Mechanical anal incontinence

Information

  • Patent Grant
  • 8734318
  • Patent Number
    8,734,318
  • Date Filed
    Wednesday, June 28, 2006
    18 years ago
  • Date Issued
    Tuesday, May 27, 2014
    10 years ago
Abstract
An anal incontinence treatment apparatus comprises an adjustable restriction device implanted in a patient, who suffers from anal incontinence. The device engages a portion of the colon or rectum of the patient to restrict the fecal passageway. An adjustment device mechanically adjusts the restriction on device to restrict or release the fecal passageway, i.e. to normally close the fecal passageway and open the fecal passageway when the patient wants to relieve himself or herself.
Description
BACKGROUND OF THE INVENTION

The present invention relates to an anal incontinence treatment apparatus and method. More specifically, the invention relates to an anal incontinence treatment apparatus and method for surgical application in the body of an anal incontinence patient for restricting the colon or rectum of a patient.


Anal incontinence is a widespread problem. Many different solutions to this problem have been tried. Several kinds of sphincter plastic surgery are used today to remedy anal incontinence. There is a prior manually operated sphincter system in an initial clinical trial phase with the hydraulic sphincter system connected to a reservoir placed in the scrotum. Disadvantage of this system is that hard fibrosis created around the reservoir over time may cause malfunction of pumping components. Thus, the created fibrosis will sooner or later become a hard fibrotic layer which may make it difficult to pump the reservoir. Yet a further disadvantage is that the use of hydraulic fluid always entails a risk of fluid leaking from the prosthetis. Furthermore, it is a rather complicated task to mechanically manually pump the reservoir when defaecation is needed. U.S. Pat. No. 5,593,443 discloses hydraulic anal sphincter under both reflex and voluntary control. An inflatable artificial sphincter with the pump system in scrotum is disclosed in U.S. Pat. No. 4,222,377.


SUMMARY OF THE INVENTION

A prime object of the present invention is to provide an anal incontinence treatment apparatus and method in which the risk of liquid leakage within the patient's body is substantially reduced or completely eliminated.


A further object of the invention is to provide an anal incontinence treatment apparatus and method, which does not require a manual manipulation of a combined reservoir a pump mechanism in the scrotum or labia majora region of the patient. Accordingly, the present invention provides an anal incontinence treatment apparatus, comprising:


an adjustable restriction device implanted in a patient, who suffers from anal incontinence, and engaging a portion of the colon or rectum of the patient to restrict the fecal passage-way therein, and an adjustment device which mechanically adjusts the restriction device to restrict or release the fecal passageway.


The adjustment device may be non-manually operated, i.e. the adjustment may be operated by any powered means, not manipulated by touching the skin of the patient. Preferably, the adjustment device adjusts the restriction device in non-invasive manner.


The adjustment device may adjust the restriction device in a non-magnetic manner, i.e. magnetic forces may not be involved when adjusting the restriction device. Furthermore, as opposed to prior art anal incontinence treatment devices the adjustment device of the invention is not operated by manual forces, such as by manually compressing a fluid containing balloon implanted in the scrotum. Instead the apparatus of the invention may further comprise a powered operation device for operating the adjustment device.


In the various embodiments hereinafter described the restriction device generally forms an at least substantially closed loop. However, the restriction device may take a variety of different shapes, such as the shape of a square, rectangle or ellipse. The substantially closed loop could for example be totally flat, i.e. thin as seen in the radial direction. The shape of restriction device may also be changed during use, by rotation or movements of the restriction device in any direction.


A physical lumen, like the colon or rectum or the prolongation thereof, is often easier to restrict by contracting at least two opposite or different side walls of the lumen against each other. The expression “colon or rectum or the prolongation thereof” should be understood to mean the rectum extended all the way out to the anal sphincter and following the passage of the large intestine in the other direction.


Either mechanical or hydraulic solutions may be employed to operate the restriction device. Alternatively, the restriction device may comprise an adjustable cuff, a clamp or a roller for bending the colon or rectum or the prolongation thereof to restrict the fecal passageway therein. Such a cuff, clamp or roller may also be utilized for squeezing the colon or rectum or the prolongation thereof against human material inside the body of the patient for an example the sacral bone of the patient.


Preferably, the restriction device comprises an elongated restriction member and forming means for forming the restriction member into at least a substantially closed loop around the portion of the tissue, the loop defining a restriction opening, whereby the adjustment device adjusts the restriction member in the loop to change the size of the restriction opening.


The restriction device may be implanted in the abdomen or retroperitoneum of the patient and preferably may engage the colon or rectum or the prolongation thereof.


The adjustment device may be incorporated in the restriction device as well as being controlled by hydraulic means.


In accordance with a preferred first adjustment principle, the adjustment device mechanically adjusts the longitudinal extension of the elongated restriction member in a loop form.


In a preferred embodiment of the invention utilizing the first adjustment principle, the restriction member comprises a main portion and two elongated end portions, and the adjustment device establishes longitudinal relative displacement between the end portions of the restriction member, so that the size of the restriction opening is adjusted. The forming means may comprise any suitable known or conventional device capable of practicing the desired function, such as a spring material forming the elongated restriction member into the loop, so that the restriction opening has a predetermined size, and the adjustment device may adjust the restriction member against the spring action of the spring material. In other words, the restriction member may comprise a spring clip. The spring material may be integrated in the restriction member.


Preferably, the adjustment device comprises a movement transferring member, suitably a drive wheel, in engagement with at least one of the end portions of the restriction member and operable to displace the one end portion relative to the other end portion of the restriction member. The drive wheel may advantageously be in engagement with both of the end portions of the restriction member and be operable to displace said end portions relative to each other. An elongated flexible drive shaft may be operatively connected to the drive wheel, for transferring manual or motor generated power from a location remote from the restriction member. In its simplest embodiment, the drive wheel may comprise a pulley in frictional engagement with the restriction member. As an alternative, a gear rack may be formed on at least one of the end portions of the restriction member and the drive wheel may comprise a gear wheel in mesh with the gear rack. Other suitable known or conventional mechanisms may also or alternatively be used as the adjustment device.


The movement transferring member may alternatively comprise at least one cylinder and a piston, which is movable therein and is connected to one of the end portions of the restriction member, the piston being operable to longitudinally displace the one end portion of the restriction member relative to the other end portion of the restriction member. Alternatively, the movement transferring means may comprise two interconnected cylinders and two pistons in the respective cylinders connected to said end portions, respectively, of the restriction member, the pistons being operable to longitudinally displace the end portions of the restriction member relative to each other. Other known or conventional devices also or alternatively can be used as the movement transferring member.


A motor, which is fixed relative to the main portion of the restriction member and has a rotating drive shaft operatively connected to the movement transferring member, may be positioned relative to the elongated restriction member such that the drive shaft extends transverse thereto. Alternatively, the motor may be positioned relative to the elongated restriction member such that the drive shaft extends substantially tangentially to the loop of the restriction member.


In another embodiment of the invention utilizing the first adjustment principle, the elongated restriction member is longitudinally resilient and the adjustment device comprises a contraction device for longitudinally contracting the resilient restriction member. Preferably, the elongated restriction member comprises a substantially nonresilient main portion and an end portion forming an elongated helical spring, which is contractable by the contraction device. The contraction device may suitably comprise an elongated flexible pulling member connected to the main portion of the restriction member and extending through the helical spring to contract the helical spring against an arresting member, which is fixed relative to the main portion of the restriction member. The pulling member may extend in an elongated tube joined at one end thereof to the arresting member, so that a motor remote from the restriction member may be attached to the other end of the elongated tube and pulls the pulling member through the tube to contract the helical spring.


In yet another embodiment of the invention utilizing the first adjustment principle, the elongated restriction member comprises an elongated helical spring having a free end, and a body to which the spring is nonrotatably secured at its opposite end. The adjustment device rotates the helical spring in one direction to enlarge the coils of the helical spring to longitudinally contract the spring and to rotate the spring in the opposite direction to reduce the size of the coils of the spring to longitudinally extend the spring. As a preferred alternative, the restriction member comprises a further elongated helical spring having a free end and nonrotatably secured to the body at its opposite end, and the adjustment device comprises a drive shaft having two opposite end portions connected to the springs, respectively, at their free ends, the helical coils forming left and right hand helices, respectively. The adjustment device may alternatively comprise a gearing having an input shaft and two opposite aligned output shafts connected to the helical springs, respectively, at their free ends, the input shaft being connected to said output shafts so that the output shafts rotate in the opposite directions upon rotation of the input shaft, the helical coils forming the same helices.


In accordance with a second adjustment principle, the adjustment device mechanically adjusts the restriction member so that at least a portion of a radially innermost circumferential confinement surface formed by the restriction member is substantially radially displaced.


In one embodiment of the invention utilizing the second adjustment principle, the restriction member comprises an elongated voltage responsive element forming part of the confinement surface and capable of bending into a bow in response to a voltage applied across the element, the radius of curvature of the bow being adjustable by changing the level of the voltage.


