Measuring power consumption of a display assembly

Information

  • Patent Grant
  • 11656255
  • Patent Number
    11,656,255
  • Date Filed
    Tuesday, April 20, 2021
    3 years ago
  • Date Issued
    Tuesday, May 23, 2023
    a year ago
Abstract
Systems and methods for measuring power consumption in a display assembly are provided. Images are displayed at an electronic display subassembly. A simulated electric meter is electrically interposed between a utility electric supply and at least the electronic display subassembly and measures power consumed by at least said electronic display subassembly. Cumulative power measurements may be recorded by the simulated electric meter for each image displayed at the electronic display subassembly.
Description
TECHNICAL FIELD

Exemplary embodiments of the present invention relate generally to systems and methods for measuring power consumption of electronic display assemblies.


BACKGROUND AND SUMMARY OF THE INVENTION

Electric meters have long been a staple of the home. These meters are typically located on or near the side of the house where the electric line connecting the home to the electrical grid enters the home. The electric meter is interposed at the entry into the home to determine the amount of power consumed by the home so that the owner may be billed based upon the actual usage. The same is generally true of other types of buildings (e.g., commercial).


Electronic displays are increasingly being used in both indoor and outdoor applications. Such electronic displays are sometimes placed in assemblies with a ruggedized housing in order to fit the intended application of the electronic display. Such applications include, but are not limited to, placement on city sidewalks, the sides of buildings, bus shelters, the tops of vehicles, billboards, entrances, stadiums, malls, airports, public transportation areas, and the like. Consumers have increasingly begun demanding larger, brighter, clearer displays, and the like. Consumers have also increasingly begun demanding more features associated with the electronic displays. Examples of such associated features include, but are not limited to, video conferencing, telephonic systems, internet connectivity, cameras, sensors, wayfinding, and the like. The result of these larger displays and added features is greater power consumption by the assembly.


In many cases, one party owns the assembly itself or the physical real estate (e.g., bus stop, sidewalk, building, entrance, signage, or the like) where the assembly is located. In many cases, this owning party is responsible for payment of the assembly's power consumption. However, in some cases it would be desirable to charge another party for the power consumption of the assembly—such as the party showing images on the display. For example, without limitation, in some cases, a city is responsible for the power consumption of such assemblies located on its sidewalks. However, it would be desirable to charge the owner of the assemblies for their power consumption. As another example, without limitation, in some cases, one party owns the display but rents out advertising time on the display to third parties. In such cases, it may be desirable to charge the particular advertiser for power consumed by the assembly while the third party's advertisement is being shown on the assembly.


In such cases, the party responsible for the assembly's power consumption might be forced to interject a power meter on or near the assembly to measure its power consumption. However, this is costly, labor intensive, unaesthetic, and takes up valuable real estate. Therefore, what is needed is an assembly for an electronic display having a simulated electric meter.


The present invention is an assembly for an electronic display having a simulated electric meter. The assembly may comprise a housing for one or more electronic display subassemblies. Each electronic display subassembly may comprise an illumination device, a display layer, and a cover. In exemplary embodiments, a closed loop of air may pass between the display layer and the cover of each subassembly and into a compartment located between the subassemblies. An open loop of ambient air may pass through each subassembly and may pass along the rear surface of the illumination device located therein. A number of electronic components for operating the assembly may be located in the compartment. The simulated electric meter may be in electrical connection with a utility electric supply and all of the electricity consuming components of the assembly such that all electricity consumed by the assembly may pass through the simulated electric meter.


The simulated electric meter may comprise a processor, an electronic storage device, a timing device, a current sensor, and a voltage sensor. The electronic storage device may comprise software instructions, which when executed, cause the processor to take measurements from the sensors. In exemplary embodiments, the sensors may determine the current and the voltage of the incoming electricity, which may be multiplied together to determine the power being consumed. In other exemplary embodiments, the voltage may already be known and multiplied with the current reading to determine power consumption. Such readings and power consumption calculations may be repeated over a period of time at a given frequency. The elapsed time may be measured by the timing device. After a predetermined amount of time has passed, the power measurements may be summed and divided by the total number of readings to determine an average consumption measure for the given period of time.


The simulated electric meter may be in electronic communication with a remote electronic device to monitor power consumption as well as review past power consumption and predict future power consumption. Additionally, the simulated electric meter may be in communication with the video player or a proof of play device in order to track what images are shown on the electronic display subassemblies of the assembly when the power is consumed.





BRIEF DESCRIPTION OF THE DRAWINGS

In addition to the features mentioned above, other aspects of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments, wherein like reference numerals across the several views refer to identical or equivalent features, and wherein:



FIG. 1 is a perspective view of an exemplary assembly for an electronic display comprising a simulated electric meter;



FIG. 2 is a perspective view of the assembly of FIG. 1 with some components removed and one of the electronic display subassemblies in an open position so as to illustrate additional components of the assembly;



FIG. 3 is a perspective view of the assembly of FIG. 2 with a second electronic display subassembly in an open position so as to illustrate additional components of the assembly;



FIG. 4 is an exploded view of the assembly of FIG. 3;



FIG. 5 is a perspective view of the assembly of FIG. 2 with one of the electronic display subassemblies removed so as to illustrate additional components of the assembly;



FIG. 6 is a top sectional view of one of the subassembly of FIG. 5;



FIG. 7 is a simplified diagram illustrating an exemplary system utilizing the assembly of FIG. 1;



FIG. 8 is a detailed view of the simulated electric meter of FIG. 7;



FIG. 9 is a flowchart of exemplary logic that may be used with the simulated electric meter; and



FIG. 10 is a flowchart of exemplary logic that may be used with the simulated electric meter.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENT(S)

Various embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the following description, specific details such as detailed configuration and components are merely provided to assist the overall understanding of these embodiments of the present invention. Therefore, it should be apparent to those skilled in the art that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present invention. In addition, descriptions of well-known functions and constructions are omitted for clarity and conciseness.



FIG. 1 is a perspective view of an exemplary assembly 10 for an electronic display comprising a simulated electric meter 44. The assembly 10 may comprise one or more electronic display subassemblies 12 located on a housing 14. In exemplary embodiments, a first and second electronic display subassembly 12 may be mounted to the housing 14 in a hinged fashion such that the electronic display subassemblies 12 are capable of being rotated between a closed position, wherein the electronic display subassembly 12 is in contact with the housing 14, and an opened position wherein the electronic display subassembly 12 is located away from the housing 14. One or more openings 16 may be located on or around the housing 14 such that ambient air 28 may be ingested into, or exhausted from, the assembly 10. The housing 14 may be configured to permit the assembly 10 to be mounted to a sidewalk, the ground, a building, a bus shelter, a vehicle, a wall, a billboard, in a window, in a storefront, or the like.



