1. Technical Field
The present disclosure relates to measurement systems, and particularly to a measurement system for measuring inductance.
2. Description of Related Art
Inductors are widely used in voltage regulators of motherboards. Inductance of the inductors is generally measured by manual operation. This is a time-consuming and inconvenient operation.
Many aspects of the embodiments can be better understood with reference to the following drawings. The components in the drawing are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments.
The disclosure, including the drawing, is illustrated by way of example and not by way of limitation. References to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
Referring to
The control circuit 100 is connected to the measurement circuit 110, to control the first inductor Ls or the second inductor Lx and the capacitor C9 to compose an LC circuit. The control circuit 100 receives a frequency from the LC circuit, to gain the inductance L according to a formula:
where L stands for inductance of the first inductor Ls or the second inductor Lx, π stands for the ratio of a circle's circumference to its diameter, f stands for a frequency output from the LC circuit, and C9 stands for capacitance of the capacitor C9. The first inductor Ls and the second inductor Lx are connected in parallel, and then connected in parallel to the capacitor C9, to compose an LC circuit. Thus, a leak inductance Lk of the first inductor Ls and the second inductor Lx connected in parallel is equal to L/2.
The display circuit 120 is connected to the control circuit 100, to display the inductance of the first inductor Ls, the inductance of the second inductor Lx, and the leak inductance Lk of the first inductor Ls and the second inductor Lx connected in parallel.
Referring to
A third group of I/O pins PC4-PC7 of the microcontroller U1 are connected to the display circuit 120. A fourth group of I/O pins PD4-PD6 of the microcontroller U1 are grounded through switches K1-K3, respectively. Clock pins XTAL1 and XTAL2 of the microcontroller U1 are connected to two ends of a crystal oscillator X. The two ends of the crystal oscillator X are grounded through capacitors C5 and C6, respectively. A power pin VCC of the microcontroller U1 is connected to the power source P5V. A reset pin RESET of the microcontroller U1 is connected to the power source P5V through a resistor R2 and also grounded through a capacitor C7. A capacitor C8 is connected between the power source P5V and ground.
Referring to
A base of the transistor Q2 is connected to the pin PB1 of the microcontroller U1 through a resistor R5. An emitter of the transistor Q2 is grounded. A collector of the transistor Q2 is connected to a first end of the coil of the relay LS6 and an anode of a diode D3. A second end of the coil of the relay LS6 is connected to a cathode of the diode D3. The cathode of the diode D3 is also connected to the power source P5V through a resistor R6.
The moving contact 4 of the switch of the relay LS4 is also connected to a first end of the second inductor Lx through the first inductor Ls. A second end of the second inductor Lx is connected to the moving contact 5 of the switch of the relay LS4.
A base of the transistor Q3 is connected to the pin PB2 of the microcontroller U1 through a resistor R7. An emitter of the transistor Q3 is grounded. A collector of the transistor Q3 is connected to a first end of the coil of the relay LS5 and an anode of a diode D4. A second end of the coil of the relay LS5 is connected to a cathode of the diode D4. The cathode of the diode D4 is also connected to the power source P5V through a resistor R8.
A fixing contact 3 of the switch of the relay LS5 is grounded through the capacitor C9. A moving contact 4 of the switch of the relay LS5 is connected to the first end of the inductor Lx. A moving contact 5 of the switch of the relay LS5 is connected to a non-inverting input terminal of the comparator U2 through resistors R9 and R10 connected in series. The non-inverting input terminal of the comparator U2 is also connected to the first end of the inductor Lx through a capacitor C10. The non-inverting input terminal of the comparator U2 is further grounded through a resistor R11. An inverting input terminal of the comparator U2 is grounded through a capacitor C11 and also connected to an output terminal of the comparator U2 through a resistor R12. The output terminal of the comparator U2 is connected to the non-inverting input terminal of the comparator U2 through a resistor R13. The output terminal of the comparator U2 is also connected to the power source P5V through a resistor R14. A capacitor C12 is connected between the power source P5V and ground.
A non-inverting input terminal of the comparator U3 is connected to the output terminal of the comparator U2 through a resistor R15. An inverting input terminal of the comparator U3 is connected to an output terminal of the comparator U3 and the pin PA0 of the microcontroller U1.
Referring to
In use, the microcontroller U1 receives input signals from the keyboard 130 and the switches K1-K3 respectively through the pins PA5-PA7 and PD4-PD6, and outputs control signals to the transistors Q1-Q3 of the measurement circuit 110 through the pins PB0-PB2 according to the received input signals.