In another embodiment of the invention utilizing the second adjustment principle, the adjustment device changes the diameter of an elastic annular element of the restriction member, which forms the confinement surface. Preferably, the forming means comprises a substantially rigid outer annular element coaxially surrounding the elastic annular element, and the adjustment device comprises means for pulling the elastic annular element radially outwardly towards the outer annular element to expand the elastic annular element. For example, the pulling means may comprise a plurality of threads secured to the elastic annular element along the circumference thereof and running from the elastic annular element via guide members attached to the outer annular element.


In yet another embodiment of the invention utilizing the second adjustment principle, the forming means comprises a substantially rigid outer annular element, and the restriction member comprises an elongated helical spring extending internally along the outer annular element and contacting the latter. The helical spring forms part of the circumferential confinement surface and has a free end. The restriction member further comprises a body to which the spring is nonrotatably secured at its opposite end. The adjustment device rotates the helical spring in one direction to enlarge the coils of the spring to contract the circumferential confinement surface and rotates the spring in the opposite direction to reduce the size of the coils of the spring to expand the circumferential confinement surface. As an alterative, which is preferred, the restriction member comprises two elongated helical springs forming part of the circumferential confinement surface and connected to the body of the restriction member. The adjustment device rotates each spring in one direction to enlarge the coils of the spring to contract the circumferential confinement surface and rotates the spring in the opposite direction to reduce the size of the coils of the spring to expand the circumferential confinement surface.


In accordance with a third adjustment principle, the restriction member comprises at least two separate elements, at least one of which is pivoted so that it may turn in a plane in which the the restriction member extends, and the adjustment device turns the pivoted element to change the size of the restriction opening. Preferably, the restriction member comprises a plurality of separate pivoted elements disposed in series, each pivoted element being turnable in the plane, and the adjustment device turns all of the pivoted elements to change the size of the restriction opening. For example, the pivoted elements may comprise lamellae arranged like the conventional adjustable aperture mechanism of a camera.


In accordance with a fourth adjustment principle, the adjustment device folds at least two foldable frame elements of the restriction member towards each other. Preferably, the foldable frame elements comprise two substantially or partly semi-circular frame elements which are hinged together so that the semi-circular elements are swingable relative to each other from a fully open state in which they form part of a circle to a fully folded state in which they form part of a semi-circle. The same principal may be used with the swingable parts mounted together in one end and not in the other end. Alternatively, the restriction device may comprises two preferable rigid articulated clamping elements positioned on opposite or different sides of colon rectum or the prolongation thereof, and the adjustment device turns the clamping elements toward each other to clamp the colon or rectum or the prolongation thereof between the clamping elements, thereby restricting the fecal passageway in the colon or rectum or the prolongation thereof.


In accordance with a fifth adjustment principle, the adjustment device turns the restriction member around a longitudinal extension thereof, the elongated restriction member being elastic and varying in thickness as seen in a cross-section therethrough. Suitably, the elongated restriction member comprises an elastic belt.


In accordance with a sixth adjustment principle, the adjustment device changes the size of the restriction opening such that the outer circumferential confinement surface of the restriction member is changed.


In accordance with a seventh adjustment principle, the adjustment device changes the size of the restriction opening such that the outer circumferential confinement surface of the restriction member is unchanged.


In accordance with an eighth adjustment principle, the elongated restriction member may be flexible, and the adjustment device pulls a first portion of the flexible restriction member from a second portion of the flexible restriction member opposite the first portion in the loop to squeeze the colon or rectum or the prolongation thereof between the opposite lengths of the elongated flexible restriction member to restrict the fecal passageway in the colon or rectum or the prolongation thereof.


In accordance with a ninth adjustment principle the restriction device comprises at least two elements on opposite or different sides of the colon or rectum or the prolongation thereof, and the adjustment device decreases the distance between the elements to squeeze the colon or rectum or the prolongation thereof between the elements, thereby restricting the fecal passageway in the colon or rectum or the prolongation thereof. It is also possible to use only one element and squeeze the colon or rectum or the prolongation thereof against human bone or tissue. The elements above may as well as all the restriction members mentioned in this application be everything from rigid to soft.


In accordance with a tenth adjustment principle the restriction device bends or rotates a portion of colon or rectum or the prolongation thereof to restrict the fecal passageway in the same. For example, the restriction device may comprise at least two bending members, such as cylindrical or hour-glass shaped rollers, positioned on opposite or different sides of the colon or rectum or the prolongation thereof and displaced relative to each other along the colon or rectum or the prolongation thereof, and the adjustment device may move the bending members against the colon or rectum thereof to bend the latter to restrict the fecal passageway in the colon or rectum or the prolongation thereof Suitably, the displacement members may comprise rollers. The restriction device may also rotate a portion of the esophagus or stomach. The bending or rotating members may have any shape or form and be either hydraulic or non-inflatable.


Two holding members one placed more distal than the other comprising two at least substantially closed loops may be rotated in opposite direction to each other. With interconnecting material for example flexable bands between the holding members a restriction will occur between the holding members when they are rotated.


The restriction device may in all applicable embodiments have any shape or form and be either hydraulic or non-inflatable.


In all of the above-described embodiments of the invention the adjustment device is conveniently operated by any suitable motor, preferably an electric motor, which may be fixed directly to or be placed in association with the restriction device, or alternatively be located remote from the restriction device advantageously in the abdomen or pelvic region or subcutaneously or in the retroperitoneum of the patient. In the latter alternative the motor is advantageously connected to the adjustment device by a flexible power transmission conduit to permit a suitable positioning of the motor in the abdomen of the patient. The motor may be manually activatable, for example by an implanted switch.


In some of the above described embodiments of the invention, however, the adjustment device may conveniently be operable by a hydraulic operation device, which preferably is manually activatable. The hydraulic operation device may advantageously include hydraulic servo means to facilitate manual activation. As an alternative, the hydraulic device may be powered by an electric motor, which may be manually activatable or controlled by remote control means. The components of such a hydraulic operation device may be placed in association with the restriction device and/or be located at a suitable place in the abdomen or subcutaneously.


More specifically, a reservoir may be provided containing a predetermined amount of fluid for supplying the hydraulic operation device with fluid. The reservoir defines a chamber for the predetermined amount of fluid and the hydraulic operation device changes the size of the chamber. The hydraulic operation device may comprise first and second wall portions of the reservoir, which are displaceable relative to each other to change the size of the chamber of the reservoir. The first and second wall portions of the reservoir may be designed to be displaceable relative to each other by manual manipulation thereof, preferably to permit manual pushing, pulling or rotation of any of the wall portions in one direction. Alternatively, the wall portions may be displaceable relative to each other by magnetic means (such as a permanent magnet and magnetic material reed switch, or other known or conventional magnetic devices), hydraulic means or electrical control means such as an electric motor. The magnetic means, hydraulic means, or electrical control means may all be activated by manual manipulation, preferably using a subcutaneously located manually manipulatable device. This control may be indirect, for example via a switch.


The hydraulic operation device may operate the adjustment device with fluid from the reservoir in response to a predetermined first displacement of the first wall portion of the reservoir relative to the second wall portion of the reservoir, to adjust the restriction device to release the tissue, and to operate the adjustment device with fluid from the reservoir in response to a predetermined second displacement of the first wall portion of the reservoir relative to the second wall portion of the reservoir, to adjust the restriction device to restrict the blood flow leaving the penis. In this embodiment, no pump is used, only the volume of the reservoir is varied. This is of great advantage compared to the solution described below when a pump is used to pump fluid between the reservoir and the adjustment device because there is no need for a non-return valve and it is still possible to have fluid going both to and from the reservoir.


As an alternative, the hydraulic operation device may comprise an activatable pump for pumping fluid between the reservoir and the adjustment device. The pump may pump fluid both to and away from the adjustment device or hydraulic means controlling the adjustment device. A mechanical manual solution is proposed in which it is possible to pump in both directions just by pushing an activating member in one direction. Another alternative is a pump pumping in only one direction and an adjustable valve to change the direction of fluid to either increase or decrease the amount of fluid in the reservoir. This valve may be manipulated manually, mechanically, electrically, magnetically, or hydraulically. Any kind of motor could of course be used for all the different operations as well as wireless remote solutions. The pump may comprise a first activation member for activating the pump to pump fluid from the reservoir to the adjustment device and a second activation member for activating the pump to pump fluid from the adjustment device to the reservoir. The activation members may be operable by manual manipulation, preferably to permit manual pushing, pulling or rotating thereof in one direction. Suitably, at least one of the activation members is adapted to operate when subjected to an external pressure exceeding a predetermined magnitude.


Alternatively, at least one of the first and second activating members may be operable by magnetic means, hydraulic means or electrical control means such as an electric motor. The magnetic means, hydraulic means, or electrical control means may all be activated by manual manipulating means preferably located subcutaneously. This activation may be indirect, for example via a switch.