FIG. 2 is a perspective view of the assembly of FIG. 1 with some components removed and one of the electronic display subassemblies 12 in an open position so as to illustrate additional components of the assembly 10. In exemplary embodiments, the rear surfaces of the two electronic display subassemblies 12 and the housing 14 may define a compartment 15 located therebetween. The compartment 15 may be substantially sealed. Gaskets may extend along the perimeter of the housing 14 where the display subassemblies 12 meet the housing to provide such a seal. Various electronic components 18 may be mounted between or to one or more of the electronic display subassemblies 12 or to structures located within the compartment 15. Such electronic component 18 may be used to operate the assembly 10 and include, but are not limited to, video players, processors, electronic storage devices, camera, sensors, power sources, power modules, network connectivity devices, some combination thereof, or the like. Fans 22 may be located at various positions on the housing 14 or within the compartment 15 formed between the electronic display subassemblies 12.



FIG. 3 is a perspective view of the assembly of FIG. 2 with one of the electronic display subassemblies 12 located in an open position so as to illustrate additional components of the assembly 10. Assist devices 24 may extend between the housing 14 and the electronic display subassemblies 12 to assist in moving the electronic display subassemblies 12 between the opened and closed positions. These assist devices 24 may also assist in securing the electronic display subassemblies 12 in the opened or closed positions. The assist devices 24 may be gas springs, gas struts, pullies, levels, ratcheting devices, struts, members, springs, counter weights, cams, some combination thereof, or the like.



FIG. 4 is an exploded view of the assembly of FIG. 3. Additional fans 22 may be located at various positions on the housing 14 or in the compartment 15. Additional equipment 42 may be located within the compartment 15. The additional equipment 42 may be various electronic and other components which facilitate the inclusion of additional features such as, but not limited to, video conferencing, telephonic systems, internet connectivity devices, cameras, and the like. For example, without limitation, the additional equipment 42 may comprise video players, processors, electronic storage devices, cameras, microphones, sensors, power sources, wayfinding equipment, power modules, network connectivity devices, some combination thereof, or the like.



FIG. 5 is a perspective view of the assembly of FIG. 2 with one of the electronic display assemblies 12 removed so as to illustrate additional components of the assembly 10. FIG. 6 is a top sectional view of the assembly of FIG. 5. In particular, FIG. 5 and FIG. 6 illustrate an exemplary flow of ambient air 28 and circulating air 26 through the assembly 10. Ambient air 28 may enter from the ambient environment through the intake opening 16 and may pass through a gap 36 in one or more of the electronic display subassemblies 12. In exemplary embodiments, the gap 26 may be located such that ambient air 28 passes behind an illumination device 32 for an electronic display layer 31, though any located is contemplated. The illumination device 32 may be a backlight. In other exemplary embodiments, the ambient air 28 may instead pass through the compartment 15.


The electronic display layer 31 may be a liquid crystal display (“LCD”), Light Emitting Diode (“LED”), Organic LED (“OLED”), type display or the like. The illumination device 32 may comprise one or more incandescent light bulbs, LEDs, OLEDs, or the like. In exemplary embodiments, the illumination device 32 multiple light bulbs, LEDs, OLEDs, or the like, which may be arranged in an array on a sheet behind the electronic display layer 31 in a direct-lit arrangement, or adjacent thereto in an edge-lit arrangement, such as but not limited to, along the edge of a light guide located behind the display layer 31. In exemplary embodiments, a cover 34 may be located in front of the display layer 31. The cover 34 may be a transparent sheet, such as but not limited to, a cover glass.


In some exemplary embodiments, the electronic display layer 31 may transparent or translucent. The housing 14 may be configured to locate the electronic display layer 31 over a compartment, such as but not limited to, a cooler, vending machine, display case, or the like.


Ambient air 28 may exit the assembly 10 though the opening 16 where it is returned to the ambient environment. This pathway for the ambient air 28 may define an open loop. The ambient air 28 may be moved by one or more fans 22 placed along or near the open loop. One or more filtration devices may likewise be placed along the open loop. While the ambient air 28 is illustrated as traveling vertically from bottom to top, it is contemplated that the ambient air 28 may also travel vertically from top to bottom. Alternatively, or in addition, the ambient air 28 may travel horizontally.


Circulating air 26 may travel from the compartment 15 through one or more of the electronic display subassemblies 12. In exemplary embodiments, the circulating air 26 may travel through a channel 25 located between the cover 34 and the display layer 31. A similar pathway may be taken with a second flow of circulating air 26 within the second electronic display subassembly 12. Regardless, the circulating air 26 may be returned to the compartment 15. This pathway of the circulating air 26 may define a closed loop. The circulating air 26 may be moved by one or more fans 22 placed along the closed loop. While the circulating air 26 is illustrated as traveling horizontally, it is contemplated that alternatively, or in addition, the circulating air 26 may travel vertically. In exemplary embodiments, the open loop and the closed loop may be configured to substantially prevent the ambient air 28 and the circulating air 26 from mixing. In particular, the closed loop may be substantially sealed to prevent particulate in the ambient air 28 from mixing with the circulating air 26.


The illustrated open loop and closed loops are merely exemplary and are not intended to be limiting. Any pathway for ambient air 28 is contemplated. Likewise, any pathway for circulating gas 26 is contemplated. It is contemplated that in some embodiment, the closed loop and circulating gas 26 may not be required. In still other exemplary embodiments, the circulating gas 26 and closed loop may be limited to traveling within the compartment 15. It is similarly contemplated that in some embodiment, the open loop and ambient air 28 may not be required. Heat may be removed by the use of thermoelectric devices, air conditioning, fins, heat sinks, thermal plates, or the like.


As will be described in greater detail herein, the assembly 10 may additionally comprise a simulated electric meter 44. The simulated electric meter 44 may be located in the compartment 15 or on the housing 14, though any location on the assembly 10 is contemplated. The simulated electric meter 44 may be electrically connected to the electrical supply for the assembly 10.


In exemplary embodiments, the simulated electric meter 44 is located on, or in close proximity with, a connector 56. The connector 56 may be located on the housing 14 or other portion of the assembly 10 or the electrical display subassembly 12. In exemplary embodiments, the connector 56 is a pass-through device configured to permit one or more wires to pass through the housing 14 and into the assembly 10 while maintaining a substantially air-tight seal. The connector 56 may be configured to place the assembly 10 in electrical connection with a utility electric supply 54 by way or one or more utility electrical supply lines. The utility electric supply 54 may be an electrical grid, battery, generator, power plant, or the like. In exemplary embodiments, the connector 56 may serve as a connection point for the utility electrical supply line on one end and the simulated electric meter 44 (and thus the electricity consuming components of the assembly 10) on the other end. Any kind of connector 56 is contemplated including, but not limited to, an outlet, port, sealed passage, or the like. In exemplary embodiments, the connector 56 provides a substantially air tight seal so that the compartment 15 remains substantially sealed.



