Measurement of a physical property of a fluid can be performed for various purposes.
In the oil and gas industry, the measured physical property of a fluid can be beneficial in understanding characteristics of the fluid, which aid in decision-making with respect to hydrocarbon production, reservoir exploration, and so forth.
Some implementations are described with respect to the following figures.
In accordance with some implementations, a sensor including a vibrating wire is used to measure a dew point of a fluid.
Other or alternative features will become apparent from the following description, from the drawings, and from the claims.
A physical property of a fluid that may be useful for various purposes is a dew point of a fluid, where a dew point can refer to the pressure at which condensation of the fluid starts to occur. The fluid can be a retrograde condensate. Reduction of pressure of a retrograde condensate can result in condensation of the fluid when the pressure is reduced to below the dew point of the retrograde condensate.
Determining the dew point of a fluid can be useful for enhancing hydrocarbon production through a well from a hydrocarbon reservoir in a subsurface structure. As an example, a well can be used to produce natural gas from a gas-condensate reservoir in the subsurface structure. Gas production using the well can involve drawing down the pressure of the well. If the pressure drawdown causes the pressure in the well to drop below a dew point of the gas, then condensation of the gas can occur. This condensation can lead to restrictions in the flow of gas in the well. This phenomenon is referred to as condensate blockage or condensate banking and can reduce the productivity of the well.
In other examples, detecting a dew point of a fluid can be useful in other applications.
Traditional techniques for dew point detection include optical detection techniques, in which condensation of dew droplets in a fluid sample can lead to scattering of light that can be detected by optical sensors. However, optical detection techniques can be complex and/or expensive.
In accordance with some implementations, a sensor device that includes a vibrating wire is used for measuring a dew point of a fluid. This type of sensor device can be referred to as a vibrating wire viscometer.
The vibrating wire viscometer 100 also includes an outer housing 101 that defines a sealed inner chamber 112 that contains a fluid, such as a retrograde condensate. The fluid can be introduced into the chamber through a fluid conduit (not shown) attached to the vibrating wire viscometer 100. The vibrating wire 102, which is immersed in the fluid that is contained in the chamber 112, is able to detect a dew point of the fluid.
An activator 114 is coupled to the wire 102 over communication lines 116. The activator 114 can include a signal driver that is able to cause an electrical current to pass through the vibrating wire 102. The vibrating wire 102 can be formed of an electrically conductive material, and is capable of displacements from an initial position in response to electrical current being passed through the wire 102 in the presence of a magnetic field produced by one or more magnetic elements, such as magnetic elements 110 and 111 shown in
The electrical current that is passed through the vibrating wire 102 can be an oscillating electrical current. The combination of the oscillating electrical current in the wire 102 and the magnetic field produced by the magnetic elements 110 and 111 creates an oscillating force (according to the Lorentz force law) that causes vibratory movement of the wire 102.
In some examples, the activator 114 can drive an electrical current into the vibrating wire 102 to cause resonance and thus vibratory movement of the vibrating wire 102. Subsequently, the activator 114 can extinguish the excitation of the vibrating wire 102 by removing the electrical current from the vibrating wire 102.
Once excitation of the vibrating wire 102 is removed, the vibrating wire 102 continues to exhibit vibratory movement that rings down over time. The ringdown of the vibrating wire 102 can be monitored over the communication lines 116 by a measurement module 118 connected to the vibrating wire 102. The motion of the vibrating wire 102 in the presence of the magnetic field leads to a small voltage (according to Faraday's law) that can be measured and recorded by the measurement module 118 over the communication lines 116.
Although
The vibrating wire 102 can act as a nucleation site for condensation droplets (dew droplets), such that the dew droplets coat the wire 102. The presence of the dew droplets on the vibrating wire 102 adds a mass to the vibrating wire 102 and lowers the resonant frequency and also increases the damping experienced by the vibrating wire 102. Thus, the vibrating wire 102 will exhibit a vibratory motion according to a first signature when dew droplets are not present on the vibrating wire 102, but the vibrating wire 102 will exhibit vibratory motion according to a second, different signature when dew droplets are present on the vibrating wire 102. The specific signature of a vibratory motion detected by the vibrating wire viscometer 100 can be compared to the first and second signatures to determine when condensation has occurred, such that the dew point (the pressure at which condensation occurs) can be detected.
As noted above, in some implementations, measurement of the induced vibratory motion of the vibrating wire 102 is performed after the excitation produced by the activator 114 has been removed (i.e. electrical current is no longer driven through the vibrating wire 102). The transient mode ringdown (after removal of excitation) of the vibrating wire 102 can be in the form of an exponential decay of the oscillation envelope.
