This Application is a Section 371 National Stage Application of International Application No. PCT/US2019/032824, filed May 17, 2019, published as WO 2019/222598 on Nov. 21, 2019, which claims priority to Chinese Patent Application No. 201810475248.1, filed May 17, 2018, and Chinese Patent Application No. 201820741719.4, filed May 17, 2018, the contents of which are hereby incorporated by reference in their entirety.
The present disclosure relates to a measuring element and a measuring device comprising the same.
The content of this section merely provides the background information related to the present disclosure, which may not constitute the prior art.
In industrial processes such as coal chemical industry, paper industry, cement and the like, it is often necessary to obtain relevant measurement parameters (for example, pressure, differential pressure, liquid level) of a process medium (or a medium to be measured) for better performance in production or process control. Due to the limitations of the operating conditions of such production (such as high temperature, strong corrosiveness, high pressure), remote transmission measuring devices (for example, remote transmitters) are usually used to obtain the relevant parameters of the medium to be measured. Generally, there is a measuring element at the end of the medium to be measured in such a remote measuring device. The measuring element may include a base body and a diaphragm. A sealed cavity is defined between the diaphragm and the base body. The sealed cavity can be filled with working fluid. Thus, for example, pressure measurement or monitoring of the medium to be measured may be performed by changes in fluid pressure on both sides of the diaphragm.
However, since many of the medium to be measured is a hydrogen-rich medium, and the hydrogen in the medium to be measured may pass through the diaphragm and enter into the sealed cavity to aggregate and cause a pressure deviation, which leading to an inaccurate measurement accuracy of the measuring device, and in serious cases, the diaphragm may be inflated or even broken.
Therefore, it is particularly desirable to provide an improved measuring element and measuring device.
It is an object of the present disclosure to provide an improved measuring element and a measuring device, to achieve at least one of the following objects: improving the measurement accuracy, improving the wear resistance ability, increasing the service life, simplifying the production processes and saving costs.
A measuring element is provided according to one aspect of the present disclosure, which includes: a base body; a diaphragm fixedly connected to the base body, with a sealed cavity being defined between the diaphragm and the base body; and a permeation resistant layer arranged on an inner side surface, facing the sealed cavity, of the diaphragm, and extended continuously on the inner side surface of the diaphragm at least beyond a connection region of the diaphragm with the base body.
According to an embodiment, the diaphragm is fixedly connected to the base body by resistance seam welding.
According to an embodiment, the diaphragm is connected to the base body by TIG welding (Tungsten Inert Gas Welding) and resistance seam welding, and a welding region for the resistance seam welding is radially located at an inner side of a welding region for the TIG welding.
According to an embodiment, the permeation resistant layer is extended over the entire inner side surface of the diaphragm.
According to an embodiment, a coating thickness of the permeation resistant layer on the diaphragm is less than or equal to 10 μm.
According to an embodiment, the diaphragm is formed with one or more annular folds.
According to an embodiment, the base body is provided with a recess at a portion corresponding to the diaphragm.
According to an embodiment, the base body is provided with a fluid channel for filling the sealed cavity with a fluid.
According to an embodiment, the permeation resistant layer is a gold-plated layer formed on the inner side surface of the diaphragm.
A measuring device is provided according to another aspect of the present disclosure, which includes the measuring element described above.
According to the present disclosure, substances (for example, hydrogen) in a medium to be measured is protected from permeating into the sealed cavity by arranging a permeation resistance layer (for example, the gold-plated layer) on the diaphragm, which greatly improving the measurement accuracy of the measuring element and the measuring device. Moreover, since the permeation resistance layer is designed to face the inner side of the sealed cavity, the permeation resistance layer does not directly come into contact with the medium to be measured, and cannot be scratched by particles in the medium to be measured, which improving the wear resistance ability of a product. Under the premise of ensuring welding strength and quality, a design with zero hydrogen permeation paths is realized, which improving the service life of the product. In addition, a safe transportation and a low inventory, as well as a large cost saving may be realized due to the fact that an one-side integral or partial permeation resistance layer can be directly arranged on the sealed diaphragm before the diaphragm is connected to the base body. Moreover, since the permeation resistance layer may cover only the diaphragm, material costs can be greatly reduced.
The features and advantages of one or more embodiments of the present disclosure will be more easily to understand from the following description of the accompanying drawings, in which:
The following descriptions of the preferred embodiments are only exemplary, but not a limit of the present disclosure and application and usage thereof. Throughout several drawings, the same reference numerals indicate the same or corresponding parts, and thus the construction of the same parts will not be described repeatedly.