FIG. 7 is a simplified diagram illustrating an exemplary system utilizing the assembly 10. The simulated electric meter 44 may be in electrical connection with all of the electricity consuming components of the assembly 10, including but not limited to, the electronic components 18, the illumination device 32, the additional equipment 42, and a network connectivity device 46. In this way, the simulated electric meter 44 may be positioned to encounter all of the electricity flowing into the assembly 10.



FIG. 8 is a detailed view of the simulated electric meter 44 of FIG. 7. The simulated electric meter 44 may comprise a processor 62, an electronic storage device 64, a timing device 66, a current sensor 68, and a voltage sensor 67. The simulated electric meter 44 may comprise other electrical components, including but not limited to, capacitors, resistors, relays, diodes, inductors, voltage sources, logic gates, microcontrollers, and the like. The current sensor 68 and the voltage sensor 67 may be in contact (direct or indirect) with the electrical wiring passing into or through the assembly 10. For example, without limitation, the simulated electric meter 44 may be located immediately adjacent to the connector 56, though any location is contemplated. While the current and voltage sensors, 68 and 67 respectively, are described as separate components herein, it is contemplated that a single sensor may be used to measure both current and voltage. Alternatively, or in addition, it is contemplated that the voltage may be a known, preprogramed value and only the current sensor 68 is required.


The current sensor 68 may be configured to detect the current of the electricity in contact therewith. Similarly, the voltage sensor 67 may be configured to detect the voltage of the electricity in contact therewith. The measured current and voltage values may be actual, approximate, peak, root mean square, average, median, mode values, or the like. Alternatively, or in addition, the voltage or current values may already be known and preprogrammed. For example, without limitation, the voltage of the supplied electricity may be known to be 120v or 220v.


As additionally shown in FIG. 9, the electronic storage device 64 may comprise software instructions, which when executed, cause the processor 62 to take one or more readings from the current sensor 68 and the voltage sensor 67 for the electricity in contact with the current sensor 68 and the voltage sensor 67—that is, the electricity passing through the simulated electric meter 44 to be consumed by the assembly 10. In exemplary embodiments, such readings may be taken approximately once per second, though any frequency of readings is contemplated. The processor 62 may be configured to multiply the measured current value with the measured voltage value to determine a power consumption reading. This value may be stored at the electronic storage device 64 or elsewhere.


The electronic storage device 64 may comprise software instructions, which when executed, cause the processor 62 to take readings from the timing device 66 to measure the current time or the elapsed time. In exemplary embodiments, the processor 62 may be configured to measure the elapsed time, by way of the timing device 66, from when a first current or voltage measurement is taken and continue monitoring the elapsed time each instance a current or voltage measurement is taken. Once the elapsed time is greater than or equal to a predetermined target time, the processor 62 may be configured to sum the power consumption readings taken during the time period in question and divide the summed total by the number of readings to determine an average power consumption reading for the time period. The processor 62 may be configured to update various power consumption measures as described in greater detail herein. This information can be used to, for example, determine the kilowatt-hours (“kW hours”) consumed by the assembly 10. Alternatively, or in addition, the processor 62 may calculate the elapsed time by multiplying the inverse of the known frequency of measurements by the number of measurements taken.


In exemplary embodiments, at least the following power consumption measures are tracked and periodically updated: monthly power consumption (e.g., accumulated kW hours for the current calendar month); yearly power consumption (e.g., accumulated kW hours for the current calendar year); lifetime power consumption (e.g., accumulated kW hours from time 0 to infinity); last month power consumption (e.g., the accumulated kW hours for the last calendar month); last year power consumption (e.g., the accumulated kW hours for the last calendar year); average monthly power consumption (e.g., average of average hourly or daily power consumption for all hours or days in the previous month); average yearly power consumption (e.g., average of average hourly, daily, or monthly power consumption for all hours, days, or months in the previous month); and monthly averages for the last calendar year. These measurements are merely exemplary and are not intended to be limiting. Any number or type of measurements are contemplated. An exemplary report of power consumption is provided below.


















TABLE 1








Cumulative



Cumulative





Day of
Daily
Actual Daily
Average
Predicted

Actual Daily
Predicted



Month of
the
kwh
Values for the
Daily Kw
Monthly Kwh
Days/Given
Values for the
Yearly Kwh
Day of


