure may be regarded as part of the common algorithm, since both indices are determined based on the time series of the first measure. The purpose of the common algorithm is to make the two indices comparable to each other, so that conclusions can be made on state of the subject based on the values that the indices have substantially simultaneously. Although the common computation algorithm may define the whole determination process for each index or only part of each index determination process, any other mechanism that makes the two indices commensurable to each other may also be used. For example, two entirely separate computation algorithms may be used for the indices, if it can be mathematically proven that the outputs of the algorithms, i.e. the indices, are commensurable to each other. Next, the determination of the indices is discussed in more detail assuming that an algorithm is used which is partly or fully common for the determination of the two indices.
In a clinical environment a patient is continually exposed to the above-described background stimulation caused by various unintentional stimulation sources, which may be external (such as ventilation via an intubation tube, lights, noise, etc.) or internal (pain/discomfort). A first index of responsiveness is determined substantially continuously at step 13, the first index being caused by the background stimulation only. Further, a second index of responsiveness is determined intermittently at step 14 in response to a stimulation to which the subject is exposed intentionally. Due to the nature of the two types of stimulation, the first and second indices of responsiveness are in this context termed the passive and active index of responsiveness, respectively. The two indices are inherently in comparable proportion to each other and the system indicates the mutual relationship of the two indices to the user (step 15). Based on the simultaneous values of the two indices, the system or the clinician may make decisions on the state of the subject. The system may also determine a further variable indicative of the relative magnitudes of the indices, such as the ratio of the indices.
Step 13 first involves the determination of a change variable indicative of changes in the high-frequency EEG (or EMG) power, the changes being positive in this example. For the determination of the change variable, the process may first find the minimum high-frequency EEG power defined within a preceding time window of a predetermined length (step 21). The length of the time window from which the minimum is searched may be 1 minute, for example. The change variable is then determined by subtracting the minimum power value from the current power value (step 22). The determination of the change variable is illustrated in
With reference to
Since the absolute value of the change variable may be high, the usability of the change variable may be enhanced by calculating the logarithm of the above-described difference. The passive index of responsiveness Rp may thus be determined in step 23 according to equation (1) as follows:
where PEEG/EMG(ti) refers to high-frequency EEG or EMG power in a short time window ti computed over the desired frequency range, such as the above-mentioned range of 50 Hz to 150 Hz and P0 is a fixed reference value for the power change. In the above example, the length of this time window corresponds to one epoch (5 seconds), while T2 may equal to 30 minutes and T1 to 1 minute, as discussed above. However, these parameter values may change.
The active index may be calculated in response to an intentional stimulus using the same raw function ΔP(u), but the active index is only computed for a restricted time following the time instant t=0 of the stimulus. When no stimuli are given, the active index is equal to zero. Furthermore, although the length of the time window for the active index may be fixed, it may also increase from zero to the value of T2′, where T2′ corresponds to the typical duration of a response. In this embodiment, all the above steps, except the averaging step 23, may thus be carried out by the common computation algorithm. If a fixed time window is used for the active index too, a common algorithm may be employed for the determination of both indices, only one parameter, i.e. the length of the fixed time window of the averaging step, is index-specific. While the time window for the averaging step for the passive index, T2, needs to be relative long, such as 30 minutes, to include a sufficient sample of background stimulation, the corresponding time window for the active index, T2′, may be considerably shorter, such as a couple of minutes.
If the averaging step 23 is separate for the two indices, the time series of the first measure may thus be processed as shown in
where t=0 corresponds to the time instant at which the intentional stimulus is given and P0 is a fixed reference value for the power change.
Since the function ΔP(u), which is determined in steps 12, 21, and 22, remains the same for each index determined even if the averaging step 23 is different, the indices are inherently in comparable proportion to each other. Therefore, a significant response to an active stimulus results in a value of Ra that is significantly greater than the (substantially simultaneous) value of Rp.
Due to the above subtraction included in the raw function ΔP(u) in this embodiment, the indices do not depend on the absolute level of the high-frequency EEG. The averaging step may also involve calculation of a weighted average, for example so that more recent values obtain a higher weight than less recent (older) values.