Advantageously, especially when manual manipulation means are used a servo system could be used. With servo means less force is needed for controlling the adjustment device. Hydraulic means is preferably used with servo means. One example is a closed system that controls another closed system in which the hydraulic devices of the adjustment device is incorporated. Minor changes in the amount of fluid in a reservoir of the first system could then lead to major changes in the amount of fluid in a reservoir in the second system. In consequence the change of volume in the reservoir of the second system affects the hydraulic device of the adjustment device, which is incorporated in the second closed system. The great advantage of this servo system is that the larger volume system could be placed inside the abdomen or retroperitoneum where there is more space and still would be possible to use manual manipulation means of the smaller system subcutaneously. The servo reservoir could control the reservoir of the larger volume. The servo reservoir could be controlled directly or indirectly by a fluid supply means. The fluid supply means may be a small reservoir, which may be placed subcutaneously and may be activated by manual manipulation means controlling the servo reservoir.


Preferably, the servo means comprises hydraulic means and a servo reservoir and eventually a fluid supply reservoir. Both reservoirs define a chamber containing servo fluid, and the hydraulic means comprises first and second wall portions of the servo reservoir, which are displaceable relative to each other to change the size of the chamber of the servo reservoir. The hydraulic means may control the adjustment device indirectly, e.g. via an increased amount of fluid in the servo reservoir, in response to a predetermined first displacement of the first wall portion of any of the reservoirs relative to the second wall portion of the reservoir to restrict blood flow leaving the penis, and to control the adjustment device in response to a second displacement of the first wall portion of any reservoir relative to the second wall portion, to indirectly adjust the restriction device to release the tissue. The wall portions of the reservoirs may be designed to be displaceable relative to each other by manual manipulation thereof or be displaceable relative to each other by manually pushing, pulling or rotating any of the wall portions of the reservoir in one direction. Alternatively, the wall portions of the servo reservoir may be displaceable relative to each other by magnetic means, hydraulic means or electric control means including an electric motor.


The magnetic means, hydraulic means, or electrical control means may all be activated by manually manipulated means preferably located subcutaneously. This control may be indirect for example via a switch.


Even in the broadest embodiment of the invention the adjustment device may comprise a servo means. The servo means may comprise a hydraulic operation means, an electrical control means, a magnetic means, mechanical means or a manual manipulation means. The hydraulic operation means, electrical control means, mechanical means or magnetic means may be activated by manual manipulating means. Using a servo system will save the use of force when adjusting the adjustment device which may be of importance in many applications, for example when a battery cannot put out enough current although the total energy in the battery is more than enough to power the system.


All solutions may be controlled by a wireless remote control for controlling the adjustment device. The remote control may advantageously be capable of obtaining information related to the fecal passageway or the pressure against the restriction device or colon or rectum or other important physical parameters and of commanding the adjustment device to adjust the restriction device in response to obtained information. With the wireless remote control the apparatus of the invention is conveniently controlled by the patient when he so desires, which is of great advantage compared to the prior art procedures. With the remote control the apparatus of the invention is conveniently controlled to adjust the implanted restriction device, which controls the defecation. The restriction device may be operable to open and close fecal passageway. The restriction device may steplessly control the cross-sectional area of the passageway.


The apparatus may further comprise a pressure sensor for directly or indirectly sensing the pressure against the restriction device and the restriction device may control the blood flow in response to signals from the pressure sensor. The pressure sensor may be any suitable known or conventional pressure sensor such as shown in U.S. Pat. Nos. 5,540,731, 4,846,181, 4,738,267, 4.571,749, 4,407,296 or 3.939,823; or an NPC-102 Medical Angioplasty Sensor. The adjustment device preferaby non-invasively adjusts the restriction device to change the size of the cross-sectional area.


The adjustment device and/or other energy consuming components of the apparatus may be energized with wirelessly transmitted energy from outside the patient's body or be powered by an implanted battery or accumulator.


The apparatus may further comprise an implanted energy transfer device for transferring wireless energy directly or indirectly into kinetic energy for operation of the restriction device.


The wireless remote control may comprise means for wireless transfer of energy from outside the patient's body to energy consuming implantable components of the apparatus. A motor may suitably be implanted in the patient for operating the adjustment device and the means for wireless transfer of energy may directly power the motor with transferred energy. The energy transferred by the means for transfer of energy may comprise any suitable kind of energy signals including wave signals an electric field or a magnetic field.


Preferably, the wireless remote control comprises a separate signal transmitter or receiver and a signal receiver or transmitter implanted in the patient. For example, the signal transmitter and signal receiver may transmit and receive a signal in the form of digital pulses, which may comprise a magnetic or electric field. Alternatively which is preferred, the signal transmitter and signal receiver may transmit and receive an electromagnetic wave signal, a sound wave signal or a carrier wave signal for a remote control signal. The receiver may comprise an implanted control unit for controlling the adjustment device in response to a control signal from the signal transmitter.


The apparatus of the invention may further comprise an implanted energizer unit for providing energy to energy consuming implanted components of the apparatus, such as electronic circuits and/or a motor for operating the adjustment device. The control unit may power such an implanted motor with energy provided by the energizer unit in response to a control signal received from the signal transmitter. Any known or conventional signal transmitter or signal receiver that is suitable for use with a human or mammal patient may be provided as the signal transmitter or signal receiver of the invention. Generally, the signals may comprise electromagnetic waves, such as infrared light visible light, laser light, micro waves, or sound waves, such as ultrasonic waves or infrasonic waves, or any other type of wave signals. The signals may also comprise electric or magnetic fields, or pulses. All of the above-mentioned signals may comprise digital signals. The control signals may be carried by a carrier wave signal, which in an alternative embodiment may be the same signal as the wireless energy signal. Preferably a digital control signal may be carried by an electromagnetic wave signal. The carrier wave or control signal may be amplitude or frequency modulated.


The motor may be any type of motor, such as a pneumatic, hydraulic or electric motor and the energizer unit may power the motor with pressurized gas or liquid, or electric energy, depending on the type of motor. Where the motor is an electric motor, it may power pneumatic or hydraulic equipment.


The energizer unit may comprise a power supply and the control unit may power the motor with energy from the power supply. Preferably, the power supply is an electric power supply, such as a battery, and the motor is an electric motor. In this case, the battery also continuously powers at least part of the circuitry of the signal receiver in a standby mode between the adjustments, in order to keep the signal receiver prepared for receiving signals transmitted from the signal transmitter.


The energizer unit may transfer energy from the control signal, as the control signal is transmitted to the signal receiver, into electric energy for powering the implanted electronic components. For example, the energizer unit may transfer the energy from the control signal into a direct or alternating current.


In case there is an implanted electric motor for operating the adjustment device the energizer unit may also power the motor with the transferred energy. Advantageously, the control unit directly powers the electric motor with electric energy, as the energizer unit transfers the signal energy into the electric energy. This embodiment is particularly simple and does not require any recurrent invasive measures for exchanging empty power supplies, such as batteries, that is required in the first embodiment described above.


For adjustment devices of the type that requires more, but still relatively low, power for its operation, the energizer unit may comprise a rechargeable electric power supply for storing the electric energy obtained and the control unit may power the electric motor with energy from the rechargeable electric power supply in response to a control signal received from the signal transmitter. In this case, the rechargeable power supply can be charged over a relatively long time (e.g. a few seconds up to a half hour) without powering the electric motor.


The electric power supply suitably comprises an inexpensive simple capacitor. In this case, the electric motor may be a stepping motor. In all embodiments the motor may preferable be able to perform a reversing function.


The signal transmitter may transmit an electromagnetic signal and the energizer unit may draw radiant energy from the electromagnetic wave signal, as the latter is transmitted to the signal receiver, and transfer the radiant energy into electric energy.


Alternatively, the energizer unit may comprise a battery or accumulator, an electrically operable switch adapted to connect the battery to the signal receiver in an on mode when the switch is powered and to keep the battery disconnected from the signal receiver in a standby mode when the switch is unpowered, and a rechargeable electric power supply for powering the switch. The control unit may power the electric motor with energy from the battery in response to a control signal received from the signal transmitter, when the switch is in its on mode. Advantageously, the energizer unit may transfer wave energy from the control signal, as the latter is transmitted to the signal receiver, into a current for charging the rechargeable electric power supply, which suitably is a capacitor. Energy from the power supply is then used to change the switch from off (standby mode) to on. This embodiment is suited for adjustment devices of the type that require relatively high power for their operation and has the advantage that the electronic circuitry of the signal receiver does not have to be powered by the battery between adjustments. As a result, the life-time of the battery can be significantly prolonged. The switch may be switched with magnetic, manual or electric energy.