the Year
Month
Value
month
Value
Consumption
Month
Year
Consumption
the Year
























Jan.
1
0.678
0.678
0.678
21.024
31
0.678
247.538
1


Jan.
2
0.959
1.638
0.819
25.382
31
1.638
298.855
2


Jan.
3
0.428
2.066
0.689
21.349
31
2.066
251.366
3


Jan.
4
0.413
2.479
0.620
19.215
31
2.479
226.239
4


Jan.
5
0.070
2.549
0.510
15.805
31
2.549
186.086
5


Jan.
6
0.724
3.273
0.546
16.912
31
3.273
199.127
6


Jan.
7
0.126
3.399
0.486
15.052
31
3.399
177.228
7


Jan.
8
0.257
3.656
0.457
14.166
31
3.656
166.797
8


Jan.
9
0.681
4.337
0.482
14.939
31
4.337
175.889
9


Jan.
10
0.145
4.482
0.448
13.893
31
4.482
163.577
10


Jan.
11
0.579
5.060
0.460
14.261
31
5.060
167.907
11


Jan.
12
0.905
5.966
0.497
15.411
31
5.966
181.454
12


Jan.
13
0.602
6.568
0.505
15.662
31
6.568
184.407
13


Jan.
14
0.719
7.287
0.520
16.134
31
7.287
189.970
14


Jan.
15
0.971
8.257
0.550
17.065
31
8.257
200.931
15


Jan.
16
0.409
8.667
0.542
16.792
31
8.667
197.710
16


Jan.
17
0.910
9.577
0.563
17.464
31
9.577
205.629
17


Jan.
18
0.499
10.076
0.560
17.354
31
10.076
204.326
18


Jan.
19
0.370
10.446
0.550
17.044
31
10.446
200.677
19


Jan.
20
0.309
10.756
0.538
16.671
31
10.756
196.292
20


Jan.
21
0.401
11.156
0.531
16.469
31
11.156
193.908
21


Jan.
22
0.263
11.419
0.519
16.090
31
11.419
189.453
22


Jan.
23
0.820
12.239
0.532
16.497
31
12.239
194.233
23


Jan.
24
0.472
12.711
0.530
16.418
31
12.711
193.314
24


Jan.
25
0.137
12.848
0.514
15.931
31
12.848
187.578
25


Jan.
26
0.344
13.192
0.507
15.729
31
13.192
185.198
26


Jan.
27
0.974
14.166
0.525
16.265
31
14.166
191.505
27


Jan.
28
0.647
14.813
0.529
16.400
31
14.813
193.093
28


Jan.
29
0.135
14.948
0.515
15.979
31
14.948
188.135
29


Jan.
30
0.157
15.105
0.504
15.609
31
15.105
183.778
30


Jan.
31
0.182
15.287
0.493
15.287
31
15.287
179.989
31


Feb.
1
0.210
0.210
0.210
5.873
28
15.497
176.757
32


Feb.
2
0.467
0.677
0.338
9.475
28
15.964
176.567
33


Feb.
3
0.054
0.731
0.244
6.824
28
16.018
171.957
34


Feb.
4
0.680
1.412
0.353
9.881
28
16.698
174.139
35


Feb.
5
0.551
1.963
0.393
10.991
28
17.249
174.890
36


Feb.
6
0.048
2.011
0.335
9.384
28
17.298
170.640
37


Feb.
7
0.301
2.312
0.330
9.246
28
17.598
169.036
38









The processor 62 may store these measurements and others from the simulated electric meter 44 in the electronic storage device 64 or elsewhere. The simulated electric meter 44 may be in electronic communication with the network connectivity device 46, which may be in electronic communication with a remote electronic device 52 by way of a network 48. The network 48 may be the internet, cellular network, intranet, or the like. The connection between the network connectivity device 46, the network 48, and the remote electronic device 52 and other components may be wired or wireless. The remote electronic device 52 may be a personal computer, smart phone, tablet or the like and may be configured to receive data from the simulated electric meter 44 and generate a report of power consumption.


The measurements taken from the simulated electric meter 44, such as but not limited to those stored on the electronic storage device 64, may be transmitted to the remote electronic device 52. The processor 62, or the remote electronic device 52, may be configured to track the measurements from the simulated electric meter 44 over a period of time. The processor 62 or the remote electronic device 52 may be further configured to generate a user interface illustrating the measurements from the simulated electric meter 44.


As additionally shown in FIG. 10, the processor 62, or the remote electronic device 52, may be configured to project, predict, or otherwise estimate future power consumption based on past usage. Such estimation may be accomplished by projecting past usage over a future time period, by determining average usage over a period of time, or the like. It is notable that power consumption may vary significantly by time of the year because, for example, of varying weather conditions. For example, without limitation, warmer or cooler ambient air, the number of sunny days, the intensity of the sun, the amount of cloud cover, and the like may affect illumination requirements, cooling requirements, and the like.


If, for example without limitation, data is available regarding average hourly consumption from the same month of a previous year, the same month's average hourly power consumption may be multiplied by the number of hours in the current month to arrive at a predicted monthly consumption. If such data is not available, then the previous day's average daily power consumption may be multiplied by the number of days in the current month to arrive at a predicted monthly consumption. As a further example, again without limitation, if data is available regarding average hourly power consumption from the previous year, the previous year's average consumption may be multiplied by the number of days in the current year and 24 hours to arrive at the predicted annual consumption. If such data is not available, then the previous day's average daily consumption may be multiplied by the number of days in the current year to arrive at the predicted annual consumption. These measurements and predictions are merely exemplary any not intended to be limiting. Any consumption measurements may be used and multiplied by any time period to determine a predicted consumption measurement for a corresponding time period.


At the end of each month, a monthly consumption measurement may be determined by averaging or accumulating all power consumption measurements tracked during the month. For example, without limitation, all daily power consumption measurements tracked during the month may be summed to arrive at a monthly consumption measurement. As another example, again without limitation, all daily power consumption measurement tracked during the month may be summed and divided by the number of measurements taken to arrive at an average daily consumption measurement for the given month. The same or similar measurements may be taken for other time periods such as hours, weeks, days, or years. For example, without limitation, a yearly consumption may be determined by summing all values tracked during the year, all monthly values tracked during the year, or all daily values tracked during the year. These measurements may be stored as described herein.


The simulated electric meter 44 may be in electrical connection with the electronic components 18 or the additional equipment 42. Some of these components may be configured to track the images being shown on the various electronic display subassemblies 12. For example, without limitation, the processor 62, electronic storage device 64, and timing device 66 may be in electronic communication with the video player 18. As a further example, the additional equipment 42 may comprise a proof of play device configured to track what image(s) are shown on the electronic display subassemblies 12.


Regardless, the processor 62 may be configured to monitor the activity of the video player 18. The processor 62 may be further configured store data on the electronic storage device 64, the electronic components 18, the additional equipment 42, or the remote electronic device 52, indicating what was shown on the electronic display subassemblies 12 at given times, which may be measured by the timing device 66. In this way, the simulated electric meter 44 and related components may be configured to measure the power consumed while a particular image or images is displayed on the assembly 10. For example, without limitation, this information may be used to charge advertisers for the power consumed by the assembly 10 while their advertisement is shown on the display. As another example, without limitation, this data may permit an advertiser to better understand the power or power consumed by the assembly 10 and adjust their operations or prices accordingly. This data may be transmitted to the remote electronic device 52.


The illustrated assembly 10 and electronic display subassemblies 12 are merely exemplary. Other size, shape, and configuration assemblies 10 are contemplated with other size, shape, number, and configuration electronic display subassemblies 12.


