The invention relates to a device for imaging an interior of a turbid medium comprising:
a) a measurement volume for receiving the turbid medium;
b) a light source for irradiating the turbid medium;
c) a photodetector unit for detecting light emanating from exit positions located on a boundary of the measurement volume as a result of irradiating the turbid medium.
The invention also relates to a medical image acquisition device comprising:
a) a measurement volume for receiving a turbid medium;
b) a light source for irradiating the turbid medium;
c) a photodetector unit for detecting light emanating from exit positions located on a boundary of the measurement volume as result of irradiating the turbid medium.
An embodiment of a device of this kind is known from U.S. Pat. No. 6,327,488 B1. The known device can be used for imaging an interior of a turbid medium, such as biological tissues. In medical diagnostics the device may be used for imaging an interior of a female breast. The measurement volume receives a turbid medium, such as a breast. The turbid medium is then irradiated with light from the light source. Typically, light having a wavelength within the range of 400 nm to 1400 nm is used for this purpose. Light emanating from the measurement volume from exit positions as a result of irradiating the turbid medium is detected by the photodetector unit and used to derive an image of an interior of the turbid medium.
It is a drawback of the known device that the signal resulting from detecting light emanating from the measurement volume is sensitive to noise. The sensitivity to noise results from the fact that diffuse optical tomography measurements require very sensitive detection of sometimes weak light signals.
It is an object of the invention to improve the signal to noise ratio of the signal resulting from detecting light emanating from the measurement volume.
According to the invention this object is realized in that the device is arranged to collect light from spatially distinct beams of light emanating from a single exit position.
The invention is based on the recognition that light emanating from the single exit position is emitted diffusely. Hence, detecting spatially distinct light beams emanating from a single exit position is possible. Detecting spatially distinct light beams emanating from a single exit position means that multiple signals are detected for a single exit position. In this way, the number of signals obtained over a specific period of time for a single exit position, that is the number of measurements at that single exit position per unit of time, is increased. The increase in the number of measurements is used to increase signal to noise ratios. The increase in the number of measurements may further be used to reduce measurement times as a specific amount of signal may be obtained over a shorter period of time compared to the situation in the known device.
It is an additional advantage of the invention that the detected light from the spatially distinct light beams originates from a single exit position as opposed to multiple exit positions. As the light emanates from a single exit position in a diffuse manner, the spatially distinct light beams therefore have the same intensity and carry substantially the same information.
An embodiment of the device according to the invention is characterized in that the device comprises a plurality of optical light guides having entry openings for light and having acceptance angles for light to enter the entry openings for light and being arranged such that the plurality of optical light guides is optically coupled to a single exit position such that the distances between the entry openings for light of the optical light guides and the single exit position correspond to the acceptance angles of the optical light guides. The distance between an entry opening for light of an optical light guide and a single exit position correspond to each other such that the tangent of the acceptance angle for light (θ) of the optical light guide is given by the quotient of half the width (w) of the single exit position and the distance (d) between the entry opening for light of the optical light guide and the single exit position, i.e. tan(θ)=w/2d. This embodiment has the advantage that it is easy to implement in the known device, as the known device already comprises single exit positions optically coupled to single optical light guides. Arranging the device such that the distance between the entry openings for light of the optical light guides and the single exit position corresponds to the acceptance angles of the optical light guides, maximizes the amount of light exiting the single exit position that can enter the optical light guides. In the known device a receptacle bounds the measurement volume for receiving the turbid medium. Light emanating from the measurement volume exits the receptacle through a plurality of exit positions in the wall of the receptacle. A single optical light guide is directly coupled to each of these exit positions.
A further embodiment of the device according to the invention is characterized in that the device is arranged to apply at least two different detection schemes to at least two spatially distinct light beams emanating from a single exit position. This embodiment has the advantage that various types of information may be obtained simultaneously from spatially distinct light beams emanating from a single exit position. One detection scheme, for instance, may involve the use of a fluorescence filter in the path of a light beam. Another detection scheme may involve the use of no filters at all. In this way, fluorescence and transmission measurements may be performed on a turbid medium simultaneously, thus further reducing overall measurement times as compared to a situation in which both measurements are performed one after the other and reducing noise
A further embodiment of the device according to the invention is characterized in that the device comprises means for focusing at least one light beam emanating from a single exit position. Focusing means comprise a lens and a mirror any of which may be used to focus a light beam emanating from the single exit position. This embodiment has the advantage that it enables the use of an interference filter in the focused beam. Interference filters must preferably be placed in the path of a parallel light beam to function properly. Focusing means may then be used to couple light from the light beam to the photodetector unit, for instance, by using a lens to focus light of a parallel light beam emanating from the single exit position onto the entry opening for light of an optical fiber coupled to the photodetector unit.
The medical image acquisition device according to the invention is defined in claim 5. According to the invention the medical image acquisition device is arranged to collect light from spatially distinct beams of light emanating from a single exit position. If, for instance, the device is used to image an interior of a female breast, as is done in medical diagnostics, the device would benefit from any of the previous embodiments.
These and other aspects of the invention will be further elucidated and described with reference to the drawings, in which:
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word “comprising” does not exclude the presence of elements or steps other than those listed in a claim. The word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. In the system claims enumerating several means, several of these means can be embodied by one and the same item of computer readable software or hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
06118177.2 | Jul 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB07/52823 | 7/16/2007 | WO | 00 | 1/26/2009 |