The present invention refers to mechanical actuators comprising ball nuts and bearings and a process of manufacturing of mechanical actuators.
Conventional ball nuts 100 as shown in
The use of a nut as fixing means in ball nuts is a space consuming technique that increases the manufacturing cost, time and complexity.
The present invention aims to solve at least the aforementioned limitations given by the use of nuts as fixing means in ball nuts.
The present invention relates to a mechanical actuator for the automotive industry. The mechanical actuator comprises a ball nut that does not require the use of a nut as fixing means for fixing a bearing. Consequently, a threaded surface suitable for receiving a nut and located on the outer part of the ball nut is not required anymore and hence, the manufacturing process of the ball nut is eased and accelerated, and the material cost is reduced.
In a first aspect, the present invention relates to a mechanical actuator for vehicles. The mechanical actuator comprises a ball nut. The ball nut comprises a hardened inner part that defines a ball track for allocating a rack and recirculating balls acting as a bearing. Furthermore, the ball nut comprises a malleable outer part comprising a riveting area with a riveting edge. The mechanical actuator further comprises a bearing riveted with the riveting edge to the riveting area of the outer part of the ball nut.
In some examples, the mechanical actuator further comprises a rack and a plurality of balls for the ball track allocated in the inner part of the ball nut.
In a second aspect, the present invention relates to a manufacturing process of a mechanical actuator for vehicles, the process comprises obtaining a ball nut comprising an inner part defining a ball track and a malleable outer part comprising a riveting area with a riveting edge. The process comprises performing induction hardening of the inner part of the ball nut to obtain a hardened inner part. The process further comprises riveting a bearing with the riveting edge to the riveting area of the outer part of the ball nut to obtain the mechanical actuator.
These and other objects, advantages and features of the invention will become apparent upon review of the following specification in conjunction with the drawings.
For a better understanding the above explanation and for the sole purpose of providing an example, some non-limiting drawings are included that schematically depict a practical embodiment.
The mechanical actuator comprises a ball nut 210 which comprises a hardened inner part 220 that defines a ball track. In this example, the material of the ball nut 210 is carbon steel. Other materials can be used in further examples. The inner part 220 is hardened by performing induction hardening. Hardening is needed for the structure requirements of the inner part 200, where circulating balls are acting as a bearing for a rack adapted to be allocated in the inner part 200 of the ball nut 210. Induction hardening permits a hardening of selected parts of the ball nut 210 while keeping other parts unhardened and hence, more malleable and ductile.
Furthermore, the ball nut 210 comprises a malleable outer part 230. The malleable outer part 230 comprises a riveting area 230a with a riveting edge 230b. As mentioned, the induction hardening is only performed to the inner part 220 of the ball nut 210 so the outer part 230 having the riveting area 230a and the riveting edge 230b remains ductile, and hence; as shown in the zoom of
As shown in
Furthermore, in further examples not shown, the mechanical actuator 200 comprises, in the inner part 220, a rack and a plurality of balls for the ball track of the hardened inner part wherein induction hardening is performed.
It will be appreciated that the invention is not limited to the embodiment(s) described herein, but can be amended or modified without departing from the scope of the present invention, which his intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law including the doctrine of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
20382853.8 | Sep 2020 | EP | regional |