Any embodiment of the present invention may include any of the optional or preferred features of the other embodiments of the present invention. The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. A display assembly for measuring power consumption comprising: an electronic display subassembly for displaying images; anda simulated electric meter electrically interposed between a utility electric supply and at least the electronic display subassembly configured to measure power consumed by at least said electronic display subassembly.
  • 2. The display assembly of claim 1 further comprising: a time keeping device; anda database for storing average power consumption measurements generated by said simulated electric meter in association with dates determined by said time keeping device.
  • 3. The display assembly of claim 2 further comprising: a remote electronic device configured to generate predicted power consumption measurements for said display assembly by retrieving at least one of said average power consumption measurements associated with a date within, or equivalent to, a prediction time period and multiplying said retrieved average power consumption measurement(s) by a factor sufficient to extrapolate said retrieved average power consumption measurement(s) to match a length of said prediction time period.
  • 4. The display assembly of claim 1 further comprising: a housing at least partially surrounding said electronic display subassembly;a cover panel located forward of, and spaced apart from, said electronic display subassembly and forming a forward portion of said housing, wherein said electronic display subassembly comprises an electronic display layer located rearward of, and spaced apart from, said cover panel, and a number of illumination elements located behind or adjacent to said electronic display layer; andone or more electrically powered components located within said housing, wherein said simulated electric meter is electrically interposed between said one or more electrically powered components and said utility power supply, and wherein said simulated electric meter is configured to measure power consumed by at least said one or more electrically powered components.
  • 5. The display assembly of claim 4 wherein: the simulated electric meter is electrically interposed between the utility electric supply and all electricity consuming equipment of the display assembly to measure power consumption of all electricity consuming equipment of the electronic display assembly.
  • 6. The display assembly of claim 4 wherein: said electronic display layer comprises liquid crystals; andsaid one or more illumination elements comprise light emitting diodes arranged to directly backlight, or edge light, the electronic display layer.
  • 7. The display assembly of claim 4 further comprising: at least one intake located at said housing;at least one exhaust located at said housing;an open loop airflow pathway through said housing between said at least one intake and said at least one exhaust, and extending along said one or more illumination elements; andone or more open loop fans for forcing ambient air through at least a portion of said open loop airflow pathway when operated.
  • 8. The display assembly of claim 7 further comprising: a front channel extending between said cover panel and said electronic display subassembly;a rear chamber located rearward of said electronic display subassembly, wherein said one or more electrically powered components are mounted within said rear chamber;a closed loop airflow pathway through said housing comprising said front channel and said rear chamber; andone or more closed loop fans for forcing circulating gas through at least a portion of said closed loop airflow pathway when operated.
  • 9. The display assembly of claim 1 further comprising: at least one current sensor associated with said simulated electric meter, wherein said simulated electric meter is configured to measure said power consumed by multiplying one or more current measurements taken by said at least one current sensor with a predetermined voltage level.
  • 10. The display assembly of claim 9 wherein: said predetermined voltage level is equal to or between 110 and 130 volts, or equal to or between 210 and 230 volts.
  • 11. The display assembly of claim 9 wherein: said simulated electric meter is configured to: receive multiple current measurements from said at least one current sensor;determine an average current level by averaging said multiple current measurements; andmeasure said power consumed by multiplying said average current level with said predetermined voltage level.
  • 12. The display assembly of claim 9 further comprising: at least one timing device associated with said simulated electric meter, wherein said simulated electric meter is configured to: determine a time elapsed from when a first one of multiple current measurements is taken from said at least one current sensor and a second one of said multiple current measurements is taken from said at least one current sensor;determine multiple power consumption levels by multiplying each one of said multiple current measurements with said predetermined voltage level, wherein each of said multiple current measurements is taken during said elapsed time; andsum said each of said multiple power consumption levels occurring during said elapsed time.
  • 13. The display assembly of claim 12 further comprising: a video player for controlling, at least in part, images displayed at said electronic display subassembly, wherein said database is configured to receive and store said summed power consumption measure received from said simulated electric meter in association with data received from said video player indicating a particular one of said images displayed at the electronic display subassembly during said elapsed time.
  • 14. The display assembly of claim 12 wherein: said simulated electric meter is configured to divide the summed power consumption measure by the elapsed time to determine an average power consumption measurement for the elapsed time.
  • 15. The display assembly of claim 1 further comprising: a network connection device for transmitting power consumption measurements from said simulated electric meter to a remote electronic device.
  • 16. The display assembly of claim 15 wherein: said remote electronic device comprises a server comprising data for hosting a website or application for displaying the power consumption measurements at a user electronic device.
  • 17. The display assembly of claim 1 further comprising: a current sensor associated with the simulated electric meter; anda voltage sensor associated with the simulated electric meter, wherein said simulated electric meter is configured to take multiple current measurements from the current sensor during an elapsed time, take multiple voltage measurements from the voltage sensor during the elapsed time, and multiply each respective one of said multiple current measurements with a corresponding one of said multiple voltage measurements to arrive at multiple power consumption metrics.
  • 18. A display assembly for measuring power consumption comprising: an electronic display subassembly for displaying images;one or more fan assemblies for thermally managing said electronic display subassembly when operated; anda simulated electric meter electrically interposed between a utility electric supply and all electricity consuming components of said display assembly, including at least said electronic display subassembly and said one or more fan assemblies, said simulated electric meter comprising a current sensor and a voltage sensor, wherein said simulated electric meter is configured to measure power consumed by said display assembly by multiplying measurements from said current sensor with measurements from said voltage sensor to arrive at power consumption measurements.
  • 19. The display assembly of claim 18 further comprising: a time keeping device associated with said simulated electric meter; anda video player associated with said electronic display subassembly and said simulated electric meter, wherein said simulated electric meter is configured to: receive data from said video player indicating said images displayed at said electronic display subassembly;receive data from said time keeping device indicating an elapsed time period during which each of said images is displayed at said electronic display subassembly;determine a cumulative power consumption measurement for each respective one of said elapsed time periods by summing said power consumption measurements occurring during each respective one of said elapsed time periods; andassociate each of said cumulative power consumption measurements with a corresponding one of said displayed images.
  • 20. A display assembly for measuring power consumption comprising: a housing;a cover panel forming, at least in part, a forward surface of said housing;an electronic display subassembly located rearward of, and spaced apart from, said cover panel, wherein said electronic display subassembly is configured to display images, and wherein said cover panel is configured to permit viewing of said images displayed at said electronic display subassembly through said cover panel;an intake located at a first portion of said housing;an exhaust located at a second portion of said housing;an open loop airflow pathway extending within said housing, between said intake and said exhaust and along said electronic display subassembly;at least one fan configured to force a flow of ambient air through said open loop airflow pathway when operated; anda simulated electric meter electrically interposed between a utility electric supply and at least said electronic display subassembly and said at least one fan, wherein said simulated electric meter is configured to measure power consumed by at least said electronic display subassembly and said at least one fan when said electronic display subassembly and said at least one fan are operated.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. non-provisional application Ser. No. 16/744,318 filed Jan. 16, 2020, which is a divisional of U.S. non-provisional application Ser. No. 15/972,904 filed May 7, 2018, the disclosures of which are hereby incorporated by reference as if fully restated.

