Multiple workers and/or inefficient steps are typically required in known methods to square a building foundation, driveway, sidewalk, framework, deck, patio or the like. The terms “to square” or “squaring a corner” conventionally refer to providing a right angle (90°) between two sides or edges of a structure that are intended to be perpendicular to one another. For example, in setting a first corner, one worker may remain at the desired juncture point of the two perpendicular sides with an angle tool to maintain a 90° angle, while one or two other workers would extend string and tape measures to the desired distance from the juncture point and then mark the termination point for each side, often by eye. However, this technique is tedious, inaccurate and requires multiple workers. In another method, a 3-4-5 corner technique based on the Pythagorean theorem may be used by a single worker to lay out a right corner using three stakes, string and a tape measure, but again this method is tedious and time consuming. What is needed is a quick, accurate, easy, and efficient measurement tool that can be used by a single worker to square a corner for a structure to be laid.
The foregoing examples of the related art and limitations therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.
The present disclosure relates to a measuring tool. One aspect of the present disclosure is to provide a tool for quickly and accurately squaring a foundation, framework, driveway, deck or the like with only one worker. Another aspect of the present disclosure is to incorporate a simple method for using the measuring tool to square a structure to be laid. A further aspect is to allow components of the measuring tool to separate for conventional use thereof, and readily recouple for use according to the present disclosure. A further aspect is to provide an on-tool calculator for conveniently performing calculations on site, while also protecting against damage by arranging the calculator on a non-exterior facing surface by default. A further aspect is to provide a level and one or more lasers for readily and accurately marking desired points. A further aspect is to locate the center or opposite point along a circle.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tool and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
The measuring tool comprises a top casing and a bottom casing. The top and bottom casings each have an exterior surface and an interface surface, wherein the interface surfaces are configured to be detachably coupled to one another. In some embodiments, one or more magnets are arranged on, or at least sufficiently proximate to, the interface surface of each casing to provide for magnetic coupling of the casings together. The one or more magnets may further be configured for at least one magnetic angle capture of the casings with respect to one another, such that the casing halves are securely attached when they are in a default position (overlapping and not rotated with respect to one another) and again when they are rotated a certain angular degree with respect to one another. The magnetic coupling of the casings may provide a magnetic angle capture when the casings are rotationally offset by 45°, 90°, and/or 180° for example. In other embodiments, the top casing and the bottom casing may be mechanically coupled together, rather than magnetically, and this coupling could also be configured for one or more mechanical angle captures like in the magnetic embodiments. It is also possible to provide for the detachable coupling of the top and bottom casings through a combination of different connection mechanisms.
Each of the top and bottom casings further has a tape measure comprising a measuring tape, a hook tab attached to an end of the measuring tape, and a mechanism for retracting the measuring tape back into the casing. For example, a manual reel may be provided to retract the measuring tape, or the measuring tape may be spring-loaded to automatically retract if a counterforce is not applied. The measuring tapes may also be able to be locked to prevent further extension or retraction when drawn to a desired length during use. The hook tab may be configured to swivel 360° relative to the measuring tape. In some embodiments, a calculator is positioned on one of the interface surfaces of the casings, which may help protect against damage to and unintentional activation of the calculator. The measuring tool may comprise a level and a vertical laser. The level may be provided on the upper exterior surface of the top casing, such that a user can respond to feedback from the level in manipulating the measuring tool into the horizontal plane of the level. The beam of the vertical laser may be arranged perpendicularly downward from the horizontal plane of the level for marking points on the ground. In some embodiments, the measuring tool may further comprise a horizontal laser. The horizontal laser may be configured to project its beam parallel to the horizontal plane of the level. Where the top and bottom casings are configured to couple together in at least a default position and another set position, the laser beam of the horizontal laser may be oriented to symmetrically bisect an angle formed by rotational displacement of the casings when the top casing is rotated relative to the bottom casing from the default position into the other set position, which configuration can be used to identify the opposite point of a circle or half-circle structure from the measuring tool, for example.
A method to square a foundation, framework, driveway, deck or the like using the measuring tool is also disclosed herein. The user selects a first side for squaring and measuring from. The first side may be defined by a preexisting structure or selected by design, but in either case, the user knows the length of the first side and the length of a second side to be arranged at a right angle to the first side. The user then calculates the diagonal using the lengths of the first and second sides, attaches the measuring tapes to each of the two end points of the first side, and tautly draws the measuring tapes to the correct lengths for the diagonal and the second side. The user then accurately marks the juncture point by using the level to position the tool in the horizontal plane and by activating the vertical laser to identify the point on the ground directly thereunder. If the structure is to be square or rectangular (i.e. the user is not mapping out a right triangle), the user may then flip the measurement values of each measuring tape to mark the location of the fourth corner in the same manner to complete the rectangular shape. In such cases, the measuring tape that was used for the length of the diagonal should be adjusted to the length of the second side, and the measuring tape that was used for the length of the second side should be adjusted to the length of the diagonal. This may be accomplished without ever detaching the measuring tapes from the end points of the first side.
