The present disclosure is related to paperboard storage trays and methods of making same. In particular, this disclosure is related to disposable meat storage trays that are shaped to resist edge wicking which causes flange failure/deformation under the compressive forces of plastic shrink wrap, and to dies for making the disposable meat storage trays.
Uncooked meats, for purposes of this disclosure, include beef, chicken, pork, and even fish are sold in virtually every supermarket or grocery store in the United States. Typically, these meats are packaged and sold in clear plastic-wrapped foam meat trays and displayed in the meat case at the supermarket or grocery store. Specifically, regarding the meat trays, they are typically made of expanded polystyrene foam. These polystyrene meat trays are inexpensive, but may have recyclability issues not unlike previously used polystyrene foam hamburger clamshells. Polystyrene foam hamburger clamshells have generally been replaced with paperboard or cardboard clamshells.
Indeed, cardboard or paperboard materials are now commonly used for fast food burger clamshells, paper plates, trays, containers, etc. These paper plates, trays, and containers are typically made by stamping either sheets or webs of cardboard or paperboard between multiple dies to form the paperboard into the desired shape. In other instances, the paperboard or cardboard is folded into shape. Cardboard or paperboard, however, cannot be used as a meat tray to store and display at the supermarket because of moisture and time.
Uncooked meats of every variety have the common characteristic of being moist. Undoubtedly, this moisture will wick up the edges of any would-be paperboard or cardboard alternative meat tray. This is despite the fact that, typically, plates, trays, and containers have coated surfaces that work well for holding moist materials such as food. Disposable and recyclable paper plates, trays, and containers have been developed with different poly coatings that make their surfaces water resistant. The paperboard may have a surface coating that works well to support moist meat in a grocery case for often days or even longer. The vulnerability of any poly coated paperboard plate, tray, or container, however, is its edges. When the poly coated paperboard is formed and cut to shape, the edge or rim of the resulting paperboard container is exposed. The poly coating is not present at the container's edge or rim. It is common knowledge that paperboard material is very susceptible to degradation in the presence of moisture. This is where time becomes a factor. Even if not immediately, moisture will migrate to the edges of any paperboard or cardboard alternative meat tray and begin to wick. Eventually, as the moisture wicks into the body of the paperboard or cardboard, it will begin breaking down.
Because moist meat will be stored in a grocery case for days or longer, as well as being moved around to different orientations during stocking and purchasing, it is very likely moisture from the meat will come into contact with the edge of a conventionally shaped paperboard tray or container. Even the exterior poly wrapping that typically surrounds the uncooked meat in the foam tray will not prevent liquid from migrating to the edge or rim of a conventional cardboard or paperboard tray.
Another problem with replacing polystyrene with paperboard is not only edge wicking, but also pricing. The more elaborate the attempt is to isolate the exposed edge or rim of the liquid of uncooked meat, the more the solution will cost. The complexity and cost of the dies used, as well as the time to make the tray, inherent difficulty in forming a tray with a rolled or wipe-down flange (i.e., production jam-ups do not clear themselves out), increased die maintenance, and increased forming stress on the paperboard translates into higher cost. To make a viable alternative paperboard meat tray to polystyrene, pennies count. The tray has to be manufacturable quickly and must be as inexpensive (i.e., simple) as possible. Otherwise, it may not be a reasonable alternative for polystyrene foam meat trays. As such, the dies should be as simple as possible and have as few parts as necessary to produce the meat tray.
Accordingly, an illustrative embodiment of the present disclosure provides a meat tray sized and shaped to support raw meat. The meat tray is composed of a paperboard material. The meat tray comprises: a generally planar base extending to a sidewall that extends transversely from the planar base to an angled outer transition which forms an outer periphery of a tray cavity; wherein a reference plane extends from the angled outer transition of the meat tray opposite the generally planar base; and a rim of the meat tray is located at a terminus of the angled outer transition and extends away from the cavity. The rim includes a planar transition that extends from the angled outer transition and from the cavity. An outer arcuate rim portion extends from the planar transition. The outer arcuate rim portion curves away from the reference plane. A planar flange extends from the outer arcuate rim portion and terminates at an edge.