As an example, the signal transmitter may transmit an electromagnetic wave signal and the energizer unit may draw radiant energy from the electromagnetic wave signal, as the latter is transmitted to the signal receiver, and may transfer the radiant energy into said current. The energizer unit suitably comprises a coil of the signal receiver for inducing an alternating current as the electromagnetic wave signal is transmitted through the coil and a rectifier for rectifying the alternating current. The rectified current is used for charging the rechargeable power source.


Alternatively, the signal transmitter and receiver may solely be used for a control signal and a further pair of signal transmitter and receiver may be provided for transferring signal energy to implanted components. By such a double system of signal transmitters and receivers the advantage is obtained that the two systems can be designed optimally for their respective purposes, namely to transmit a control signal and to transfer energy from an energy signal. Accordingly, the apparatus may further comprise an external energy transmitter for transmitting wireless energy, wherein the energizer unit comprises a battery and an operable switch for connecting the battery to the signal receiver in an on mode when the switch is powered and for keeping the battery disconnected from the signal receiver in a standby mode when the switch is unpowered, and the external energy transmitter powers the switch. Suitably, the energy transmitter may directly power the switch with the wireless energy to switch into the on mode. As should be realized by a skilled person, in many of the above-described embodiments of the invention the adjustment device may be operated by control means or manual manipulation means implanted under the skin of the patient, such as a pump, an electrical switch or a mechanical movement transferring means. In the manual embodiment it is not necessary to use a motor for operating the adjustment device.


In embodiments including hydraulic transmission means, an injection port connected to the hydraulic means may be provided for enabling, normally single, once-and-for-all, calibration of the amount of fluid in the hydraulic system.


In all embodiments a motor may be operatively connected to the adjustment device. A reversing device may be implanted in the patient for reversing the motor. The adjustment device preferably adjusts the restriction device in a non-manual manner without the patient touching his skin.


The restriction device is operable to open and close the fecal passageway steplessly and preferable controlled with a remote control. Preferably, a pressure sensor is used for directly or indirectly sensing the pressure against the restriction device or the colon or the rectum to prevent any necrosis of the human tissue. The restriction device may preferably be controlled in response to signals from the pressure sensor. The motor which preferably is used to adjust the restriction device must then be capable of performing a reversible function, that is to say reversed direction of the motor. Preferably the adjustment device may be energized directly with wirelessly transmitted energy from outside the patient's body. Preferable, the implanted energy transfer device transfers wireless energy directly or indirectly into kinetic energy for operation of the restriction device. In another embodiment it would also be possible to use an implanted accumulator: or battery and control this implanted energy source from outside the patient's body to supply energy to the adjustment device or other energy consuming parts of the implanted apparatus.


The invention also provides a method for treating a patient suffering from anal incontinence comprising surgically implanting in the body of the an adjustable restriction device which directly engages the colon or rectum like an artificial sphincter around the fecal passageway therein, normally closed, and when desired, mechanically adjusting the restriction device to temporarily open the fecal passageway.


The adjustable restriction device may preferably be implanted in the base or prolongation of the patients rectum. It is possible to use one or several restricting devices engages the colon or rectum.


In accordance with the invention, there is further provided a method for treating anal incontince, comprising the steps of placing at least two laparascopical trocars in the body of a patient suffering from anal incontinence, inserting a dissecting tool through the trocars and dissecting an area of the colon or rectum in the abdominal or pelvic or retroperitoneal surroundings, placing at least one adjustable restriction device in the dissected area engaging the rectum or colon, adjusting the restriction device to normally restrict the fecal passageway in the rectum or colon to substantially prevent the passage of fecal material therethrough, and adjusting the restriction device to open the fecal passageway to allow the passage of fecal material therethrough when the patient wants to relieve himself or herself. A mechanically adjustable restriction device may be used when practicing this method, preferably in a non-manual manner, i.e. without touching subcutaneously implanted components of the apparatus.


The method may further comprise implanting a source of energy in the patient and providing a control device for controlling the source of energy from outside the patient's body to supply energy to the restriction device.


It should generally be understood that all the above embodiments may be combined in any working combination.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic sectional view of a preferred first embodiment of the anal incontinence treatment apparatus in accordance with the invention;



FIGS. 2 and 3 are cross-sectional views taken along the lines II-II and III-III, respectively, of FIG. 1;



FIGS. 4 and 5 schematically show two alternative designs of the embodiment of FIG. 1;



FIG. 6 schematically illustrates a motor arrangement for the design according to FIG. 5;



FIG. 7 is a schematic sectional view of a second embodiment of the apparatus in accordance with the invention;



FIG. 8 schematically illustrates a hydraulic transmission conduit for the embodiment of FIG. 7;



FIG. 9 is a schematic sectional view of a third embodiment of the apparatus in accordance with the invention;



FIG. 10 is a modification of the embodiment of FIG. 9;



FIG. 11 is a schematic view of a fourth embodiment of the apparatus in accordance with the invention;



FIGS. 12 and 13 are enlarged details of the embodiment of FIG. 11;



FIG. 14 is a cross-section along the line XIV-XIV of FIG. 11;



FIG. 15 is a schematic view of a fifth embodiment of the apparatus in accordance with the invention;



FIG. 16 is an enlarged detail of FIG. 15;



FIG. 17 is a cross-section along the line XVII-XVII of FIG. 15;



FIGS. 18 to 21 are schematic sectional views of a sixth, seventh, eighth and ninth embodiments, respectively, of the apparatus in accordance with the invention;



FIGS. 22 and 23 illustrate a fully open and a reduced restriction opening, respectively, of the embodiment of FIG. 21;



FIG. 24 is a schematic view of a tenth embodiment of the apparatus in accordance with the invention;



FIG. 25 is an enlarged detail of the embodiment of FIG. 24;



FIGS. 26 and 27 illustrate a fully open and a reduced restriction opening, respectively, of the embodiment of FIG. 24;



FIG. 28 schematically illustrates a cushion arrangement for protecting the tissue of the patient;



FIG. 29A-D is a block diagram of four different principal embodiments of the invention;



FIG. 30A-D are cross-sectional views of a pump mechanism according to FIG. 29C, which pumps fluid in opposite directions by mechanically pushing a wall portion in only one direction;



FIG. 31 is a cross-sectional view of a reservoir having a variable volume controlled by a remote control motor, in accordance with a particular embodiment of the principal embodiment shown in FIG. 29B or 30B;



FIG. 32 is a cross-sectional view of a reservoir having a variable volume adjustable by manual manipulation, in accordance with a particular embodiment of the principal embodiment shown in FIG. 29B or 29D;



FIG. 33A is a front view of a hydraulic, pneumatic or mechanical servo system in accordance with a particular embodiment of the principal embodiment shown in FIG. 29D;



FIG. 33B is a cross-sectional view taken along line VB-VB of FIG. 33A;



FIG. 34 is a block diagram illustrating remote control components of the apparatus of the invention;



FIG. 35 is a schematic view of a circuitry used for the system of the block diagram of FIG. 34;



FIGS. 36A and 36B are schematic views of an eleventh embodiment of the apparatus in accordance with the invention;



FIGS. 37A and 37B are schematic views of a twelfth embodiment of the apparatus in accordance with the invention;



FIG. 38 is a schematic view of a thirteenth embodiment of the apparatus in accordance with the invention;



FIGS. 39A, 39B and 39C are a schematic front view and schematic sectional views, respectively, of a fourteenth embodiment of the apparatus in accordance with the invention;



FIGS. 40A through 44B are five modifications of the embodiment of FIGS. 39A-39C;



FIG. 45 illustrates the apparatus of the invention with a restriction device implanted around the colon.





DETAILED DESCRIPTION OF THE DRAWINGS

Referring to the drawing FIGURES, like reference numerals designate identical or corresponding elements throughout the several FIGURES.



FIGS. 1-3 show a preferred embodiment of the anal incontinence treatment apparatus of the invention comprising a restriction device having an elongated restriction member in the form of a circular resilient core 2 with two overlapping end portions 4,6. The core 2 defines a substantially circular restriction opening and is enclosed in an elastic soft hose 8 except at a releasable and lockable joint 10 of the core 2, which when released enables application of the core 2 with its hose 8 around a tissue of a patient, such as the colon or rectum or one or more exit rectum from the patient's colon or rectum. The materials of all of these elements are bio-compatible so that the patient body will not reject them. A mechanical adjustment device 12 for mechanically adjusting the longitudinal extension of the core 2 to change the size of the restriction opening comprises a drive wheel 14 in frictional engagement with the overlapping end portions 4,6 of the core 2. The drive wheel 14 is journalled on a holder 16 placed in the hose 8 and provided with two counter pressure rollers 18,20 pressing the respective end portions 4, 6 of the core 2 against the drive wheel 14 to increase the frictional engagement there between. An electric motor 22 is connected to the drive wheel 14 via a long flexible drive shaft 24 and is moulded together with a remote controlled power supply unit 26 in a body 28 of silicone rubber. The length of the flexible drive shaft 34 is selected so that the body 28 can be placed in a desired position in the patient_s body, suitably in the abdomen.