Various other implementations for the indices Ra and Rp are also possible. For example, the function ΔP(u) defined in equations (1) and (2) may alternatively be defined as
ΔP(u)=PEEG/EMGrms(u)−PEEG/EMGrms(u−v) when PEEG/EMGrms(u)−PEEG/EMGrms(u−v)>0; and
ΔP(u)=0 when PEEG/EMGrms(u)−PEEG/EMGrms(u−v)≦0
where PEEG/EMGrms(u)=√{square root over (PEEG/EMG(u))} and v is the time lag used for the derivation of a change in the function PEEG/EMGrms(u), for example v=20 seconds. The integral expression
may be replaced, for example, by the expression
Thus, in this embodiment the change variable indicative of (positive) changes in the first measure is not determined by searching a minimum from a preceding time window, but based on a fixed time lag v. In other words, this embodiment does not include step 21 of
The calculation of the common raw function may change depending, for example, on the physiological signal and the frequency band used. However, the raw signal is typically based on the amplitude of the physiological signal measured from the subject.
The information given to the clinician may vary. In a simple embodiment, the measurement device displays the values of the two indices. Since the two indices are inherently in comparable proportion to each other, the clinician may assess, based on the relative magnitudes of the indices, the state of the subject and/or the effect of the medication on the subject. If, for example, the passive index is low and the active index is at the same time rather high, it is likely that the patient is painless and may be in natural sleep.
In another embodiment, the system may indicate the subject's location on a two dimensional plot, such as a quadrant of a coordinate system, in which one axis represents the passive index and the other axis the active index.
The control unit is provided with a memory or database 63 holding the digitized signal data obtained from the sensor(s). The memory or database may also store a computation algorithm 67 that is common for the determination of both indices of responsiveness. Moreover, if the active index is determined according to Eq. (2), for example, the memory or database may also store separate algorithms 68 and 69 for the averaging steps 23, i.e. algorithms for determining the indices according to Equations (1) and (2) based on the common raw function ΔP(u). The memory or database also may store the parameters of the algorithms, such as the values of the window lengths and frequency limits.
The system may further be provided with a stimulating system 66 for giving the stimulation signals needed for the measurement of the active index of responsiveness. The stimulating system may be controlled by the control unit or by the user through the user interface 64 (and the control unit). The stimulating system may generate any type of predefined stimuli suitable for determining the active index, such as audio, mechanic, chemical, magnetic, or electric stimuli. Furthermore, one or more stimulus signals may be given for one measurement period of the active index. For example, the stimulus may be an electric TOF (train-of-four) stimulus applied to a peripheral motor nerve. The control unit may automatically trigger the measurement of the active index at regular intervals, such as every hour or half an hour.
As is illustrated in
The resulting index values obtained from unit 73 may be displayed on the screen of a monitor 65. The responsiveness curves may also be displayed graphically as is shown in
Although one computer unit or processor may perform the above steps, the processing of the physiological data may also be distributed among different units/processors (servers) within a network, such as a hospital LAN (local area network). The apparatus of the invention may thus also be implemented as a distributed system.
As discussed above, the system may act as a decision-support tool for the clinician. For example, the clinician may control the operation of a drug delivery system based on the concurrent magnitudes of the two indices. The system may also control the drug delivery system automatically according to the index values and an internal set of decision rules.
A conventional patient monitor that acquires EEG (or EMG) signal data from a subject may also be upgraded to determine the two indices of responsiveness. Such an upgrade may be implemented by delivering to the patient monitor a plug-in software module that enables the device to calculate the two indices based on the data acquired by the device. The software module may be delivered, for example, on a data carrier, such as a CD or a memory card, or through a telecommunications network. Logically, the software module includes two units: a first program code portion for determining the passive index indicative of responsiveness of the subject to unintentional background stimulation affecting the subject and a second program code portion configured to define the active index indicative of responsiveness of the subject. However, the two program portions are not necessarily separate, since they are configured to make the two indices commensurable to each other, and may thus employ a common program code portion for this purpose. As discussed above, the portion of the software module that is common to the index determination processes, i.e. to the said two program code portions, may change depending on the implementation of the averaging process, for example. Furthermore, the two program portions may be separate, if it can be mathematically proven that the outputs of the corresponding algorithms, i.e. the indices, are commensurable to each other.
The software module may also comprise a new software version for the device, which replaces the existing software of the device. Thus, the software module may comprise, in addition to the algorithms described above, the algorithms of a patient monitor, such as the algorithms for determining the level of consciousness of the subject.
A responsiveness monitor may also be implemented as a separate module connectable to a conventional patient monitor, such as a monitor intended for measuring the level of consciousness. Such a responsiveness monitor may comprise a data processing unit that receives EEG or EMG data or the time series of the first measure from the conventional patient monitor and derives the two indices based on the received data. Such a responsiveness monitor may comprise a display of its own for displaying the computed indices to the user, and it is further provided with a stimulating unit and/or a triggering device for triggering the measurement of the active index.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural or operational elements that do not differ from the literal language of the claims, or if they have structural or operational elements with insubstantial differences from the literal language of the claims.