In the above and other illustrative embodiments, the meat tray may further comprise: the planar transition having a span extending from angled outer transition of about 0.001 inches to about 1 inch; the angled outer transition has a radius and the radius of the angled outer transition divided by a height of the meat tray is equal to or greater than about 0; the outer rim has a radius and the radius of the outer rim divided by a height of the meat tray is equal to or greater than about 0; a transition located between the generally planar base and the sidewall; the transition is located between the generally planar base and the sidewall and has a radius, wherein the radius of the transition divided by a height of the meat tray is equal to or greater than about 0; the outer rim has a length, wherein the length of the outer rim divided by a height of the meat tray is less than or equal about 1; the planar flange has a length and the length of the planar flange divided by length of the outer rim is less than about 1; the sidewall may be angled with respect to a line about perpendicular to the generally planar base within a range of about 5° to about 80°; the planar flange may be angled with respect to a line about perpendicular to the generally planar base within a range of about 0° to about 80°; and the edge faces away from the reference plane.
Another illustrative embodiment of the present disclosure provides a meat tray sized and shaped to support raw meat. The meat tray is composed of a paperboard material. The meat tray comprises: a generally planar base extending to a sidewall that extends transversely from the planar base to an angled outer transition which forms an outer periphery of a tray cavity; a rim of the meat tray is located at a terminus of the angled outer transition and extends away from the cavity; wherein the rim includes an outer arcuate rim portion that extends and curves away from the outer transition; and a planar flange extending from the outer arcuate rim portion and terminates at an edge; wherein the edge faces downwardly with respect to the outer arcuate rim portion.
In the above and other illustrative embodiments, the meat tray may further comprise: a planar transition that extends from the angled outer transition and from the cavity; the outer arcuate rim portion extends from the planar transition; a reference plane that extends from the angled outer transition of the meat tray opposite the generally planar base; the outer arcuate rim portion curves away from the reference plane; the angled outer transition has a radius and the radius of the angled outer transition divided by a height of the meat tray is equal to or greater than about 0; the outer rim has a radius and the radius of the outer rim divided by a height of the meat tray is equal to or greater than about 0; a transition is located between the generally planar base and the sidewall; the outer rim has a length, and wherein the length of the outer rim divided by a height of the meat tray 2 is less than or equal about 1; and the planar flange has a length and the length of the planar flange divided by length of the outer rim is less than about 1.
Additional features and advantages of the meat tray will become apparent to those skilled in the art upon consideration of the following detailed descriptions of carrying out the meat tray as presently perceived.
The concepts described in the present disclosure are illustrated by way of example and not by way of limitation in the accompanying figures. For simplicity, and clarity of illustration, elements illustrated in the figures are not necessarily drawn to scale. For example, the dimensions of some elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference labels may be repeated among the figures to indicate corresponding or analogous elements.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates embodiments of the meat tray, and such exemplification is not to be construed as limiting the scope of the meat tray in any manner.
The figures and descriptions provided herein may have been simplified to illustrate aspects that are relevant for a clear understanding of the herein described devices, systems, and methods, while eliminating, for the purpose of clarity, other aspects that may be found in typical devices, systems, and methods. Those of ordinary skill may recognize that other elements and/or operations may be desirable and/or necessary to implement the devices, systems, and methods described herein. Because such elements and operations are well known in the art, and because they do not facilitate a better understanding of the present disclosure, a discussion of such elements and operations may not be provided herein. However, the present disclosure is deemed to inherently include all such elements, variations, and modifications to the described aspects that would be known to those of ordinary skill in the art.