In the description of the present disclosure, for the convenience of description, a measuring element and a measuring device according to the present disclosure will be described by, for example, a remote measuring device for measuring a pressure or pressure difference of a medium to be measured. However, it should be understood that the present disclosure is not limited to the structures and applications described in the following preferred embodiments, and can be applied to any feasible structure or application, for example, measuring viscosity liquid level, etc. Also, the present disclosure is not limited to the remote measuring devices, and can be applied to any feasible devices or means.
As described above, the remote measuring device generally includes the measuring element at the medium to be measured. Such a measuring element may be provided with a sealed cavity defined by a diaphragm and a base body. The sealed cavity may be filled with a fluid (or referred to as a working fluid) for measurement. The remote measuring device may further include a sensing assembly located at a distance from the measuring element, during the measurement, the measuring element comes into contact with the medium to be measured and transmits the sensed pressure to the sensing assembly, which converting a physical quantity measured by the measuring element to an digital quantity actually required. During application, the side of the diaphragm facing away from the sealed cavity (referred to herein as an outer side) and the side facing the sealed cavity (similarly, referred to as an inner side) are subjected to the pressure from the medium to be measured and the pressure of the working fluid within the sealed cavity respectively. The diaphragm transmits the pressure from the measuring medium to the working fluid, which then transmits the sensed pressure to a sensing element for associated processing. In the schematic structural view of the measuring device according to an embodiment of the present disclosure shown
The measuring element according to the present disclosure will be further described in detailed in conjunction with
As shown in
The base body 1 may be provided with a recess 15 at a portion corresponding to the diaphragm 2 so as to form the sealed cavity 3 through the base body 1 and the diaphragm 2.
The base body 1 can be further connected to the sensing assembly at a distal end. As shown in
However, the inventor has found that since the diaphragm 2 is usually thin, a part of the elements or components (for example, hydrogen) in the medium to be measured can easily permeate through the diaphragm 2 into the sealed cavity 3, and thus may be dissolved in the working fluid. Moreover, since the space of the sealed cavity 3 is relatively small and closed, the permeation of hydrogen may affect the pressure in the sealed cavity 3 and even cause the diaphragm 2 to bulge or rupture, which affecting the accuracy of the measurement and even causing damage to the measuring element.
To this end, the present disclosure provides a solution for arranging a permeation resistant structure. A permeation resistant layer may be arranged on the diaphragm 2, thus blocking a permeate path through the diaphragm. For a hydrogen-rich medium to be measured, a gold-plated layer may be provided to prevent hydrogen in the medium to be measured from permeating into the sealed cavity. Herein, for convenience of description, only the gold-plated layer is described as an example of the permeation resistant layer. For those skilled in the art, other permeation resistant materials other than gold may be used to achieve the object of preventing permeation depending on the actual application.
However, if the gold-plated layer is provided on the outer side surface 22 of the diaphragm 2, considering that there may be a large amount of solid particles (such as pulp, crushed stones, cinders and the like) contained in some of the mediums to be measured, which will scratch the gold-plated layer on the diaphragm 2. Since the diaphragm 2 is usually thin and the gold-plated layer is soft, the gold-plated layer is easily worn. As such, the gold-plated layer will lose its intended effect, resulting in a reduction in the wear resistance ability and service life of the measuring element (and even the measuring device) and a reduction in measurement accuracy. Furthermore, such a solution requires a gold layer to be applied around the entire outer side surface 22 of the diaphragm 2 as well as a seam area between the diaphragm 2 and the base body 1, which increases not only the cost but also the manufacturing process, and does not conducive to subsequent transportation and preservation.
In view of the above, the gold-plated layer 4 may be provided on the inner side surface 21 of the diaphragm 2 facing the sealed cavity 3. In this way, the gold-plated layer 4 is not in contact with the medium to be measured and thus is not affected by the solid particles in the medium to be measured.
The gold-plated layer 4 may extend continuously between the inner side surface 21 of the diaphragm 2 and the corresponding portion of the base body 1 (in other words, an outer diameter of the gold-plated layer should be at least equal to or larger than the outer diameter of the connection region of the diaphragm 2 and the base body 1) at least beyond the connection region of the diaphragm 2 with the base body 1, to prevent a hydrogen permeation path from being caused in the connection region between the diaphragm 2 and the base body 1. Optionally, the gold-plated layer 4 may cover the entire inner side surface 21 of the diaphragm 2 in its entirety.