US Referenced Citations (310)
Number Name Date Kind
4093355 Kaplit et al. Jun 1978 A
4593978 Mourey et al. Jun 1986 A
4634225 Haim et al. Jan 1987 A
5029982 Nash Jul 1991 A
5086314 Aoki et al. Feb 1992 A
5088806 McCartney et al. Feb 1992 A
5162785 Fagard Nov 1992 A
5247374 Terada Sep 1993 A
5285677 Oehler Feb 1994 A
5559614 Urbish et al. Sep 1996 A
5661374 Cassidy et al. Aug 1997 A
5748269 Harris et al. May 1998 A
5767489 Ferrier Jun 1998 A
5783909 Hochstein Jul 1998 A
5786801 Ichise Jul 1998 A
5808418 Pitman et al. Sep 1998 A
5818010 McCann Oct 1998 A
5952992 Helms Sep 1999 A
5991153 Heady et al. Nov 1999 A
6085152 Doerfel Jul 2000 A
6089751 Conover et al. Jul 2000 A
6144359 Grave Nov 2000 A
6153985 Grossman Nov 2000 A
6157143 Bigio et al. Dec 2000 A
6157432 Helbing Dec 2000 A
6181070 Dunn et al. Jan 2001 B1
6191839 Briley et al. Feb 2001 B1
6259492 Imoto et al. Jul 2001 B1
6292228 Cho Sep 2001 B1
6297859 George Oct 2001 B1
6380853 Long Apr 2002 B1
6388388 Weindorf et al. May 2002 B1
6400101 Biebl et al. Jun 2002 B1
6417900 Shin et al. Jul 2002 B1
6496236 Cole et al. Dec 2002 B1
6509911 Shimotono Jan 2003 B1
6535266 Nemeth et al. Mar 2003 B1
6556258 Yoshida et al. Apr 2003 B1
6628355 Takahara Sep 2003 B1
6701143 Dukach et al. Mar 2004 B1
6712046 Nakamichi Mar 2004 B2
6753661 Muthu et al. Jun 2004 B2
6753842 Williams et al. Jun 2004 B1
6762741 Weindorf Jul 2004 B2
6798341 Eckel et al. Sep 2004 B1
6809718 Wei et al. Oct 2004 B2
6812851 Dukach et al. Nov 2004 B1
6813375 Armato, III et al. Nov 2004 B2
6839104 Taniguchi et al. Jan 2005 B2
6850209 Mankins et al. Feb 2005 B2
6885412 Ohnishi et al. Apr 2005 B2
6886942 Okada et al. May 2005 B2
6891135 Pala et al. May 2005 B2
6943768 Cavanaugh et al. Sep 2005 B2
6982686 Miyachi et al. Jan 2006 B2
6996460 Krahnstoever et al. Feb 2006 B1
7015470 Faytlin et al. Mar 2006 B2
7038186 De Brabander et al. May 2006 B2
7064733 Cok et al. Jun 2006 B2
7083285 Hsu et al. Aug 2006 B2
7136076 Evanicky et al. Nov 2006 B2
7174029 Agostinelli et al. Feb 2007 B2
7176640 Tagawa Feb 2007 B2
7236154 Kerr et al. Jun 2007 B1
7307614 Vinn Dec 2007 B2
7324080 Hu et al. Jan 2008 B1
7330002 Joung Feb 2008 B2
7354159 Nakamura et al. Apr 2008 B2
7447018 Lee et al. Nov 2008 B2
7474294 Leo et al. Jan 2009 B2
7480042 Phillips et al. Jan 2009 B1
7518600 Lee Apr 2009 B2
7595785 Jang Sep 2009 B2
7639220 Yoshida et al. Dec 2009 B2
7659676 Hwang Feb 2010 B2
7692621 Song Apr 2010 B2
7724247 Yamazaki et al. May 2010 B2
7795574 Kennedy et al. Sep 2010 B2
7795821 Jun Sep 2010 B2
7800706 Kim et al. Sep 2010 B2
7804477 Sawada et al. Sep 2010 B2
7982706 Ichikawa et al. Jul 2011 B2
8087787 Medin Jan 2012 B2
8111371 Suminoe et al. Feb 2012 B2
8125163 Dunn et al. Feb 2012 B2
8144110 Huang Mar 2012 B2
8175841 Ooghe May 2012 B2
8194031 Yao et al. Jun 2012 B2
8248203 Hanwright et al. Aug 2012 B2
8325057 Salter Dec 2012 B2
8352758 Atkins et al. Jan 2013 B2
8508155 Schuch Aug 2013 B2
8569910 Dunn et al. Oct 2013 B2
8605121 Chu et al. Dec 2013 B2
8700226 Schuch et al. Apr 2014 B2
8797372 Liu Aug 2014 B2
8810501 Budzelaar et al. Aug 2014 B2
8823630 Roberts et al. Sep 2014 B2
8829815 Dunn et al. Sep 2014 B2
8895836 Amin et al. Nov 2014 B2
8901825 Reed Dec 2014 B2
8982013 Sako et al. Mar 2015 B2
8983385 Macholz Mar 2015 B2
8988011 Dunn Mar 2015 B2
9030129 Dunn et al. May 2015 B2
9167655 Dunn et al. Oct 2015 B2
9286020 Dunn et al. Mar 2016 B2
9400192 Salser, Jr. et al. Jul 2016 B1
9448569 Schuch et al. Sep 2016 B2
9451060 Bowers et al. Sep 2016 B1
9516485 Bowers et al. Dec 2016 B1
9536325 Bray et al. Jan 2017 B2
9622392 Bowers et al. Apr 2017 B1
9799306 Dunn et al. Oct 2017 B2
9867253 Dunn et al. Jan 2018 B2
9881528 Dunn Jan 2018 B2
9924583 Schuch et al. Mar 2018 B2
10255884 Dunn et al. Apr 2019 B2
10321549 Schuch et al. Jun 2019 B2
10409544 Park et al. Sep 2019 B2
10412816 Schuch et al. Sep 2019 B2
10440790 Dunn et al. Oct 2019 B2
10578658 Dunn Mar 2020 B2
10586508 Dunn Mar 2020 B2
10593255 Schuch et al. Mar 2020 B2
10607520 Schuch et al. Mar 2020 B2
10782276 Dunn et al. Sep 2020 B2
20020009978 Dukach et al. Jan 2002 A1
20020020090 Sanders Feb 2002 A1
20020050974 Rai et al. May 2002 A1
20020065046 Mankins et al. May 2002 A1
20020084891 Mankins et al. Jul 2002 A1
20020101553 Enomoto et al. Aug 2002 A1
20020112026 Fridman et al. Aug 2002 A1
20020126248 Yoshida Sep 2002 A1
20020154138 Wada et al. Oct 2002 A1
20020164962 Mankins et al. Nov 2002 A1
20020167637 Burke et al. Nov 2002 A1
20020190972 Ven de Van Dec 2002 A1
20030007109 Park Jan 2003 A1