An illustrative embodiment of the present disclosure provides a paperboard or cardboard (for purposes of this disclosure, cardboard and paperboard may be used interchangeably) plate, tray, or container (again, collectively identified for purposes of this disclosure, as “tray”) that provides a curved rim adjacent its periphery that terminates in a plane or flange causing the rim edge to be oriented substantially downward so the surface of the rim edge is directed downward relative to and away from the tray cavity. Adding the plane or flange onto the outer rim reduces the possibility of liquid that originates in the tray cavity to migrate and contact with the edge of the rim. The flange also creates a larger sealing surface in conjunction with the sealing wrap and may also increase sidewall and flange strength. When this tray is used in conjunction with a flexible plastic wrap, a conventional means of sealing meat in a foam tray, surprising and unexpected results have been produced in which moisture from the meat located in the tray cavity does not migrate past the surface of the outer rim and contact the edge of same. The tendency of the plastic wrap to seal against this outer flange appears to prevent moisture migration, protecting the exposed outer edge.
A further illustrative embodiment of the meat tray of the present disclosure includes a stamped paper blank that has a generally planar base (a portion of which may either be flat, domed, arched, or combination and/or variation of same) and bounded at its periphery by a curved or angled base transition portion. This base transition portion extends generally upwardly to an inclined sidewall. Such sidewall may be inclined, acutely, obtusely, or vertically, with respect to the generally planar base or a plane that extends through the planar base. The plane may be a surface configured to support the meat tray such as a countertop, table, or other like supporting surface. At an upper end of the inclined sidewall, opposite the base transition, is a curved or angled outer transition. This outer transition may illustratively form the interior upper edge of the tray. In an illustrative embodiment, extending from the outer transition is a planar transition. This planar transition extends generally parallel to at least a portion of the generally planar base or other plane. It is appreciated that this planar transition extends away from the tray's cavity. Extending from the planar transition, opposite the outer transition, is an outer rim. This outer rim curves downwardly both away from the tray cavity and towards the plane that may support the general planar base of the tray. Extending from that outer rim, opposite the planar transition, is a planar flange. This planar flange forms the outer edge of the tray opposite the outer rim. The outer edge is itself a surface that is the terminus between the inner and outer surfaces of the paperboard that forms the tray.
As the paperboard has a thickness and is cut into a particular shape, the coating on the top and/or bottom surfaces of the paperboard is interrupted at the edge. The paperboard material exposed at this edge is the body of the paperboard. In other words, there is no coating on the edge and, thus, no moisture resistant properties. Indeed, any moisture coming into contact with the paperboard body at this edge will cause the moisture to be absorbed or wicked into the paperboard body. Hence, the edge is kept away from the cavity of the meat tray. The distance the exposed edge is from the cavity, combined with the tendency of the plastic wrap to seal against the outer flange, appears to prevent moisture migration and to protect the exposed outer edge.
In an illustrative embodiment, an approximately 8 15/16 inch wide tray may include an about one-half inch radiused upward extending curved radius for its base transition. The inclined sidewall may extend upward at approximately 120° from the generally planar base, or about 30° from vertical, extending from the generally planar base. The angled outer transition, extending from the inclined sidewall, opposite the curved base transition, may have a radius of about 1/16 inch. The planar transition extending from the angled outer transition may extend about 0.100 inches away from the opening of the cavity and located opposite the general planar base. The outer rim may have an illustrative radius of approximately 5/16 inch. The planar flange extending from the outer rim may have a length of 3/32 inch. In a further illustrative embodiment, the height of the outer rim extending from the planar transition down to the edge of the planar flange may illustratively be about 5/16 inch. The skilled artisan will appreciate that these measurements and dimensions are approximations and only demonstrative of an illustrative embodiment to assist in further understanding the character of the disclosed meat trays. It will be appreciated that the disclosed meat trays may be formed with alternative dimensions yet maintain the characteristics of the meat trays disclosed herein. Such alternative meat trays are contemplated to be within the scope of this disclosure.