The periphery of the diaphragm 2 may be fixedly connected to the base body 1 by means of resistance seam welding (or other means that does not cause damage to the gold-plated layer in the connection region between the diaphragm 2 and the base body 1).
It can be found that when performing a practical test by comparing an example that the gold-plated layer is arranged on the outer side of the diaphragm with an example that the gold-plated layer is arranged on the inner side of the diaphragm according to the present disclosure, the hydrogen resistance effect of the measuring element according to the present disclosure is almost the same as that of the gold-plated layer arranged on the outer side of the diaphragm.
Thus, according to the present disclosure, since the extended area of the permeation resistance layer covers at least the portion of the inner side surface 21 of the diaphragm 2 which is located in the sealed cavity 3 and in the connection region between the diaphragm 2 and the base body 1, the components and elements in the medium to be measured on the outer side of the diaphragm 2 cannot permeate into the sealed cavity 3 through the diaphragm 2. Therefore, the accuracy of the measurement may be improved. Furthermore, since the gold-plated layer is located on the inner side surface 21 of the diaphragm 2, which is not affected by the medium to be measured, which improving the wear resistance ability and the service life of the measuring element. In addition, since the sealed diaphragm 2 can be directly integrally gold-plated at one side or partially gold-plated before assembly, the safe transportation and the low inventory may be achieved, and a lot of transportation and maintenance costs can be saved. Moreover, since the permeation resistance layer can cover the diaphragm only, the material cost may be greatly reduced as compared with the previously mentioned solution that the gold-plated layer is gold-plated on the outer side of the diaphragm 2.
Optionally, the periphery of the diaphragm 2 may be fixed to the base body 1 by TIG welding (as indicated by B in
The gold-plated layer 4 may be provided on the inner side surface 21 of the diaphragm 2 by a usual process such as an electroplating process or vacuum plating. The thickness of the gold-plated layer 4 is preferably such that the measurement accuracy is not affected, for example, the thickness of the gold-plated layer may be 10 μm or less, for example, the thickness of the gold-plated layer may be 5 μm. The measuring element and the measuring device according to the present disclosure also have the advantages in measuring accuracy and cost etc., in terms of a technical solution that a problem caused by applying a gold-plated layer on the outer side surface 22 of the diaphragm 2 is solved by the way of increasing the thickness of the coating.
The diaphragm 2 can be made of a material that is the same as or different from that of the base body 1. Optionally, the diaphragm 2 and the base body 1 may both be made of a stainless steel material.
It can be understood from the above analysis that the measuring element and the measuring device according to the present disclosure improve the accuracy of the measurement, increase the service life of the parts, and reduce manufacturing and maintenance costs.
Although the various embodiments of the present disclosure have been described herein in detail, it should be understood that the present disclosure is not limited to the description in details herein and the illustrated embodiments, and other variations and modifications may be made by those skilled in the art without departing from the spirit and scope of the present disclosure. All such variations and modifications are intended to fall within the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201810475248.1 | May 2018 | CN | national |