When the patient doesn't want to relieve himself (defaecation), he controls the power supply unit 26 to power the electric motor 22 to turn the drive wheel 14 in one direction to reduce the diameter of the core 2, so that the tissue is squeezed and the fecal passageway is restricted. When the patient wishes to relieve himself he controls the power supply unit 26 to power the electric motor 22 to turn the drive wheel 14 in the opposite direction to increase the diameter of the core 2, so that the fecal passageway is open.


Alternatively, a rack gear may be formed on one of the end portions 4,6 of the core 2 and the drive wheel 14 may be replaced by a drive gear wheel connected to the other end portion of the core 2 and in mesh with the rack gear.



FIG. 4 shows an embodiment of the invention which is identical to the embodiment of FIGS. 1-3, except that the motor 22 is encapsulated in a lateral protrusion 30 of the hose 8 so that it is fixed to the core 2 and has a short drive shaft 32 onto which the drive wheel 14 is mounted, and that the motor 22 is positioned relative to the circular core 2 such that the drive shaft 32 extends radially thereto.



FIG. 5 shows an embodiment of the invention which likewise is identical to the embodiment of FIGS. 1-3, except that the motor 22 is encapsulated in the hose 8 so that it is fixed to the core 2 and has a short drive shaft 32, and that the motor 22 is positioned relative to the core 2 such that the drive shaft 32 extends substantially tangentially to the circular core 2. There is an angular gearing 34 connecting the drive shaft 32 to the drive wheel 14.



FIG. 6 shows a suitable arrangement for the motor 22 in the embodiment of FIG. 5, comprising a first clamping member 36 secured to one end portion of the core 2 and a second clamping member 38 secured to the other end portion 6 of the core 2. The motor 22 is secured to the first clamping member 36 and is operatively connected to a worm 40 via a gear transmission 42. The worm 40 is journalled at its opposite ends on holders 44 and 46, which are rigidly secured to the clamping member 36 and the motor 22, respectively. The second clamping member 38 has a pinion in mesh with the worm 40. When the motor 22 is powered the worm 40 rotates and will thereby pull the end portion 6 of the core 2 in one or the opposite longitudinal direction, so that the diameter of the substantially circular core 2 is either increased or decreased.



FIG. 7 shows an embodiment of the invention in which the elongated restriction member comprises a core 48 and a helical spring 50. A spring contracting means in the form of a flexible pulling member 52. i.e. a string, wire or cable, is connected to the core 48 at one end thereof and extends through the helical spring 50. A hydraulic motor in the form of a cylinder/piston unit 54 is adapted to pull the flexible pulling member 52 to contract the helical spring 50 against an arresting member 56, which is fixed relative to the core 48. A tube 58 hinged to the arresting member 56 extends between the cylinder/piston unit 54 and the arresting member 56, the flexible pulling member 52 running through the tube 58 and being connected to the piston of the cylinder/piston unit 54. FIG. 8 shows a similar embodiment in which a hydraulic transmission conduit 59 is provided between two piston-cylinder assemblies 54, for use as the hydraulic motor/device in FIG. 7.



FIG. 9 shows an embodiment of the invention in which the restriction member comprises two elongated helical springs 60 and 62 having free ends, and a body 64 to which the springs 60,62 are nonrotatably secured at their opposite ends. The body 64 comprises two separate parts secured to opposite end portions of the enclosing elastic hose 8 and is designed with a releasable and lockable joint between the separate parts. An adjustment device in the form of a drive shaft 66 has two opposite end portions connected to the helical springs 60,62, respectively at their free ends. The coils of the springs 60,62 form left and right hand helices, respectively. A motor 68 is adapted to rotate the drive shaft 66 in one direction to enlarge the coils of the helical springs 60,62 to longitudinally contract the springs 60,62 and to rotate the drive shaft 66 in the opposite direction to reduce the size of the coils of the springs 60,62 to longitudinally extend the springs 60,62. Thus, the elongated helical springs 60,62 defines a restriction opening, the size of which is increased when the springs 60,62 are extended and decreased when the springs 60,62 are contracted.



FIG. 10 shows an embodiment according to the invention which is identical to the embodiment of FIG. 9, except that the adjustment device comprises a gearing having an input shaft 72 and two opposite aligned output shafts 74 and 76 connected to the helical springs 60 and 62, respectively, at their free ends. The input shaft 72 is connected to the output shafts 74,76 such that they rotate at opposite directions upon rotation of the input shaft 72. The coils of the springs 60, 62 form the same helices.



FIGS. 11-14 show an embodiment of the device of the invention in which a hydraulic motor comprises two interconnected cylinders 78 and 80 and two pistons 82 and 84 in the respective cylinders 78,80. The cylinders 78,80 have a common fluid supply inlet member 86, which together with the cylinders 78,80 takes the shape of a Y-pipe. The restriction member comprises an elongated resilient arcuate core 88. The adjustment device comprises two bars 90 and 92 secured to opposite ends of the core 88 and connected to the pistons 82 and 84, respectively. The core 88 defines a restriction opening and is provided with a releasable and lockable joint 94 (FIG. 13) to permit application of the core 88 around the tissue. The core 88 and the cylinders 90,92 are enclosed by a soft elastic hose 96 except at the joint 94 and the inlet member 86. The hose 96 has an outer tubular wall 98 and a central coaxial inner tubular wall 100, which is fixed to the outer wall 98 by spoke members 102 (FIG. 14). The core 88 is loosely fit in the inner tubular wall 100. By supplying fluid to or withdrawing fluid from the inlet 86 the pistons 82 and 84 will move towards or from each other, so that the restriction opening defined by the core 88 is changed by the longitudinal displacement of the bars 90,92.



FIGS. 15-17 show an embodiment of the invention which is identical to the embodiment of FIGS. 11-14, except that the adjustment device comprises an elongated voltage responsive element 104 secured to the opposite ends of the core 88, so that the core 88 and the element 104 form the restriction member. The element 104 is capable of bending inwardly into a bow in response to a voltage applied across the element 104. The radius of curvature of said bow is adjustable by changing the level of the voltage applied to element 104.



FIG. 18 shows an embodiment of the invention comprising a loop forming means in the form-f a substantially rigid outer circular element 106 with a releasable and lockable joint 108. In this embodiment the restriction member comprises an elastic inner circular element 110 formed by the innermost wall portion of an elastic hose 112 extending along the outer element 106. The inner circular element 110 is disposed concentrically within the outer circular element 106. The adjustment device comprises a plurality of threads 114 secured to the elastic inner element 110 along the circumference thereof and running from the inner element 110 via guide members 116 attached to the outer element 106. By pulling all the threads 114 the inner elastic element 110 is pulled under expansion radially outwardly towards the outer element 106.



FIG. 19 shows an embodiment which is identical to the embodiment of FIG. 9, except that it comprises a loop forming means in the form of a substantially rigid outer circular element 118 supporting the helical springs 60,62, and a soft elastic inner wall 120 extending along the springs 60,62. When the motor 68 rotates the helical springs 60, 62 in a direction that enlarges the coils of the springs 60,62, the coils are forced by the rigid outer element 118 to expand radially inwardly thereby reducing the size of the restriction opening formed by the circumferential confinement surface of the restriction member (springs 60,62 and body 64).



FIG. 20 shows an embodiment of the invention in which a restriction member comprises a plurality of arcuate lamellae 122 arranged like the conventional adjustable aperture mechanism of a camera. The adjustment device, not shown, is conventional and is operated by a motor 124 to adjust the lamellae 122 to change the size of an restriction opening defined by the lamellae 122.



FIGS. 21-23 show an embodiment of the invention in which a restriction member comprises two semi-circular elements 126 and 128 which are hinged together such that the semi-circular elements 126,128 are swingable relative to each other between a fully open state in which they substantially form a circle, illustrated in FIG. 22 and an angular state, in which the size of the restriction opening defined by the semi-circular elements 126,128 is reduced, illustrated in FIG. 23. The adjustment device, not shown, is conventional and is operated by a motor 130 to swing the semi-circular elements 126,128 relative to each other.



FIGS. 24-27 show an embodiment of the invention in which a restriction member comprises an elastic belt 130 forming a circle and having a substantially oval cross-section. The restriction member 130 is provided with a releasable and lockable joint 132. An elastic double walled hose 134 encloses the belt 130 except at the joint 132. The adjustment device, not shown, is conventional and is operated by a motor 136 to turn the belt 130 around the longitudinal extension thereof between a fully open state, in which the inner broader side of the belt 130 forms a substantially cylindrical surface, illustrated in FIG. 26, and a reduced open state, in which the inner broader side of the belt 130 forms a substantially conical surface, illustrated in FIG. 27.