Another illustrative embodiment of the present disclosure provides a stamped paperboard blank formed into a paperboard tray having a generally planar base, upwardly extending curved base transition, inclined sidewall, and angled outer transition. This embodiment, in contrast to the prior embodiment, includes an outer rim formed from the angled outer transition, rather than a planar transition located therebetween. In other words, there is no planar transition surface located between the angled outer transition and the outer rim. A planar flange extends from the outer rim, opposite the angled outer transition, forming the outer edge of the tray. In this illustrative embodiment, the dimensions of the curve base transition, inclined sidewall, angled outer transition, outer rim, and planar flange may be similar or the same as that previously discussed with the prior embodiment. It will be appreciated by the skilled artisan upon reading the present disclosure that the meat tray dimensions disclosed herein are illustrative and alternate dimensions may be used instead depending on the need of the tray configuration. Such alternate dimensions are contemplated to be within the scope of the present disclosure.
Another illustrative embodiment of the present disclosure provides a method of thermoforming or press-forming the meat tray. Again, an issue with achieving an actual paperboard meat tray is expense. The more sophisticated or complex the die arrangement and part count, the higher the cost. This inhibits producing a cost-effective paperboard meat tray. An illustrative embodiment of the present disclosure includes a method of making the meat tray using a paperboard press die-set that is simpler in the design than a comparable paperboard press die-set. For example, a wipe-down flange-forming die is composed of a male body supporting a spring-loaded male nose fitted within a draw ring and secondary draw ring which creates the “wipe-down” flange. Secondary draw ring actuating pins are included to support and actuate the secondary draw ring. A spring-loaded ironing ring, supported by the female cavity, sets on the actuated secondary draw ring. A flat paperboard blank is set between the spring-loaded male nose and female cavity to press form the tray shape. The draw ring, in combination with the actuated secondary draw ring and spring-loaded ironing ring, supported by the actuating pins, move to form the tray's rim and fold under the edge to move same away from the inside of the tray that otherwise supports the tray contents. An example of a wipe-down flange forming die is shown in U.S. patent application Ser. No. 15/713,913, entitled “Paperboard Tray With Fold-Over Flange,” filed on Sep. 25, 2017, the disclosure of which is incorporated herein by reference in its entirety.
The illustrative embodiment of the present disclosure dispenses with the need of the actuated secondary draw ring and ironing ring actuating pins. Instead, the die-set of the present disclosure is composed of a male body and spring-loaded male nose fitted within a draw ring. A spring-loaded ironing ring is supported by the draw ring which fits underneath the female cavity. When the female cavity joins with the spring-loaded male nose, a paperboard blank position therebetween forms the paperboard tray shape. Particularly, when the female cavity and spring-loaded nose with male body are drawn together, they press the paperboard blank into the shape of the meat trays having the characteristics previously described. In the illustrative embodiment, the male body forms portions of the inclined sidewall while the spring-loaded male nose, a portion of which being fitted in the male body, illustratively, forms an additional portion of the inclined sidewall along with the curve base transition and generally planar base. When the male body and spring-loaded male nose engage the female cavity, it, along with the draw ring, forms the angled outer transition, planar transition, outer rim, and planar flange. In the alternative embodiment of the meat tray, the die may be modified so the draw ring and female cavity do not form the planar transition, but rather the outer rim and planar flange are formed from the angled outer transition. Without additional structures, such as the actuated secondary draw ring and secondary draw ring actuating pins, using the die structure to form the meat trays is simpler and, thus, less expensive to make and operate.