20030088832 Agostinelli et al. May 2003 A1
20030122810 Tsirkel et al. Jul 2003 A1
20030204342 Law et al. Oct 2003 A1
20030214242 Berg-johansen Nov 2003 A1
20030230991 Muthu et al. Dec 2003 A1
20040032382 Cok et al. Feb 2004 A1
20040036622 Dukach et al. Feb 2004 A1
20040036697 Kim et al. Feb 2004 A1
20040036834 Ohnishi et al. Feb 2004 A1
20040113044 Ishiguchi Jun 2004 A1
20040165139 Anderson et al. Aug 2004 A1
20040201547 Takayama Oct 2004 A1
20040243940 Lee et al. Dec 2004 A1
20050012734 Johnson et al. Jan 2005 A1
20050024538 Park et al. Feb 2005 A1
20050043907 Eckel et al. Feb 2005 A1
20050049729 Culbert et al. Mar 2005 A1
20050073518 Bontempi Apr 2005 A1
20050094391 Campbell et al. May 2005 A1
20050127796 Olesen et al. Jun 2005 A1
20050140640 Oh et al. Jun 2005 A1
20050184983 Brabander et al. Aug 2005 A1
20050231457 Yamamoto et al. Oct 2005 A1
20050242741 Shiota et al. Nov 2005 A1
20060007107 Ferguson Jan 2006 A1
20060022616 Furukawa et al. Feb 2006 A1
20060038511 Tagawa Feb 2006 A1
20060049533 Kamoshita Mar 2006 A1
20060087521 Chu et al. Apr 2006 A1
20060125773 Ichikawa et al. Jun 2006 A1
20060130501 Singh et al. Jun 2006 A1
20060197474 Olsen Sep 2006 A1
20060197735 Vuong et al. Sep 2006 A1
20060214904 Kimura et al. Sep 2006 A1
20060215044 Masuda et al. Sep 2006 A1
20060220571 Howell et al. Oct 2006 A1
20060238531 Wang Oct 2006 A1
20060244702 Yamazaki et al. Nov 2006 A1
20070013828 Cho et al. Jan 2007 A1
20070047808 Choe et al. Mar 2007 A1
20070152949 Sakai Jul 2007 A1
20070153117 Lin et al. Jul 2007 A1
20070171647 Artwohl et al. Jul 2007 A1
20070173297 Cho et al. Jul 2007 A1
20070200513 Ha et al. Aug 2007 A1
20070222730 Kao et al. Sep 2007 A1
20070230167 McMahon et al. Oct 2007 A1
20070242153 Tang et al. Oct 2007 A1
20070247594 Tanaka Oct 2007 A1
20070268234 Wakabayashi et al. Nov 2007 A1
20070268241 Nitta et al. Nov 2007 A1
20070273624 Geelen Nov 2007 A1
20070279369 Yao et al. Dec 2007 A1
20070291198 Shen Dec 2007 A1
20070297163 Kim et al. Dec 2007 A1
20070297172 Furukawa et al. Dec 2007 A1
20080019147 Erchak et al. Jan 2008 A1
20080055297 Park Mar 2008 A1
20080074382 Lee et al. Mar 2008 A1
20080078921 Yang et al. Apr 2008 A1
20080084166 Tsai Apr 2008 A1
20080111958 Kleverman et al. May 2008 A1
20080136770 Peker et al. Jun 2008 A1
20080143187 Hoekstra et al. Jun 2008 A1
20080151082 Chan Jun 2008 A1
20080165203 Pantfoerder Jul 2008 A1
20080170031 Kuo Jul 2008 A1
20080176345 Yu et al. Jul 2008 A1
20080185976 Dickey et al. Aug 2008 A1
20080204375 Shin et al. Aug 2008 A1
20080218501 Diamond Sep 2008 A1
20080224892 Bogolea et al. Sep 2008 A1
20080246871 Kupper et al. Oct 2008 A1
20080259198 Chen et al. Oct 2008 A1
20080266554 Sekine et al. Oct 2008 A1
20080278099 Bergfors et al. Nov 2008 A1
20080278100 Hwang Nov 2008 A1
20080303918 Keithley Dec 2008 A1
20090009997 Sanfilippo et al. Jan 2009 A1
20090033612 Roberts et al. Feb 2009 A1
20090079416 Vinden et al. Mar 2009 A1
20090085859 Song Apr 2009 A1
20090091634 Kennedy et al. Apr 2009 A1
20090104989 Williams et al. Apr 2009 A1
20090109129 Cheong et al. Apr 2009 A1
20090135167 Sakai et al. May 2009 A1
20090152445 Gardner, Jr. Jun 2009 A1
20090278766 Sako et al. Nov 2009 A1
20090284457 Botzas et al. Nov 2009 A1
20090289968 Yoshida Nov 2009 A1
20100033413 Song et al. Feb 2010 A1
20100039366 Hardy Feb 2010 A1
20100039414 Bell Feb 2010 A1
20100039440 Tanaka et al. Feb 2010 A1
20100060861 Medin Mar 2010 A1
20100066484 Hanwright et al. Mar 2010 A1
20100177750 Essinger et al. Jul 2010 A1
20100194725 Yoshida et al. Aug 2010 A1
20100231602 Huang Sep 2010 A1
20100237697 Dunn et al. Sep 2010 A1
20100253660 Hashimoto Oct 2010 A1
20110032285 Yao et al. Feb 2011 A1
20110032489 Kimoto et al. Feb 2011 A1
20110050738 Fujioka et al. Mar 2011 A1
20110058326 Idems et al. Mar 2011 A1
20110074737 Hsieh et al. Mar 2011 A1
20110074803 Kerofsky Mar 2011 A1
20110102630 Rukes May 2011 A1
20110148904 Kotani Jun 2011 A1
20110163691 Dunn Jul 2011 A1
20110175872 Chuang et al. Jul 2011 A1
20110193872 Biernath et al. Aug 2011 A1
20110231676 Atkins et al. Sep 2011 A1
20110260534 Rozman et al. Oct 2011 A1
20110279426 Imamura et al. Nov 2011 A1
20110283199 Schuch et al. Nov 2011 A1
20120075362 Ichioka et al. Mar 2012 A1
20120081279 Greenebaum et al. Apr 2012 A1
20120176420 Liu Jul 2012 A1
20120182278 Ballestad Jul 2012 A1
20120212520 Matsui et al. Aug 2012 A1
20120268436 Chang Oct 2012 A1
20120269382 Kiyohara et al. Oct 2012 A1
20120284547 Culbert et al. Nov 2012 A1
20130027370 Dunn et al. Jan 2013 A1
20130070567 Marzouq Mar 2013 A1