FIG. 28 schematically illustrates a cushion arrangement for protecting the tissue, comprising a plurality of cushions 138 disposed in series along a substantially circular holding member 140. This cushion arrangement may be utilized in any of the above described embodiments of the invention.



FIGS. 29A-D provide a block diagram of four different hydraulic transmission conFIGUREurations. FIG. 29A shows an adjustment device 202, a separate reservoir 204, a one way pump 206 and an alternate valve 208. FIG. 298 shows the adjustment device 202 and an adjustable reservoir 210. FIG. 29C shows the adjustment device 202, a two way pump 212 and the reservoir 204. FIG. 30D shows a servo system with a first closed system controlling a second system. The servo system comprises the adjustable reservoir 210 and a passive adjustable reservoir 214. Any of the reservoirs can be the active reservoir, either the servo reservoir 210 or the fluid supply reservoir 214. The reservoir 214 controls a larger adjustable reservoir 216 which is used for the operation of the adjustment device 202 for changing the restriction opening of the restriction member.



FIGS. 30A-D are cross-sectional views of a pump mechanism adapted to pump fluid in both directions only by mechanically pushing a separate sealing wall portion 218 in one direction. FIG. 30A shows a piston 220 pushed forwards against a spring 222 towards the wall portion 218 and located in a pump housing 224 conducting fluid from a right upper fluid passage 226 of the housing 224 to a left fluid passage 228 of the housing 224. A main valve 230 is open and a nonreturn valve 232 is closed. FIG. 30B illustrates the first pump movement in which the piston 220 has moved forwards and reaches the wall portion 218. FIG. 30C illustrates how the piston 220 moves backwards by the action of the spring 222. The main valve 230 is now closed and the nonreturn valve 232 is open for fluid from the right upper passage 226. FIG. 30D illustrates how the piston 220 is moved further downwards from its position according to FIG. 30B while pushing the wall portion 218 downwards against a second spring 234 that is stronger than spring 222, so that fluid escapes from a right lower fluid passage 236. When moving the piston 220 backwards from the position of FIG. 30D, fluid enters the left fluid passage 228 and a valve 238 in the lower right fluid passage 236 closes.



FIG. 3T is a cross-sectional view of a reservoir 240 defining a chamber 242, the size of which is variable and is controlled by a remote controlled motor 244, in accordance with FIG. 296 or 29D. The reservoir 240 and the motor 244 are placed in a housing 246. The chamber 242 is varied by moving a large wall 248. The wall 248 is secured to a nut 250, which is threaded on a rotatable spindle 252. The spindle 252 is rotated by the motor 244 via an angular gearing, which comprises two conical gear wheels 254 and 256 in mesh with each other. The motor 244 is powered by a battery 258 placed in the housing 246. A signal receiver 260 for controlling the motor 244 is also placed in the housing 246. Alternatively, the battery 258 and the signal receiver 260 may be mounted in a separate place. The signal receiver may comprise any known or conventional device which is capable of receiving a control signal and then operating the motor 244.



FIG. 32 is a cross-sectional view of a reservoir 262 defining a chamber 264, the size of which is variable and is controlled by manual manipulation. A gable wall portion 266 of an open ended inner cylindrical housing 68 is adapted to be pushed downwards to fit in a desired locking groove 270 of a plurality of locking grooves 270 on the mantle wall of the cylindrical housing 268, to reduce the size of the chamber 64. The inner cylindrical housing 268 is suspended by springs 272 and is telescopically applied on an outer cylindrical housing 274. When pushing the inner cylindrical housing 268 it moves downwards relative to the outer cylindrical housing 274 causing the gable wall portion 266 to release from the locking groove 270 and move upwards relative to the inner cylindrical housing 268. When the inner housing 268 is moved upwardly by the action of the springs 272 the size of the chamber 264 is increased.



FIGS. 33A and 33B show a servo means comprising a main ring-shaped fluid reservoir 276 defining a chamber 278, the size of which is variable. Centrally positioned in the main ring-shaped reservoir 276 there is a servo fluid reservoir 280 defining a chamber 282, the size of which is variable. The chamber 282 of the servo reservoir 280 is significantly smaller than the chamber 278 of the main reservoir 276. The two reservoirs 276 and 280 are situated between two opposite separate walls 284 and 286, and are secured thereto. When changing the amount of fluid in the servo reservoir 280, the two opposite walls 284,286 are moved towards or away from each other, whereby the size of the chamber 278 of the main reservoir 276 is changed.



FIG. 34 shows the basic parts of a remote control system of the apparatus of the invention including a motor, for instance the electric motor 22. In this case, the remote control system is based on the transmission of an electromagnetic wave signal, often of a high frequency in the order of 100 kHz−1 gHz, through the skin 330 of the patient. In FIG. 34, all parts placed to the left of the skin 330 are located outside the patient_s body and all parts placed to the right of the skin 330 are implanted in the patient_s body.


An external signal transmitting antenna 332 is to be positioned close to a signal receiving antenna 334 implanted in the patient_s body close to the skin 330. As an alternative, the receiving antenna 334 may be placed for example inside the abdomen of the patient. The receiving antenna 334 comprises a coil, approximately 1-100 mm, preferably 25 mm in diameter, wound with a very thin wire and tuned with a capacitor to a specific high frequency. A small coil is chosen if it is to be implanted under the skin of the patient and a large coil is chosen if it is to be implanted in the abdomen of the patient. The transmitting antenna 332 comprises a coil having about the same size as the coil of the receiving antenna 334 but wound with a thick wire that can handle the larger currents that is necessary. The coil of the transmitting antenna 332 is tuned to the same specific high frequency as the coil of the receiving antenna 334.


An external control unit 336 comprises a microprocessor, a high frequency electromagnetic signal generator and a power amplifier. The microprocessor of the control unit 336 is adapted to switch on/off the generator and to modulate signals generated by the generator to send digital information via the power amplifier and the antennas 332,334 to an implanted control unit 338. To avoid that accidental random high frequency fields trigger control commands, digital signal codes are used. A keypad placed on the external control unit 336 is connected to the microprocessor thereof. The keypad is used to order the microprocessor to send a digital signal to either increase or decrease the size of the restriction opening defined by the loop of the restriction member (e.g. as described above). The microprocessor starts a command by applying a high frequency signal on the antenna 332. After a short time, when the signal has energized the implanted parts of the control system, commands are sent to increase or decrease the size of the restriction opening of the restriction member in predefined steps. The commands are sent as digital packets in the form illustrated below.




















Start pattern,
Command,
Count,
Checksum,



8 bits
8 bits
8 bits
8 bits










The commands are sent continuously during a rather long time period (e.g. 30 seconds or more). When a new increase or decrease step is desired the Count byte is increased by one to allow the implanted control unit 338 to decode and understand that another step is demanded by the external control unit 336. If any part of the digital packet is erroneous, its content is simply ignored.


Through a line 340, an implanted energizer unit 326 draws energy from the high frequency electromagnetic wave signal received by the receiving antenna 334. The energizer unit 326 stores the energy in a power supply, such as a large capacitor, powers the control unit 338 and powers the electric motor 22 via a line 342.


The control unit 338 comprises a demodulator and a microprocessor. The demodulator demodulates digital signals sent from the external control unit 336. The microprocessor of the control unit 338 receives the digital packet, decodes it and, provided that the power supply of the energizer unit 326 has sufficient energy stored, sends a signal via a signal line 344 to the motor 22 to either increase or decrease the size of the restriction opening of the restriction member depending on the received command code.


Alternatively, the energy stored in the power supply of the energizer unit may only be used for powering a switch, and the energy for powering the motor 22 may be obtained from another implanted power source of relatively high capacity, for example a battery. In this case the switch is adapted to connect the battery to the control unit 338 in an _on_mode when said switch is powered by said power supply and to keep said battery disconnected from the control unit in a_standby_mode when the switch is unpowered.


With reference to FIG. 35, the remote control system schematically described above will now be described in accordance with a more detailed embodiment. The external control unit 336 comprises a microprocessor 346, a signal generator 348 and a power amplifier 350 connected thereto. The microprocessor 346 is adapted to switch the signal generator 348 on/off and to modulate signals generated by the signal generator 348 with digital commands that are sent to implanted components of the device of the invention. The power amplifier 350 amplifies the signals and sends them to the external signal transmitting antenna 332. The antenna 332 is connected in parallel with a capacitor 352 to form a resonant circuit tuned to the frequency generated by the signal generator 348.


The implanted signal receiving antenna coil 334 forms together with a capacitor 354 a resonant circuit that is tuned to the same frequency as the transmitting antenna 332. The signal receiving antenna coil 334 induces a current from the received high frequency electromagnetic waves and a rectifying diode 360 rectifies the induced current, which charges a storage capacitor 358. A coil 356 connected between the antenna coil 334 and the diode 360 prevents the capacitor 358 and the diode 360 from loading the circuit of the signal receiving antenna 334 at higher frequencies. Thus, the coil 356 makes it possible to charge the capacitor 358 and to transmit digital information using amplitude modulation.