When the inductance of the second inductor Lx needs to be measured, the microcontroller U1 receives a first input signal from the keyboard 130, and the pin PB0 of the microcontroller U1 outputs a high level signal to the base of transistor Q1. The transistor Q1 is turned on. The fixing contact 3 of the switch of the relay LS4 is connected to the moving contact 5 of the switch of the relay LS4. Namely, the second inductor Lx is grounded. At the same time, the pin PB2 of the microcontroller U1 outputs a high level signal to the base of the transistor Q3. The transistor Q3 is turned on. The fixing contact 3 of the switch of the relay LS5 is connected to the moving contact 5 of the switch of the relay LS5. Namely, the power source P5V charges the capacitor C9. After a preset time (in the embodiment, the preset time is a charging time of the capacitor C9), the pin PB2 of the microcontroller U1 outputs a low level signal to the base of the transistor Q3. The transistor Q3 is turned off. The fixing contact 3 of the switch of the relay LS5 is connected to the moving contact 4 of the switch of the relay LS5. Namely, the second inductor Lx and the capacitor C9 compose an LC circuit. A frequency output from the LC circuit is processed by the comparators U2 and U3 and then is output to the pin PA0 of the microcontroller U1. Thus, the inductance of the second inductor Lx can be gained according to the formula:
where Lx stands for the inductance of the second inductor Lx, π stands for ratio of a circle's circumference to its diameter, f stands for the frequency received by the pin PA0 of the microcontroller U1, and C9 stands for the capacitance of the capacitor C9. In one embodiment, the capacitor C9 is a 1800 picofarad (pF) mica capacitor.
When the inductance of the first inductor Ls needs to be measured, the microcontroller U1 receives a second input signal from the keyboard 130, and the pin PB0 of the microcontroller U1 outputs a low level signal to the base of the transistor Q1. The transistor Q1 is turned off. The fixing contact 3 of the switch of the relay LS4 is connected to the moving contact 4 of the switch of the relay LS4. Namely, the first inductor Ls is grounded. At the same time, the pin PB2 of the microcontroller U1 outputs a high level signal to the base of the transistor Q3. The transistor Q3 is turned on. The fixing contact 3 of the switch of the relay LS5 is connected to the moving contact 5 of the switch of the relay LS5. Namely, the power source P5V charges the capacitor C9. After a preset time, the pin PB2 of the microcontroller U1 outputs a low level signal to the base of the transistor Q3. The transistor Q3 is turned off. The fixing contact 3 of the switch of the relay LS5 is connected to the moving contact 4 of the switch of the relay LS5. Namely, the first inductor Ls and the capacitor C9 compose an LC circuit. A frequency output from the LC circuit is processed by the comparators U2 and U3 and then is output to the pin PA0 of the microcontroller U1. Thus, the inductance of the second inductor Ls can be gained according to the formula:
where Ls stands for the inductance of the first inductor Ls, π stands for ratio of a circle's circumference to its diameter, f stands for the frequency received by the pin PA0 of the microcontroller U1, and C9 stands for the capacitance of the capacitor C9.
When a coupling inductance of the first and second inductors Ls and Lx being connected in parallel needs to be measured, the microcontroller U1 receives a third input signal from the keyboard 130, and the pin PB0 of the microcontroller U1 outputs a low level signal to the base of the transistor Q1 and the pin PB1 of the microcontroller U1 outputs a high level signal to the base of the transistor Q2. The transistor Q1 is turned off and the transistor Q2 is turned on. The fixing contact 3 and the moving contact 4 of the switch of the relay LS4 are connected. The fixing contact 3 and the moving contact 5 of the switch of the relay LS6 are connected. Namely, the first and second inductors Lx and Ls are connected in parallel. At the same time, the pin PB2 of the microcontroller U1 outputs a high level signal to the base of the transistor Q3. The transistor Q3 is turned on. The fixing contact 3 and the moving contact 5 of the switch of the relay LS5 are connected. Namely, the power source P5V charges the capacitor C9. After a preset time, the pin PB2 of the microcontroller U1 outputs a low level signal to the base of the transistor Q3. The transistor Q3 is turned off. The fixing contact 3 and the moving contact 4 of the switch of the relay LS5 are connected. Namely, the first and second inductors Ls and Lx are connected in parallel and then connected in parallel to the capacitor C9, to compose an LC circuit. A frequency of the LC circuit is processed by the comparators U2 and U3 and then is output to the pin PA0 of the microcontroller U1. Thus, the coupling inductance can be gained according to the following formula:
where 2Lk stands for the coupling inductance of the first and second inductors Ls and Lx being connected in parallel, π stands for ratio of a circle's circumference to its diameter, f stands for the frequency received by the pin PA0 of the microcontroller U1, and C9 stands for the capacitance of the capacitor C9. According to the character of the coupling inductance, the leak inductance of the first and second inductors Ls and Lx being connected in parallel is equal to a half of the coupling inductance. Namely, the leak inductance is equal to Lk.
The microcontroller U1 controls the display screen U5 to display the inductance of the first inductor Ls, the inductance of the second inductor Lx, and the leak inductance of the first and second inductors Ls and Lx being connected in parallel.
The measurement system 1 outputs control signals to the transistors Q1-Q3 through the microcontroller U1, to control the first inductor Ls or the second inductor Lx and the capacitor C9 to compose an LC circuit, to further determine the inductances of the first and second inductors Ls and Lx. At the same time, the microcontroller U1 also controls the first and second inductors Ls and Lx connected in parallel and the capacitor C9 to compose an LC circuit, to further determine the leak inductance of the first and second inductors Ls and Lx being connected in parallel.
Even though numerous characteristics and advantages of the disclosure have been set forth in the foregoing description, together with details of the structure and function of the disclosure, the disclosure is illustrative only, and changes may be made in detail, especially in the matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2012102403258 | Jul 2012 | CN | national |