201820741719.4 | May 2018 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/032824 | 5/17/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/222598 | 11/21/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4089036 | Geronime | May 1978 | A |
4184376 | Thomas et al. | Jan 1980 | A |
4370890 | Frick | Feb 1983 | A |
4389895 | Rud, Jr. | Jun 1983 | A |
4565096 | Knecht | Jan 1986 | A |
4572000 | Kooiman | Feb 1986 | A |
4611492 | Koosmann | Sep 1986 | A |
4612812 | Broden | Sep 1986 | A |
4638830 | Brown et al. | Jan 1987 | A |
4653523 | Brown | Mar 1987 | A |
4730496 | Knecht et al. | Mar 1988 | A |
4773269 | Knecht et al. | Sep 1988 | A |
4777826 | Rud, Jr. et al. | Oct 1988 | A |
4790192 | Knecht et al. | Dec 1988 | A |
4798089 | Frick et al. | Jan 1989 | A |
4800758 | Knecht et al. | Jan 1989 | A |
4833920 | Knecht et al. | May 1989 | A |
4833922 | Frick et al. | May 1989 | A |
4869282 | Sittler et al. | Sep 1989 | A |
4905575 | Knecht et al. | Mar 1990 | A |
4926695 | Kleven et al. | May 1990 | A |
4950499 | Martin | Aug 1990 | A |
4970898 | Walish et al. | Nov 1990 | A |
5095755 | Peterson | Mar 1992 | A |
5157972 | Broden et al. | Oct 1992 | A |
5184514 | Cucci et al. | Feb 1993 | A |
5230248 | Cucci et al. | Jul 1993 | A |
5287746 | Broden | Feb 1994 | A |
5333504 | Lutz et al. | Aug 1994 | A |
5343762 | Beulke | Sep 1994 | A |
5396810 | Beulke | Mar 1995 | A |
5483834 | Frick | Jan 1996 | A |
5495768 | Louwagie et al. | Mar 1996 | A |
5515732 | Willcox et al. | May 1996 | A |
5524492 | Frick et al. | Jun 1996 | A |
5578760 | Suzuki | Nov 1996 | A |
5695590 | Willcox et al. | Dec 1997 | A |
5731522 | Sittler | Mar 1998 | A |
5760310 | Rud, Jr. et al. | Jun 1998 | A |
5922965 | Behm et al. | Jul 1999 | A |
6003219 | Frick et al. | Dec 1999 | A |
6030709 | Jensen | Feb 2000 | A |
6038961 | Filippi et al. | Mar 2000 | A |
6055863 | Behm et al. | May 2000 | A |
6120033 | Filippi et al. | Sep 2000 | A |
6295875 | Frick et al. | Oct 2001 | B1 |
6425290 | Willcox et al. | Jul 2002 | B2 |
6484585 | Sittier et al. | Nov 2002 | B1 |
6505516 | Frick et al. | Jan 2003 | B1 |
6516672 | Wang | Feb 2003 | B2 |
6568278 | Nelson et al. | May 2003 | B2 |
6612174 | Sittier et al. | Sep 2003 | B2 |
6647794 | Nelson et al. | Nov 2003 | B1 |
6662662 | Nord et al. | Dec 2003 | B1 |
6675655 | Broden et al. | Jan 2004 | B2 |
6782754 | Broden et al. | Aug 2004 | B1 |
6843133 | Broden et al. | Jan 2005 | B2 |
7036381 | Broden et al. | May 2006 | B2 |
7096738 | Schumacher | Aug 2006 | B2 |
7115118 | Broden | Oct 2006 | B2 |
7117745 | Broden | Oct 2006 | B2 |
7124641 | Broden et al. | Oct 2006 | B2 |
7255012 | Hedtke | Aug 2007 | B2 |
7258021 | Broden | Aug 2007 | B2 |
7295131 | Anderson et al. | Nov 2007 | B2 |
7308830 | Harasyn et al. | Dec 2007 | B2 |
7334484 | Harasyn et al. | Feb 2008 | B2 |
7373831 | Broden | May 2008 | B2 |
7377174 | Sundet | May 2008 | B2 |
7415886 | Schumacher et al. | Aug 2008 | B2 |
7437938 | Chakraborty | Nov 2008 | B2 |
7448275 | Sundet et al. | Nov 2008 | B1 |
7454975 | Louwagie et al. | Nov 2008 | B2 |
7484416 | Klosinski et al. | Feb 2009 | B1 |
7503220 | Sittier et al. | Mar 2009 | B2 |
7591184 | Broden | Sep 2009 | B2 |
7624642 | Romo | Dec 2009 | B2 |
7779698 | Willcox | Aug 2010 | B2 |
7814798 | Fillippi et al. | Oct 2010 | B2 |
7819014 | Broden | Oct 2010 | B1 |
7882736 | Schumacher | Feb 2011 | B2 |
8042401 | Broden | Oct 2011 | B2 |
8079269 | Chakraborty | Dec 2011 | B2 |
8234927 | Schulte et al. | Aug 2012 | B2 |