In the transient mode (after excitation has been removed from the vibrating wire 102), the induced voltage V(t) developed across the wire 102 can be a short-lived oscillation that varies as a function of time (t) and conforms to a simple damped harmonic model for small amplitude, expressed as:
V(t)=V0e−Δωt sin(ωt+φ), (Eq. 1)
where V0 is the initial amplitude of the transient signal, Δ is the decrement controlling the damping of the motion of the wire 102, ω is the angular resonance frequency of the wire 102, and φ is the unknown phase angle.
Note that the logarithmic decrement is a parameter for characterizing the energy loss of a resonator, and can be expressed as 2πΔ. In the present disclosure, Δ is referred to as the decrement (as opposed to the logarithmic decrement).
In Eq. 1, the decrement A is related to the properties of both the wire 102 and fluid that surrounds the wire 102, according to the following expression:
where ρ and ρs represent the density of the fluid and the density of the wire 102, respectively, Δ0 represents the internal damping of the wire 102 in a vacuum, and k and k′ are defined as
k=1+2T(A), (Eq. 3)
k′=2R(A)+2ΔT(A). (Eq. 4)
In Eqs. 3 and 4, where R(A) and T(A) denote, respectively, the real part and imaginary part of a complex quantity A. The complex quantity A in can be expressed as
where K0 and K1 are modified Bessel functions of the second order. The parameter Ω is a modified Reynolds number that characterizes the flow around the cylindrical wire 102 of radius R at the resonance frequency ω, and is given by:
where η represents the viscosity of the fluid surrounding the wire 102.
When using an actuating signal having a voltage and current, and a conductive vibrating wire to which this actuating signal is applied, the vibrating wire and any stationary wire or cables used to deliver this actuating signal have an electrical impedance that gives rise to a background voltage so that the measured voltage may not equal to that given by Eq. 1 above. Accordingly, Eq. 1 is modified to accommodate the finite impedance to give
V(t)=V0e−Δωt sin(ωt+φ)+a+bt. (Eq. 7)
where a and b are predefined constants that account for the electrical impedance of the wire and also absorb the offset due to unknown background interference.
In the discussion above in connection with
The quality factor (Q) can be computed based on the decrement, Δ (defined according to Eq. 2), and is expressed as:
Q=(2Δ)−1. (Eq. 8)
As can be seen in Eq. 8, the quality factor, Q, is inversely proportional to the decrement, Δ.
However, once the pressure is reduced below the dew point, PD, the decrement, Δ, rises sharply, as represented by the curve portion 404. As shown in
The intersection of the line segments 406 and 408 defines the dew point pressure. Stated differently, the dew point is the point along the pressure axis (horizontal axis) at which the slopes of the line segments corresponding to data values of the decrement, Δ, change sign. In the example of
The measurement module 118 also includes a non-transitory machine-readable or computer-readable storage medium (or storage media) 506, which can store dew point calculation instructions 508 that are executable on the one or more processors 504. The dew point calculation instructions 508 can determine the dew point based on measurement data acquired by the measurement module 118.
The storage medium (or storage media) 506 can include different forms of memory including semiconductor memory devices such as dynamic or static random access memories (DRAMs or SRAMs), erasable and programmable read-only memories (EPROMs), electrically erasable and programmable read-only memories (EEPROMs) and flash memories; magnetic disks such as fixed, floppy and removable disks; other magnetic media including tape; optical media such as compact disks (CDs) or digital video disks (DVDs); or other types of storage devices. Note that the instructions discussed above can be provided on one computer-readable or machine-readable storage medium, or alternatively, can be provided on multiple computer-readable or machine-readable storage media distributed in a large system having possibly plural nodes. Such computer-readable or machine-readable storage medium or media is (are) considered to be part of an article (or article of manufacture). An article or article of manufacture can refer to any manufactured single component or multiple components. The storage medium or media can be located either in the machine running the machine-readable instructions, or located at a remote site from which machine-readable instructions can be downloaded over a network for execution.
The
Based on the decrement values as a function of different pressures, such as shown in
In the foregoing description, numerous details are set forth to provide an understanding of the subject disclosed herein. However, implementations may be practiced without some of these details. Other implementations may include modifications and variations from the details discussed above. It is intended that the appended claims cover such modifications and variations.
This is a non provisional patent application of co-pending U.S. provisional patent application Ser. No. 62/054986 to Christopher Harrison, et al filed on Sep. 25, 2014, which is hereby incorporated in its entirety for all intents and purposes by this reference.
Number | Date | Country | |
---|---|---|---|
62054986 | Sep 2014 | US |