A capacitor-362 and a resistor 364 connected in parallel and a diode 366 forms a detector used to detect amplitude modulated digital information. A filter circuit is formed by a resistor 368 connected in series with a resistor 370 connected in series with a capacitor 372 connected in series with the resistor 368 via ground, and a capacitor 374, one terminal of which is connected between the resistors 368,370 and the other terminal of which is connected between the diode 366 and the circuit formed by the capacitor 362 and resistor 364. The filter circuit is used to filter out undesired low and high frequencies. The detected and filtered signals are fed to an implanted microprocessor 376 that decodes the digital information and controls the motor 22 via an H-bridge 378 comprising transistors 380,382,384 and 386. The motor 22 can be driven in two opposite directions by the H-bridge 378.


The microprocessor 376 also monitors the amount of stored energy in the storage capacitor 358. Before sending signals to activate the motor 29, the microprocessor 376 checks whether the energy stored in the storage capacitor 358 is enough. If the stored energy is not enough to perform the requested operation, the microprocessor 376 waits for the received signals to charge the storage capacitor 358 before activating the motor 22.



FIGS. 36A and 368 show an embodiment of the apparatus of the invention comprising a restriction device 402 having an elongated flexible restriction member 404, such as a belt, a cord or the like. The flexible member 404 extends in a loop around the tissue, suitably the rectum or colon or its prolongation. (Alternatively, the flexible member 404 may comprise two separate parts on opposite sides of the colon or rectum or the prolongation thereof) One portion 404A of member 404 is attached to a frame 408 and another portion 404B of member 404 opposite portion 404A in the loop of the flexible member 404 is connected to an adjustment device 410, which is fixed to the frame 408. The adjustment device 410 pulls the flexible member 404 in the direction from portion 404A to squeeze the colon or rectum or the prolongation thereof between two opposite lengths of the flexible member 404 to thereby restrict the fecal passageway in the colon or rectum or the prolongation thereof 406, see FIG. 36A, and releases the colon or rectum or the prolongation thereof from the flexible member 404 to thereby increase the fecal passageway to allow defaecation 406, see FIG. 36B.



FIGS. 37A and 37B show an embodiment of the apparatus of the invention comprising a restriction device 412 having two plate or bar elements 414 on opposite sides of the rectum 406. An adjustment device 416 moves the elements 412 in parallel towards each other to squeeze the rectum 406 between the elements 412 to thereby restrict the blood flow in the rectum 406, see FIG. 37A, and moves the elements 412 away from each other to release the rectum 406, see FIG. 378.



FIG. 38 shows an embodiment of the apparatus of the invention comprising a restriction device 418 having two rigid articulated clamping elements 420 positioned on opposite sides of the rectum 406. An adjustment device 422 turns the clamping elements 420 toward each other to clamp the rectum 406 between the clamping elements 420 to thereby restrict the fecal passageway in the rectum 406, and turns the clamping elements 420 away from each other to release the rectum 406 from the clamping elements 420 to thereby increase the restriction of the fecal passageway to allow defaecation.



FIGS. 39A, 39B and 39C show an embodiment of the apparatus of the invention comprising a restriction device 424 having three bending members in the form of cylindrical rollers 426, 428 and 430 displaced relative one another in a row along the rectum 406 and positioned alternately on opposite sides of the rectum 406. (Alternatively, each roller 426, 428 and 430 may take the shape of an hour-glass.) An adjustment device 432 moves the two outer rollers 426,430 laterally against the rectum 406 in one direction and the intermediate roller 428 against the rectum 406 in the opposite direction to bend the rectum to thereby restrict the fecal passageway in the rectum 406, see FIG. 398. To increase the fecal passageway to allow defaecation 406, the adjustment device 432 moves the rollers 426-430 away from the rectum 406 to release the latter from the rollers 426-430, see FIG. 39C.



FIGS. 40A through 446 schematically illustrates modifications of the above embodiment according to FIGS. 39A-39C. Thus, FIGS. 40A and 408 show an embodiment similar to that of FIGS. 39A-39C except that the bending members are oval and not rotatable. FIGS. 41A and 41B show an embodiment similar to that of FIGS. 40A and 406 except that the oval bending members are rotatable to release the rectum, see FIG. 41A, and squeeze the rectum, see FIG. 41B. FIGS. 42A and 42B show an embodiment similar to that of FIGS. 39A-39C except that the intermediate roller has a changeable diameter to release the rectum, see FIG. 42A, and squeeze the rectum, see FIG. 42B. FIGS. 43A and 43B show an embodiment similar to that of FIGS. 37A-37C except that the rigid elements are replaced by two cylindrical rollers positioned on opposite sides of the rectum. Finally, FIGS. 44A and 44B show an embodiment substantially similar to that of FIGS. 43A and 436 except that the restriction device is curved to form an S-shaped curvature of the rectum.



FIG. 45 schematically illustrates how any of the above-described embodiments of the anal incontinence treatment apparatus of the invention may be implanted in a patient. Thus, the apparatus comprises an adjustable restriction device 434 extending around the the rectum 435 of the patient and a motor operated adjustment device 436 for mechanically adjusting the restriction device 434 to squeeze rectum to thereby restrict the fecal passageway in the rectum. The motor, not shown, is integrated in the adjustment device 436 and is reversible to operate the adjustment device 436 to release the rectum from the restriction device 434 to allow defaecation. A wireless remote control of the apparatus comprises an external signal transmitter 438 incorporated in a portable remote-control unit and an implanted signal receiver 440, which comprises a control unit for controlling the adjustment device 436 in response to a control signal, for example an electromagnetic wave signal, from the transmitter 438. The signal receiver 440 further comprises an energizer unit which transfers energy from the control signal transmitted by the transmitter 438 into electric energy for energy consuming implanted components of the apparatus, such as the motor for operating the adjustment device 436. The electric energy is conducted via an implanted conductor 442 from the signal receiver 440 to the motor. When the patient needs to relieve himself (defaecation), he readily uses the portable remote control unit to activate the implanted adjustment device 436 to temporarily adjust the implanted restriction device 434 to start release the fecal passageway to allow defaecation.


A pressure sensor 439 is implanted for sensing the pressure on the restriction device 434. The control unit of the signal receiver 449 controls the adjustment device 436 to release the restriction device 434 in response to the pressure sensor 439 sensing an abnormal high pressure.


In the practice of the present invention the details of the elongated restriction device (such as a gastric band) and the adjustment/operation device (which may have electric, hydraulic, or mechanical, etc. actuation), may be as described in copending applications Ser. No. 09/133,319, filed Aug. 13, 1998, Ser. No. 09/133,320, filed Aug. 13, 1998 and Ser. No. 09/133,322, filed Aug. 13, 1998, the disclosures of which are incorporated by reference herein.


There are a number of other conceivable alternative embodiments of the invention that give the same result as the above-described embodiments. For example, the microprocessor of the external and implanted, respectively, control unit may be replaced by discrete components. The power amplifier of the external control unit may be omitted if the signals generated by the signal generator are strong enough. Therefore the invention is to be accorded the broadest interpretation of the appended claims to encompass all equivalent structures and assemblies.