A top perspective view of an illustrative embodiment of a paperboard meat tray 2 is shown in
Extending from inclined sidewall 10, opposite upward base transition 8, is angled outer transition 12. Adjacent angled outer transition 12, opposite inclined sidewall 10, is an illustrative planar transition 14. This planar transition 14 is an illustrative flat surface surrounding outer periphery 16 of tray cavity 4. Adjacent planar transition 14, located opposite angled outer transition 12, is outer rim 18. It is contemplated that as much of the portions of paperboard meat tray 2 that are either in contact with, adjacent to, or in proximity of the meat, should have coated paperboard surfaces. This helps prevent the possibility of moisture from the meat coming into contact with non-coated surfaces of the paperboard. Additionally, a rim surrounding outer periphery 16 has a utility of creating a grip structure for plastic wrap or other covering over tray cavity 4 to seal the meat therein. Conventionally, even with meat stored in foam trays, both the meat and tray are wrapped in transparent plastic wrap which allows view of the meat contained therein whilst sealing it off from the outside environment. Likewise, paperboard meat tray 2 may be wrapped with similar plastic wrapping to seal the meat from the outside environment as well. Alternatively, a rigid covering may be employed to fit over tray cavity 4 and attached to outer rim 18. The curved rim does two things—increases rigidity of the flange so it can withstand the compressive forces of the plastic shrink-wrap and provides a large smooth shaped surface for the plastic shrink-wrap to seal against as it is stretched over and around the tray. It is further appreciated that the illustrated shape of outer periphery 16 of paperboard meat tray 2 is rectangular. The skilled artisan upon reading the present disclosure will appreciate that this shape is demonstrative as it is a general shape of prior art conventional foam meat trays. The skilled artisan will further appreciate that the shape of the paperboard meat tray 2 may alternatively be round, oval, square, triangular, or irregularly shaped, for example. Meat tray 2 may also be shaped similar to a conventional 3P or other industry standard size foam tray.
Extending downwardly with respect to outer rim 18 and the rest of the portions of paperboard meat tray 2 is planar flange 20. The straight planar surface of planar flange 20 has the effect of directing edge 22 downwardly while outer rim 18 is spaced apart from outer periphery 16 of tray cavity 4. It is appreciated that edge 22 is the outer most structure of the paperboard blank that will form paperboard meat tray 2. This is of particular issue because, although the top and bottom surfaces of the paperboard blank will be coated with a moisture resistant coating, the edge of such blank will not. The net effect is that, although the majority of either side of the paperboard blank will be resistant to moisture, the edge will instead be particularly vulnerable. This is because, paperboard blanks, when cut, create edges that do not include any moisture resistant coating. This means the exposed edge may wick any moisture that it comes in contact with, thereby, degrading the paperboard from the inside, a condition the surface coatings cannot prevent. And again, unexpectedly, the distance the exposed edge is from the cavity, combined with the tendency of the plastic wrap to seal against the outer flange, appears to prevent moisture migration to protect the exposed outer edge.
A side cross-sectional view of paperboard meat tray 2 is shown in
Extending outwardly away from tray cavity 4 at angled outer transition 12 is planar transition 14. The linear surface of the planar transition 14 forms outer rim 18. By extending outer rim 18 away from tray cavity 4, edge 22 is likewise positioned away from tray cavity 4. As previously discussed, planar flange 20 extends between outer rim 18 and edge 22. This increases the distance the exposed edge is from the cavity. The curved surface of rim 18 is also shown directed away from reference plane 21.
Another side cross-sectional view of paperboard meat tray 2 is shown in
In illustrative embodiments, various sizes of the radius identified at 34 for transition 8 are contemplated and may be reflected in a ratio of the radius identified at 34 divided by the height of meat tray 2 indicated by line 56 that are equal to or greater than about 0, where 0 may be a sharp corner intersection with no tangential radius. Likewise, in illustrative embodiments, various sizes of the radius indicated by 46 for angled outer transition 12 may also be reflected in a ratio of the radius indicated by 46 divided by the height of paperboard meat tray 2 indicated by line 56 that are equal to or greater than about 0. Again, 0 may be a sharp corner intersection with no tangential radius. In further illustrative embodiments, various sizes of the radius indicated by 48 for outer rim 18 may be reflected in a ratio of the radius identified at 48 divided by the height of paperboard meat tray 2 identified by line 56 that are equal or greater than about 0. Here, again, 0 may be a sharp corner intersection with no tangential radius. Illustrative heights of outer rim 18 indicated at 50 may be reflected in a ratio of the height indicated by 50 divided by the height of meat tray 2 indicated by 56 that are less than or equal about 1. Planar flange 20 may be any of a variety of illustrative lengths as indicated at 52 that are reflected in a ratio of the length identified by 52 divided by heights of outer rim 18 indicated at 50 that are less than about 1. Additionally, the top of meat tray 2 is identified by reference plane 21.