20130098425 Amin et al. Apr 2013 A1
20130113973 Miao May 2013 A1
20130158730 Yasuda et al. Jun 2013 A1
20130278868 Dunn et al. Oct 2013 A1
20130344794 Shaw et al. Dec 2013 A1
20140002747 Macholz Jan 2014 A1
20140132796 Prentice et al. May 2014 A1
20140139116 Reed May 2014 A1
20140184980 Onoue Jul 2014 A1
20140190240 He et al. Jul 2014 A1
20140204452 Branson Jul 2014 A1
20140232709 Dunn et al. Aug 2014 A1
20140293605 Chemel et al. Oct 2014 A1
20140365965 Bray et al. Dec 2014 A1
20150062892 Krames et al. Mar 2015 A1
20150070337 Bell et al. Mar 2015 A1
20150310313 Murayama et al. Oct 2015 A1
20150319882 Dunn et al. Nov 2015 A1
20150346525 Wolf et al. Dec 2015 A1
20150348460 Cox et al. Dec 2015 A1
20160037606 Dunn et al. Apr 2016 A1
20160162297 Shao Jun 2016 A1
20160198545 Dunn et al. Jul 2016 A1
20160334811 Marten Nov 2016 A1
20160335698 Jones et al. Nov 2016 A1
20160338181 Schuch et al. Nov 2016 A1
20160338182 Schuch et al. Nov 2016 A1
20160358530 Schuch et al. Dec 2016 A1
20160358538 Schuch et al. Dec 2016 A1
20170111486 Bowers et al. Apr 2017 A1
20170111520 Bowers et al. Apr 2017 A1
20170168295 Iwami Jun 2017 A1
20180012565 Dunn Jan 2018 A1
20180040297 Dunn et al. Feb 2018 A1
20180042134 Dunn et al. Feb 2018 A1
20180088368 Notoshi et al. Mar 2018 A1
20180132327 Dunn et al. May 2018 A1
20180206316 Schuch et al. Jul 2018 A1
20190237045 Dunn et al. Aug 2019 A1
20190339312 Dunn et al. Nov 2019 A1
20190383778 Dunn et al. Dec 2019 A1
20200150162 Dunn et al. May 2020 A1
20200211505 Dunn Jul 2020 A1
20200378939 Dunn et al. Dec 2020 A1
Foreign Referenced Citations (66)
Number Date Country
2010218083 Oct 2016 AU
2016203550 Mar 2018 AU
2016262614 Jan 2019 AU
2016308187 Feb 2020 AU
2754371 Nov 2017 CA
2849902 Feb 2019 CA
2985673 Mar 2021 CA
0313331 Feb 1994 EP
1686777 Aug 2006 EP
2299723 Mar 2011 EP
2401738 Jan 2012 EP
2769376 Aug 2014 EP
2577389 May 2017 EP
3295452 Mar 2018 EP
2401738 May 2018 EP
3338273 Jun 2018 EP
2369730 May 2002 GB
3-153212 Jul 1991 JP
5-18767 Jan 1993 JP
8193727 Jul 1996 JP
8-338981 Dec 1996 JP
11-160727 Jun 1999 JP
2000122575 Apr 2000 JP
2004325629 Nov 2004 JP
2005-148490 Jun 2005 JP
2005265922 Sep 2005 JP
2005-338266 Dec 2005 JP
2006-106345 Apr 2006 JP
2006-145890 Jun 2006 JP
2006318733 Nov 2006 JP
2007003638 Jan 2007 JP
2007322718 Dec 2007 JP
2008-34841 Feb 2008 JP
2008-83290 Apr 2008 JP
2008122695 May 2008 JP
2009031622 Feb 2009 JP
2010-181487 Aug 2010 JP
2010-282109 Dec 2010 JP
2011-59543 Mar 2011 JP
2018-523148 Aug 2018 JP
2018-525650 Sep 2018 JP
10-2006-0016469 Feb 2006 KR
10-0768584 Oct 2007 KR
10-2008-0000144 Jan 2008 KR
10-2008-0013592 Feb 2008 KR
10-2008-0086245 Sep 2008 KR
10-2009-0014903 Feb 2009 KR
10-2010-0019246 Feb 2010 KR
10-2011-0125249 Nov 2011 KR
10-2014-0054747 May 2014 KR
10-1759265 Jul 2017 KR
10-1931733 Dec 2018 KR
10-2047433 Nov 2019 KR
10-2130667 Jun 2020 KR
2008050402 May 2008 WO
2010141739 Dec 2010 WO
2011052331 May 2011 WO
2011130461 Oct 2011 WO
2011150078 Dec 2011 WO
2013044245 Mar 2013 WO
2016183576 Nov 2016 WO
2017031237 Feb 2017 WO
2017210317 Dec 2017 WO
2018009917 Jan 2018 WO
2019241546 Dec 2019 WO
2020081687 Apr 2020 WO
Non-Patent Literature Citations (9)
Entry
Novitsky, T. et al., Design How-To, Driving LEDs versus CCFLs for LCD backlighting, EE Times, Nov. 12, 2007, 6 pages, AspenCore.
Vogler, A. et al., Photochemistry and Beer, Journal of Chemical Education, Jan. 1982, pp. 25-27, vol. 59, No. 1.
Zeeff, T.M. et al., Abstract of EMC analysis of 18″ LCD Monitor, Electromagnetic Compatibility, IEEE International Symposium, Aug. 21-25, 2000, vol. 1, 1 page.
Lee, X., What is Gamma Correction in Images and Videos?, http://xahlee.info/img/what_is_gamma_correction.html, Feb. 24, 2010, 4 pages.
Hoober, S. et al., Designing Mobile Interfaces, 2012, pp. 519-521, O'Reilly Media.
Outdoorlink, Inc., SmartLink Website User Manual, http://smartlink.outdoorlinkinc.com/docs/SmartLinkWebsiteUserManual.pdf, 2017, 33 pages.
Outdoorlink, Inc., SmartLink One, One Relay, http://smartlinkcontrol.com/billboard/one-relay/, retrieved Apr. 17, 2019, 2007-16, 6 pages.
Outdoorlink, Inc., SmartLink One Out of Home Media Controller, 2016, 1 page.
Rouaissia, C., Adding Proximity Detection to a Standard Analog-Resistive Touchscreen, SID 2012 Digest, 2012, 1564-1566, p. 132.
Related Publications (1)
Number Date Country
20210263082 A1 Aug 2021 US
Divisions (1)
Number Date Country
Parent 15972904 May 2018 US
Child 16744318 US
Continuations (1)
Number Date Country
Parent 16744318 Jan 2020 US
Child 17234855 US