In addition to the aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the accompanying drawings and the detailed description forming a part of this specification.
The present disclosure is described in greater detail below with reference to the following figures:
Before further explaining the depicted embodiments, it is to be understood that the invention is not limited in its application to the details of the particular arrangements shown, since the invention is capable of other embodiments. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than limiting. Also, the terminology used herein is for the purposes of description and not limitation.
Each of the casings 110, 120 forms a tape measure comprising an extendable measuring tape 130 coiled within its respective casing, and a hook tab 131 positioned on an end of the measuring tape 130 outside the casing. The measuring tape 130 is provided with distance markings and may be produced of any sufficiently durable and flexible material, such as metal for example. Different lengths of measuring tape (e.g., 10-foot tap, 25-foot tape, 50-foot tape, 100-foot tape, etc.) may be provided within the casings 110, 120 and interchanged depending on the measurement requirements for a specific application. Further, the size of the measuring tool 100 itself could be scaled to accommodate even larger or smaller coils of measuring tape 130 if necessary. Since the measuring tapes 130 may be arranged horizontally parallel to one another within their respective casings 110, 120 and adjacent to one another along the vertical axis of the measuring tool 100 (see
In the depicted embodiment, the tape measure further comprises a reel 132 for retracting an extended measuring tape 130 back into the casing 110, 120. In a stored position, the handle of the reel 132 may be arranged within a recess formed in the body of the reel 132 on the exterior casing surface 111, 121 (see
As seen in
The measuring tool 100 further comprises a level 150 and a vertical laser 160. The level 150 may be a spirit level, such as a bullseye bubble level or tubular bubble level, positioned on the exterior surface 111 of the casing 110 (see
The measuring tool 100 may further comprise a horizontal laser 170 in certain embodiments (see
Referring to
While a particular arrangement for the positioning of the plurality of magnets 180 on the interface surfaces 112, 122 is depicted in
It should further be appreciated that corresponding magnets 180 of the respective casings 110, 120 could both be permanent magnets or, alternatively, only one of the magnets 180 may be a permanent magnet while the other “magnet” of the pair which achieves a magnetic connection therebetween is produced of a ferromagnetic material (the term “magnet” merely used for the convenience of description in that case, but nonetheless referring to and encompassing the ferromagnetic structures of such embodiments).
In other embodiments of a measuring tool according to the present disclosure (not shown), the casings 110, 120 could instead be detachably coupled together, with or without angle capture, by other connection mechanisms. For example, the casings 110, 120 may be mechanically coupled together via snap-fit, latches, pins, etc. The positional arrangement of these mechanical connection structures may be configured to allow for one or more mechanical angle capture points when the casings 110, 120 are rotated to certain positions relative to one other, such as 45°, 90°, and/or 180° from the default position, for example. The detachable coupling of the casings 110, 120 could also be provided by a combination of magnetic and mechanical mechanisms in other embodiments.
As seen in
One or more batteries 190 (see
In certain embodiments (not shown), the exterior surface 121 of the bottom casing 120 may further comprise a bolt sleeve configured to receive a bolt of a tripod. In this way, the measuring tool 100 may be securely mounted on the tripod. When the measuring tool 100 is mounted on the tripod, such that the measuring tool is arranged in the horizontal plane of the level 150, the beams of the lasers 160, 170 will be configured to project directly vertically downward and horizontally outward, respectively. In this way, mounting the measuring tool 100 to a tripod may help accurately pinpoint the juncture of a diagonal and a side of the structure using the vertical laser 160, as described according to the method below, since the user need not simultaneously balance the measuring tool 100 in the horizontal plane of the level 150 while marking the spot on the ground indicated by the vertical laser 160. Likewise, a user may activate the horizontal laser 170 to pinpoint locations within the same horizontal plane, and accurately mark such locations without requiring another person's assistance. In some embodiments, at least one of the exterior surfaces 111, 121 of the casings 110, 120 may also have a hook, clasp, or similar connection structure for attachment to a belt or strap (e.g., a knee strap) worn by a user. For example, the hook, clasp, or similar connection structure could be provided on the rear side of the casing 110, 120 opposite to where the measuring tapes 130 exit the measuring tool 100. In this way, the measuring tool 100 may be readily placed and stored on the user's belt or strap when not in use. Moreover, the measuring tool 100 could be connected to the belt or strap for use in a method according to the present disclosure as described below, thereby freeing the user's hands to carry other tools and accomplish other tasks at the same time.