A partially cutaway detail perspective view of a portion of paperboard meat tray 2 is shown in
A top view of meat tray 2 is the shown in
Another illustrative embodiment of the present disclosure provides a paperboard paperboard meat tray 72, as shown in
The side cutaway view of paperboard meat tray 72, shown in
The view in
The cross-sectional end view of meat tray 72 is shown in
The top view of meat tray 72 with planar base 76, upward base transition 78, and inclined sidewall 80, is shown in
Another component of making a paperboard meat tray replacement to conventional foam meat trays is that it will be inexpensive. A component of the expense of making paperboard plates, trays, containers, etc. is their manufacturing process. A component of the manufacturing process is the die-set employed to stamp the paperboard into a tray shape. No paperboard-based meat tray can serve as a replacement if it is not inexpensive enough to compete price-wise with conventional foam trays. As such, an illustrative embodiment of the present disclosure marries both the structural characteristics that prevent moisture from wicking between the surfaces of the paperboard tray while at the same time that tray being made by a die set that includes fewer components and, thus, being simpler than prior tray stamping die sets so as to be less expensive.
Accordingly, another illustrative embodiment of the present disclosure provides a die set that, when used by a press, forms paperboard meat tray 2 (or paperboard meat tray 72), yet using a simpler die set arrangement. The prior art die set, as previously discussed, is composed of a male body supporting a spring-loaded male nose fitted within a draw ring and actuated secondary draw ring. Secondary draw ring actuating pins are included to support the actuated secondary draw ring. The spring-loaded ironing ring supported by the female cavity sets on the actuated secondary draw ring. The draw ring, in combination with the actuated secondary draw ring and spring-loaded ironing rings, supported by the actuating pins, move to form the tray's rim and fold under the edge to move same away from the inside of the tray that otherwise supports the tray contents.
Alternatively, a perspective exploded view of a die set assembly 102, located between upper press plate 104, and lower press plate 106, and illustratively between draw ring air cylinders 108 and 110, is shown in
A cross-sectional view of die set assembly 102, positioned in its pre-meat tray forming position, is shown in
A cavity 130 is formed within female cavity section 114. Cavity 130 includes planar base surface portion 132, upward-based transition portion 134, and inclined sidewall portion 136, which form the shape of the corresponding planar base 6, upward-based transition 8, and inclined sidewall 10 of meat tray 2 shown in
In the view shown in
The view shown in
The view of upper press plate 104 and lower press plate 106 moved further in directions 126 and 124, respectively, as shown in
It will be appreciated by the skilled artisan upon reading this disclosure that curved collar 142, of draw ring 116, and curved periphery 144 of female cavity section 114, can be modified so as to omit the planar transition, such as planar transition 14, between angled outer transition 12 and outer rim 18 of meat tray 2. It is further appreciated that these structures identified herein with respect to die set assembly 102 may be modified to change the profile as needed to create alternate embodiments of a meat tray as previously discussed herein.
In the drawings, some structural or method features may be shown in specific arrangements and/or orderings. However, it should be appreciated that such specific arrangements and/or orderings may not be required. Rather, in some embodiments, such features may be arranged in a different manner and/or order than shown in the illustrative figures. Additionally, the inclusion of a structural or method feature in a particular figure is not meant to imply that such feature is required in all embodiments and, in some embodiments, may not be included or may be combined with other features. It should also be appreciated that, to the extent any subject matter disclosed in this non-provisional Patent Application differs from the priority Application, the disclosure from this non-provisional Patent Application controls.
The present application relates to and claims priority to U.S. Provisional Patent Application, Ser. No. 62/795,240, filed on Jan. 22, 2019. The subject matter disclosed in that provisional application is hereby expressly incorporated into the present application.
