The present invention relates to measuring means for determining measurement error factors of a measuring machine which measures toothing tolerances of gearwheels.
Known measuring machines for that purpose measure toothing tolerances of gearwheels by inserting gauging elements, particularly gauging balls, in different tooth gaps of a gearwheel and take measurements from the positions of the inserted elements. Measurements taken from positions of an individual inserted ball permit determination of tooth profile (deviation from a true involute defining profile) and tooth flank line (deviation from rectilinearity for a spur gearwheel or deviation from true helix angle for a helical gearwheel). Measurements taken from the positions or position relationships of two inserted balls permit determination, depending on the ball spacings around the gearwheel, of pitch (index deviation, i.e. differences in the angles between adjacent teeth), concentricity (run-out deviation, i.e. differences in spacing between gearwheel bore centre and a notional circumference) and size (deviations in diameter of a pitch or other notional circle, i.e. differences in the spacing of oppositely positioned, inserted balls measured between mutually remote points for an external toothing or between mutually adjacent points for an internal toothing). Such machines and measuring procedures are well-known and are described in, for example, U.S. Pat. Specification No. 5,546,666.
The machines themselves, however, are subject to measurement error, in particular uncertainty with regard to measuring accuracy. In practice it is known to carry out calibration test measurements on the machine to determine error factors with respect to the quality assessment parameters of tooth profile and tooth flank line. The determined factors can then be taken into account in the processing of measurements performed by the respective machine on test pieces (gearwheels) to be checked. It would be desirable, however, to also be able to conveniently carry out test measurements to determine error factors with respect to the other mentioned parameters of pitch, concentricity and size. In particular, such measurements should be able to be undertaken for helical gearwheels with an external or internal toothing and with an even or an uneven number of teeth.
It is therefore the principal object of the invention to provide measuring means by which measurement error factors of measuring machines, which serve for detecting toothing tolerances of gearwheels, may be readily determined. A subsidiary object is to enable determination of such factors by measuring means with no more than a minimum number of components for the range of error factors to be determined. Yet another subsidiary object is to provide measuring means to enable determination of measurement error factors in relation not only to helical gearwheels, but also to spur gearwheels.
According to the present invention there is provided measuring means for determining measurement error factors of a measuring machine which measures toothing tolerances of gearwheels by inserting two gauging elements in different tooth gaps of a gearwheel and the taking measurements from the positions of the inserted elements, the measuring means comprising a reference master having two first helically extending grooves disposed on one of an external circumference and an internal circumference of the master and representing tooth gaps for respectively receiving the two gauging elements to permit simulated measurements applicable to one of an externally helically toothed and an internally helically toothed gearwheel with an even number of teeth, the first grooves extending in a first helix direction and being arranged on opposite sides of the circumference on the same diameter, and two second helically extending grooves disposed on the same circumference as the first grooves and representing tooth gaps for respectively receiving the two gauging elements to permit simulated measurements applicable to one of an externally helically toothed and an internally helically toothed gearwheel with an uneven number of teeth, the second grooves extending in a second helix direction opposite to the first helix direction and being arranged on opposite sides of the circumference respectively on two diameters including therebetween a predetermined angle equal to half the pitch of the teeth of the uneven number.
The first helix direction may be a righthand helix direction and the second helix direction a lefthand helix direction. Alternatively, the first helix direction can be a lefthand helix direction and the second helix direction a righthand helix direction.
Preferably, the measuring means also comprises a further reference master having a spur toothing extending fully around one of an external circumference and an internal circumference thereof for reception of the gauging elements to permit simulated measurements applicable to one of an externally toothed and an internally toothed gearwheel with a spur toothing.
Embodiments of the present invention will now be more particularly described with reference to the accompanying drawings, in which:
Referring now to the drawings, there is shown in
The master A1 is formed at its external circumference with two first helically extending grooves R1 and R2 which extend in a first helix direction indicated by angle β in FIG. 1A and which are arranged diametrically opposite one another, thus on the same diameter. These first grooves represent tooth gaps of an externally toothed helical gearwheel with an even number of teeth and serve to respectively receive two gauging balls (not shown) to enable a spacing measurement—for measurement error factor determination—to be taken between mutually remote points of the inserted balls.
The master A1 is further formed at the same circumference with two second helically extending grooves L1 and L2 which extend on a second helix direction, opposite to the first direction, indicated by the angle γ in FIG. 1A and which are arranged on opposite sides of the circumference respectively on two diameters D1 and D2 including therebetween a predetermined angle α. These second grooves represent tooth gaps of an externally toothed helical gearwheel with an uneven number of teeth and serve to respectively receive the two balls to again enable a spacing measurement to be taken between mutually remote points of the inserted balls. The angle α corresponds with half the pitch of the teeth of the respective gearwheel toothing.
The first helix direction indicated by the angle β can be a righthanded helix direction and the second helix direction indicated by the angle γ can be a lefthand helix direction. A converse association is equally possible. The two opposite helix directions allow testing and comparison of the accuracy of the machine in opposite directions of rotation.
The measuring means additionally comprises, as shown in
The measurement error factors obtained by test measurements taken from the ball spacings in use of the masters A1 and A2 can be employed to calibrate the machine or a data processing system thereof, for example in conjunction with measurement readings derived during batch testing of gearwheels.
In addition, the measuring means can include two further reference masters B1 and B2, shown in
Number | Date | Country | Kind |
---|---|---|---|
102 57 702 | Dec 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1027418 | Heide | May 1912 | A |
1956812 | Smith | May 1934 | A |
2202638 | Praeg | May 1940 | A |
2656614 | Mahr | Oct 1953 | A |
2697283 | Leuthold | Dec 1954 | A |
3589018 | Thompson et al. | Jun 1971 | A |
3952418 | Akamatsu et al. | Apr 1976 | A |
5134783 | Perry | Aug 1992 | A |
5546666 | Och | Aug 1996 | A |
5901454 | Stadtfeld et al. | May 1999 | A |
6598305 | McKinney et al. | Jul 2003 | B1 |
20020129506 | Han | Sep 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040117998 A1 | Jun 2004 | US |