In a following step, the user then simply moves the measuring tool 100, which draws out the measuring tapes 130, until one of the measuring tapes 130 indicates the calculated distance for diagonal 503 and the other measuring tape 130 indicates the desired distance for the second side 502. The user may pull the measuring tapes 130 taut to ensure that the measuring tool 100 is positioned over the correct location, i.e., so slack in the tapes 130 does not produce error. The user may then adjust the measuring tool 100 until the level 150 shows alignment with the horizontal plane, and activate the vertical laser 160 to identify exactly where on the ground to mark the juncture of the second side 502 and the diagonal 503 (see
Accordingly, a method of using a measuring tool to provide a right angle between a first side and a second side of a structure to be laid, the first side having a first side length and the second side having a second side length, may comprise the steps of:
Further still, a method may comprise the additional steps of:
In the previous example, the user already knew the desired distances of the perpendicular sides 501, 502 and the angle therebetween (90°). If the user instead knows the lengths of the diagonal 503 and only one of these sides, the length of the other side may be readily calculated using the same method through rearrangement of the Pythagorean theorem equation (a2+b2=c2). Further, if the user knows the desired values for certain sides and angles therebetween, even if not 90°, the corresponding lengths may be calculated via basic trigonometry (e.g., law of cosines, law of sines). In this way, the tool calculator 140 may be specifically configured for easier input to find the missing sides on-site. In other applications, no calculations may be necessary at all, as in the case where a user wants to stake out an equilateral triangle, since the distance between the secured hook tabs is known and the user can simply pull both measuring tapes to that distance. Accordingly, the present disclosure is not necessarily limited to marking out squares, rectangles, or right triangles, since the measuring tool 100 is capable of designating a wide variety of different structural shapes depending on the skill and needs of the user.
Turning to
While a number of aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations therefore. It is therefore intended that the following appended claims hereinafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations, which are within their true spirit and scope. Each embodiment described herein has numerous equivalents.
The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by exemplary embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims. Whenever a range is given in the specification, all intermediate ranges and subranges, as well as all individual values included in the ranges given are intended to be included in the disclosure. When a Markush group or other grouping is used herein, all individual members of the group and all combinations and sub-combinations possible of the group are intended to be individually included in the disclosure.
In general, the terms and phrases used herein have their art-recognized meaning, which can be found by reference to standard texts, journal references and contexts known to those skilled in the art. The above definitions are provided to clarify their specific use in the context of the invention.
This application claims the benefit of U.S. provisional patent application Ser. No. 62/488,216 filed Apr. 21, 2017, which is incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4438538 | Larsen | Mar 1984 | A |
4506446 | Mitchell | Mar 1985 | A |
4506451 | Hiltz | Mar 1985 | A |
4700489 | Vasile | Oct 1987 | A |
5230159 | Lipsey | Jul 1993 | A |
5430952 | Betts | Jul 1995 | A |
5594993 | Tager et al. | Jan 1997 | A |
5894675 | Cericola | Apr 1999 | A |
6222625 | Johnston | Apr 2001 | B1 |
6230416 | Trigilio | May 2001 | B1 |
6338204 | Howle | Jan 2002 | B1 |
6388204 | Howle | Jan 2002 | B1 |
6581296 | Ponce | Jun 2003 | B2 |
D488729 | Golaszewski et al. | Apr 2004 | S |
6789329 | Hester | Sep 2004 | B1 |
6796046 | May | Sep 2004 | B1 |
6928029 | Rickman | Aug 2005 | B2 |
7024791 | Marshall et al. | Apr 2006 | B2 |
7174655 | Gibbons | Feb 2007 | B1 |
7260899 | Jones | Aug 2007 | B2 |
7299565 | Marshall et al. | Nov 2007 | B2 |
7334344 | Scarborough | Feb 2008 | B2 |
7430810 | Sergeyenko et al. | Oct 2008 | B2 |
7549235 | Alders | Jun 2009 | B2 |
20030000099 | Wang | Jan 2003 | A1 |
20030110656 | Scarborough | Jun 2003 | A1 |
20050028396 | Stauffer et al. | Feb 2005 | A1 |
20120036727 | McCarthy | Feb 2012 | A1 |
20120042527 | Olsen | Feb 2012 | A1 |
20130167387 | Lueck | Jul 2013 | A1 |
20140237833 | Schubert | Aug 2014 | A1 |
20150204666 | Hill | Jul 2015 | A1 |
20180120080 | Park | May 2018 | A1 |
20190063921 | George | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
2003052343 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
62488216 | Apr 2017 | US |