Number | Name | Date | Kind |
---|---|---|---|
257627 | Van Valkenburg | May 1882 | A |
1965138 | Dunlap | Jul 1934 | A |
2170040 | Stuart | Aug 1939 | A |
2304278 | Poster | Dec 1942 | A |
3040949 | Foote | Jun 1962 | A |
3536248 | Gurlen et al. | Oct 1970 | A |
3834606 | Andersson | Sep 1974 | A |
4014496 | Christensson | Mar 1977 | A |
4114797 | Manizza | Sep 1978 | A |
4199097 | Christensson | Apr 1980 | A |
4295839 | Baker et al. | Oct 1981 | A |
4343428 | Persson | Aug 1982 | A |
4631046 | Kennedy | Dec 1986 | A |
5323956 | Marcontell | Jun 1994 | A |
5326020 | Cheshire | Jul 1994 | A |
5609293 | Wu et al. | Mar 1997 | A |
RE36158 | Forbes, Jr. | Mar 1999 | E |
6093460 | Iwaya | Jul 2000 | A |
6500559 | Hofmeister | Dec 2002 | B2 |
6695138 | Colombo | Feb 2004 | B1 |
6715630 | Littlejohn | Apr 2004 | B2 |
D603255 | King | Nov 2009 | S |
7862318 | Middleton et al. | Jan 2011 | B2 |
8011568 | Maeaettae et al. | Sep 2011 | B2 |
8177119 | Littlejohn | May 2012 | B2 |
8464871 | Wnek | Jun 2013 | B2 |
8480551 | Wnek | Jul 2013 | B2 |
8651366 | Littlejohn et al. | Feb 2014 | B2 |
8708148 | Wnek et al. | Apr 2014 | B2 |
8721321 | Middleton et al. | May 2014 | B2 |
8777010 | Wnek | Jul 2014 | B2 |
8858858 | Middleton et al. | Oct 2014 | B2 |
8883237 | Sanders | Nov 2014 | B2 |
9011308 | Treccani et al. | Apr 2015 | B2 |
9016497 | Karhu et al. | Apr 2015 | B2 |
9132612 | Bohrer | Sep 2015 | B2 |
9187866 | Sunblad et al. | Nov 2015 | B2 |
9655461 | Littlejohn | May 2017 | B2 |
RE47165 | Littlejohn | Dec 2018 | E |
10647467 | Tibbets | May 2020 | B1 |
20050109653 | Wnek et al. | May 2005 | A1 |
20100193578 | Sanders | Aug 2010 | A1 |
20100264202 | Littlejohn | Oct 2010 | A1 |
20120118880 | Wnek | May 2012 | A1 |
20140191024 | Wnek et al. | Jul 2014 | A1 |
20140374472 | Treccani et al. | Dec 2014 | A1 |
Entry |
---|
Peerless Machine & Tool Corp., 150mm x 198mm x 45mm Tray Baumgarten Grafica LTDA, Dated Jun. 28, 1999. |
Peerless Machine & Tool Corp., 3G Meat Tray, Dated Apr. 7, 2010. |
Peerless Machine & Tool Corp., #2P x 1.000 DP Meat Tray, Dated Nov. 24, 2014. |
Peerless Machine & Tool Corp., 5 13/16″ x 8 7/16 x 21/32″ Deed Seafood Lovers Tray For Champion International, Mar. 27, 1989. |
Peerless Machine & Tool Corp., 10″ x 11/16″ DP. Octagonal Plate, May 4, 1995. |
Peerless Machine & Tool Corp., 7″ Octagon x 17/32″ Deep for Duni Corp., Jan. 15, 1996. |
Peerless Machine & Tool Corp., 6⅞″ Dia. x″ Deep Ultra Style Plate for Converting Inc., Jan. 10, 1997. |
Peerless Machine & Tool Corp., 6 15/32″ Dia. x 1½″ DP. Ultra Bowl for Hallmark, Aug. 9, 2004. |