8429978 | Klosinski et al. | Apr 2013 | B2 |
8448519 | Broden et al. | May 2013 | B2 |
8596141 | Konyukhov et al. | Dec 2013 | B2 |
8720277 | Norberg et al. | May 2014 | B2 |
8776608 | Hedtke et al. | Jul 2014 | B2 |
8813572 | Hedtke | Aug 2014 | B2 |
8915140 | Romo et al. | Dec 2014 | B2 |
9010191 | Strei et al. | Apr 2015 | B2 |
9038476 | Strei et al. | May 2015 | B2 |
9057659 | Hedtke | Jun 2015 | B2 |
9234776 | Strei | Jan 2016 | B2 |
9274018 | Miller et al. | Mar 2016 | B2 |
9316553 | Willcox | Apr 2016 | B2 |
9389106 | Breen et al. | Jul 2016 | B2 |
9459170 | Haywood | Oct 2016 | B2 |
9476789 | Champredonde et al. | Oct 2016 | B2 |
9513183 | Thompson et al. | Dec 2016 | B2 |
9562819 | Fadell et al. | Feb 2017 | B2 |
9689769 | Eriksen et al. | Jun 2017 | B2 |
9719872 | Willcox et al. | Aug 2017 | B2 |
9752945 | Hedtke et al. | Sep 2017 | B2 |
9772246 | Hoffman et al. | Sep 2017 | B2 |
9857259 | Broden et al. | Jan 2018 | B2 |
9909909 | Schumacher | Mar 2018 | B2 |
10048152 | Fetisov et al. | Aug 2018 | B2 |
10060813 | Willcox et al. | Aug 2018 | B2 |
10060814 | Schumacher | Aug 2018 | B2 |
10067023 | Hugel et al. | Sep 2018 | B2 |
10156491 | Fetisov | Dec 2018 | B2 |
10203258 | Romo et al. | Feb 2019 | B2 |
10378984 | Li | Aug 2019 | B2 |
10514311 | Xiaoang et al. | Dec 2019 | B2 |
10584309 | Fadell et al. | Mar 2020 | B2 |
10598559 | Andrew et al. | Mar 2020 | B2 |
10627302 | Strei et al. | Apr 2020 | B2 |
10816424 | Fadell et al. | Oct 2020 | B2 |
20100064816 | Fillippi et al. | Mar 2010 | A1 |
20120239313 | Champredonde et al. | Sep 2012 | A1 |
20130320662 | Norberg et al. | Dec 2013 | A1 |
20150228365 | Arita et al. | Aug 2015 | A1 |
20150377730 | Xiaoang et al. | Dec 2015 | A1 |
20160091383 | Hoffman et al. | Mar 2016 | A1 |
20170003188 | Champredonde et al. | Jan 2017 | A1 |
20170010169 | Hugel et al. | Jan 2017 | A1 |
20170113917 | Yoshikawa | Apr 2017 | A1 |
20170356820 | Hoffman et al. | Dec 2017 | A1 |
20180245998 | Li | Aug 2018 | A1 |
20190259779 | Izumitani | Aug 2019 | A1 |
20200284681 | Hoffman et al. | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
3035111 | Apr 2018 | CA |
101413839 | Apr 2009 | CN |
102159928 | Aug 2011 | CN |
102575966 | Jul 2012 | CN |
103196623 | Jul 2013 | CN |
103454031 | Dec 2013 | CN |
204556155 | Aug 2015 | CN |
105203252 | Dec 2015 | CN |
106053948 | Oct 2016 | CN |
106062526 | Oct 2016 | CN |
106289634 | Jan 2017 | CN |
10 2010 018 377 | Apr 2011 | DE |
0965829 | Aug 2004 | EP |
3-44646 | Apr 1991 | JP |
H11351991 | Dec 1999 | JP |
2001208629 | Aug 2001 | JP |
2013257225 | Dec 2013 | JP |
2585641 | May 2016 | RU |
991959 | Jan 1983 | SU |
WO 2018058487 | Apr 2018 | WO |
Entry |
---|
Office Action, including Search Report, from Russian Patent Application No. 2020141418, dated May 11, 2021. |
Communication Pursuant to Rules 161(1) and 162 EPC from European Application No. 19728282.5, dated Nov. 3, 2020. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority from International Application No. PCT/US2019/032824, dated Aug. 30, 2019. |
Office Action from Chinese Application No. 201980003676.7, dated Apr. 1, 2021. |
Third Office Action, including Search Report, from Chinese Patent Application No. 201980003676.7, dated Dec. 31, 2021. |
Office Action, including Search Report, from Chinese Patent Application No. 201980003676.7, dated Aug. 23, 2021. |
Office Action, including Search Report, from Japanese Patent Application No. 2020-555817, dated Sep. 22, 2021. |
Office Action from Canadian Application No. 3,099,745, dated Nov. 18, 2021. |
Final Office Action from Japanese Application No. 2020-555817, dated Feb. 2, 2022. |
Number | Date | Country | |
---|---|---|---|
20200333204 A1 | Oct 2020 | US |