Peerless Machine & Tool Corp., 7 9/64″ x 2132″ DP. Square Ultra Plate for Hallmark, Apr. 19, 2004. |
Peerless Machine & Tool Corp., 7 5/16″ x 9 x ¾″ DP. Spider-Man Plate, Jun. 12, 2006. |
Peerless Machine & Tool Corp., 8 21/32″ x 8 21/32 x ¾″ DP. Darth Vader Plate, Jun. 12, 2006. |
Peerless Machine & Tool Corp., 9″ x ⅜ x ¾″ DP. Pirates Of The Caribbean For Hallmark, Jan. 20, 2006. |
Peerless Machine & Tool Corp., 7½″ Pan Marker Plate, Feb. 15, 2012. |
Peerless Machine & Tool Corp., 9 25/32″ x 6 5/16 x ¾″ Deep Oval Plate, Feb. 24, 2012. |
Peerless Machine & Tool Corp., Proposed Tray, Jul. 14, 1998. |
Peerless Machine & Tool Corp., 10¼″ x 25/32″ Deep 3-Compartment Round, Dec. 10, 1992. |
Peerless Machine & Tool Corp., 10½″ Dia. xNop 1½″ DP, Nov. 29, 1989. |
Peerless Machine & Tool Corp., 242.45mm x 18.58mm Deep 3-Compartment Round, Feb. 11, 1994. |
Peerless Machine & Tool Corp., 7¾ Dia. x 1 7/6 DP. Fluted Bowl (52 Flutes) for Champion, Oct. 31, 1996. |
Peerless Machine & Tool Corp., 150mm x 198mm x 45mm Tray, Jun. 28, 1999. |
Peerless Machine & Tool Corp., Paper Plate Concept, May 5, 2005. |
Peerless Machine & Tool Corp., 170.0mm Dia. x 13.0mm Deep Plate, Aug. 18, 2000. |
Peerless Machine & Tool Corp., 5 13/16″ Dia. x 1½″ DP. Ultra Style Bowl, Aug. 21, 2009. |
Peerless Machine & Tool Corp., 325.5mm x 34mm DP. Pizza Tray, Mar. 8, 2018. |
Peerless Machine & Tool Corp., Hallmark 7″ Heart Tray, Aug. 2, 2004. |
Peerless Machine & Tool Corp., Hallmark 9″ Heart Tray, Jul. 15, 2004. |
Peerless Machine & Tool Corp., 9″ Ultra Plate for Hallmark, Nov. 24, 2003. |
Peerless Machine & Tool Corp., 6⅞″ Dia. 33/64 DP. Ultra Plate for Hallmark, Mar. 15, 2004. |
Peerless Machine & Tool Corp., 9 17/64″ x ¾″ DP. Square Ultra Plate for Hallmark, Apr. 19, 2004. |
Peerless Machine & Tool Corp., Face Tray 174.4mm x 191.5mm x 13.2mm DP. For Regina, Aug. 11, 2005. |
Peerless Machine & Tool Corp., Superman Shield Plate (Dinner Size) For Hallmark, Jan. 19, 2006. |
Peerless Machine & Tool Corp., Number One Plate, Mar. 9, 2006. |
Peerless Machine & Tool Corp., Ultra Shape Plate ø222.2mm, Aug. 30, 2001. |
Peerless Machine & Tool Corp., Product Drawing For Two Proposals on 11½″ Plat for Deco Paper Products Inc., May 23, 1978. |
Peerless Machine & Tool Corporation, 150mm X 198mm X 45mm Tray Baumgarten Grafica LTDA, Jun. 28, 1999. |
Peerless Machine & Tool Corporation, 3G Meat Tray, Apr. 7, 2010. |
Peerless Machine & Tool Corporation, #2P X 1.000 DP Meat Tray, Nov. 24, 2014. |
Number | Date | Country | |
---|---|---|---|
20200231325 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62795240 | Jan 2019 | US |