Claims
  • 1. An anal incontinence treatment apparatus for treatment of a patient, who suffers from anal incontinence, comprising an adjustable non-inflatable restriction device implantable in the patient for engaging a portion of the colon or rectum or the prolongation thereof to restrict a faecal passageway therein, an operable adjustment device implantable in the patient and adapted to mechanically adjust the restriction device to restrict the fecal passageway to prevent faeces from passing therethrough and enlarge the fecal passageway to allow faeces to readily pass therethrough, and a powered operation device for operating the adjustment device, characterised in that the operation device includes a servo means operatively connected to the adjustment device, wherein the servo means includes a mechanism that transfers a weak force acting on a moving element having a long stroke into a strong force acting on another moving element having a short stroke.
  • 2. An apparatus according to claim 1, wherein the adjustment device is adapted to adjust the restriction device in a non-magnetic or non-thermal manner.
  • 3. An apparatus according to claim 1, wherein the restriction device is adapted to control the cross-sectional area of the faecal passageway.
  • 4. An apparatus according to claim 3, wherein the restriction device is operable to open and close the faecal passageway.
  • 5. An apparatus according to claim 4, wherein the restriction device is adapted to steplessly control the cross-sectional area of the faecal passageway.
  • 6. An apparatus according to any one of claim 1, wherein the restriction device comprises an element to be placed on one side of said portion of the colon or rectum or the prolongation thereof, and the adjustment device is adapted to squeeze said portion of the colon or rectum or the prolongation thereof between the element and the human bone or tissue to restrict the faecal passageway.
  • 7. An apparatus according to any one of claim 1, wherein the restriction device comprises at least one elongated restriction member and forming means for forming the restriction member into at least a substantially closed loop around said portion of the colon or rectum or the prolongation thereof, the loop defining a restriction opening, whereby the adjustment device is adapted to adjust the restriction member in the loop to change the size of the restriction opening.
  • 8. An apparatus according to claim 7, wherein the restriction device comprises several elongated restriction members to be formed into at least substantially closed loops around the colon or rectum or the prolongation thereof.
  • 9. An apparatus according to claim 7, wherein, the adjustment device is adapted to adjust the longitudinal extension of the elongated restriction member in said loop to change the size of the restriction opening.
  • 10. An apparatus according to claim 9, wherein the restriction member comprises a main portion and two elongated end portions, and the adjustment device is adapted to establish longitudinal relative displacement between the end portions of the restriction member, such that the size of the restriction opening is adjusted.
  • 11. An apparatus according to claim 10, wherein the adjustment device comprises a movement transferring member in engagement with at least one of the end portions of the restriction member and operable to displace said one end portion relative to the other end portion of the restriction member.
  • 12. An apparatus according to claim 11, further comprising a motor, which is fixed relative to the main portion of the restriction member and has a rotating drive shaft operatively connected to the movement transferring member.
  • 13. An apparatus according to claim 12, wherein the motor is positioned relative to the elongated restriction member such that the drive shaft extends in parallel with a chord in said loop of the restriction member.
  • 14. An apparatus according to claim 9, wherein the elongated restriction member is longitudinally resilient and the adjustment device comprises a contraction means adapted to longitudinally contract the resilient restriction member.
  • 15. An apparatus according to claim 14, wherein the elongated restriction member comprises a substantially nonresilient main portion and an end portion forming an elongated helical spring which is contractible by the contraction means.
  • 16. An apparatus according to claim 15, wherein the contraction means comprises an elongated flexible pulling member connected to the main portion of the restriction member and extending through the helical spring to contract the helical spring against an arresting member, which is fixed relative to the main portion of the restriction member.
  • 17. An apparatus according to claim 7, wherein the restriction member comprises an elongated helical spring having a free end, and a body to which said spring is nonrotatably secured at its opposite end, the adjustment device being adapted to rotate the helical spring in one direction to enlarge the coils of the helical spring to longitudinally contract the elongated helical spring and to rotate the helical spring in the opposite direction to reduce the size of the coils of the helical spring to longitudinally extend the helical spring.
  • 18. An apparatus according to claim 17, wherein the restriction member comprises a further elongated helical spring having a free end and nonrotatably secured to the body at its opposite end, and the adjustment device comprises a drive shaft having two opposite end portions connected to the helical springs, respectively, at their free ends, the helical coils forming left and right hand helices, respectively.
  • 19. An apparatus according to claim 18, wherein the restriction member comprises a further elongated helical spring having a free end and nonrotatably secured to the body at its opposite end, and the adjustment device comprises a gearing having an input shaft and two opposite aligned output shafts connected to the helical springs, respectively, at their free ends, the input shaft being connected to the output shafts such that the output shafts rotate in the opposite directions upon rotation of the input shaft, the helical coils forming the same helices.
  • 20. An apparatus according to claim 7, wherein the restriction member forms a radially innermost circumferential confinement surface in said loop of the restriction member, and the adjustment device is adapted to mechanically adjust the restriction member such that at least a portion of the confinement surface is substantially radially displaced in said loop.
  • 21. An apparatus according to claim 20, wherein the adjustment device comprises an elongated voltage responsive element forming part of the confinement surface and capable of bending into a bow in response to a voltage applied across the element, the radius of curvature of said bow being adjustable by changing the level of the voltage.
  • 22. An apparatus according to claim 20, wherein the restriction member comprises an elastic annular element forming the confinement surface, and the adjustment device is adapted to change the diameter of the elastic annular element.
  • 23. An apparatus according to claim 20, wherein the forming means comprises a substantially rigid outer annular element, and the restriction member comprises an elongated helical spring extending internally along the outer annular element and contacting the latter, the helical spring forming part of the circumferential confinement surface and having a free end, and a body to which the helical spring is nonrotatably secured at its opposite end, the adjustment device being adapted to rotate the helical spring in one direction to enlarge the coils of the helical spring to contract the circumferential confinement surface and to rotate the helical spring in the opposite direction to reduce the size of the coils of the helical spring to expand the circumferential confinement surface.
  • 24. An apparatus according to claim 20, wherein the forming means comprises a substantially rigid outer annular element, and the restriction member comprises a first and a second elongated helical spring extending internally along the outer annular element and contacting the latter, the helical springs forming part of the circumferential confinement surface, the first and the second spring, respectively, having a free end, and a body to which the first and the second spring, respectively, is nonrotatably secured at its opposite end, the adjustment device being adapted to rotate the first and the second spring, respectively, in one direction to enlarge the coils of the spring to contract the circumferential confinement surface and to rotate the first and the second spring, respectively, in the opposite direction to reduce the size of the coils of the spring to expand the circumferential confinement surface.
  • 25. An apparatus according to claim 7, wherein the restriction member comprises at least two separate elements, at least one of which is pivoted such that it s pivoted in a plane in which said loop of the restriction member extends, and the adjustment device is adapted to turn said pivoted element to change the size of said restriction opening.
  • 26. An apparatus according to claim 7, wherein the elongated restriction member is elastic and varies in thickness as seen in a cross-section therethrough, and the adjustment device is adapted to turn the restriction member around the longitudinal extension thereof.
  • 27. An apparatus according to claim 7, wherein the forming means comprises a spring material forming the elongated restriction member into the loop, such that the restriction opening has a predetermined size, and the adjustment device is adapted to adjust the restriction member against the spring action of the spring material.
  • 28. An apparatus according to claim 27, wherein the spring material is integrated in the restriction member.
  • 29. An apparatus according to claim 7, wherein the forming means is adapted to form the restriction member into a loop having a predetermined size or a size selected from several predetermined sizes.
  • 30. An apparatus according to claim 7, wherein the adjustment device is adapted to change the size of the restriction opening such that the outer circumferential confinement surface of the restriction member is changed.
  • 31. An apparatus according to claim 7, wherein the adjustment device is adapted to change the size of the restriction opening such that the outer circumferential confinement surface of the restriction member is unchanged.
  • 32. An apparatus according to claim 7, wherein the elongated restriction member is flexible, and the adjustment device is adapted to pull a first portion of the flexible restriction member from a second portion of the flexible restriction member opposite the first portion in the loop to squeeze said portion of the colon or rectum or the prolongation thereof between two opposite lengths of the elongated flexible restriction member to restrict the faecal passageway in said portion of the colon or rectum or the prolongation thereof, and to release said portion of the colon or rectum or the prolongation thereof from the flexible restriction member to enlarge the faecal passageway.
  • 33. An apparatus according to any one of claim 1, wherein the restriction device comprises at least two frame elements, which are foldable towards each other by the adjustment device.
  • 34. An apparatus according to claim 33, wherein the foldable frame elements comprise two substantially semi-circular frame elements, which are hinged together such that the semicircular elements are swingable relative to each other from a fully open state in which they substantially form a circle to a fully folded state in which they form a semicircle.
  • 35. An apparatus according to any one of claim 1, wherein the restriction device comprises at least two elements to be placed on different sides of said portion of the colon or rectum or the prolongation thereof, and the adjustment device is adapted to squeeze said portion of the colon or rectum or the prolongation thereof between the elements to restrict the faecal passageway in said portion of the colon or rectum or the prolongation thereof, and to release said portion of the colon or rectum or the prolongation thereof from the elements to enlarge the faecal passageway.
  • 36. An apparatus according to any one of claim 1 wherein the restriction device comprises at least two articulated clamping elements to be positioned on opposite or different sides of said portion of the colon or rectum or the prolongation thereof, and the adjustment device is adapted to turn the clamping elements toward each other to clamp said portion of the colon or rectum or the prolongation thereof between the clamping elements to restrict the faecal passageway in said portion of the colon or rectum or the prolongation thereof, and to turn the clamping elements away from each other to release said portion of the colon or rectum or the prolongation thereof from the clamping elements to enlarge the faecal passageway.
  • 37. An apparatus according to any one of claim 1, wherein the restriction device is adapted to bend a portion of said portion of the colon or rectum or the prolongation thereof.
  • 38. An apparatus according to claim 37, wherein the restriction device comprises at least two bending members to be positioned on opposite or different sides of said portion of the colon or rectum or the prolongation thereof and to be displaced relative to each other along the faecal passageway in said portion of the colon or rectum or the prolongation thereof, and the adjustment device is adapted to move the bending members against said portion of the colon or rectum or the prolongation thereof to bend it to restrict the faecal passageway, and to move the bending members away from said portion of the colon or rectum or the prolongation thereof to release it from the bending members to enlarge the faecal passageway.
  • 39. An apparatus according to claim 38, wherein the bending members comprise rollers.
  • 40. An apparatus according to any one of claim 1, wherein the restriction device is adapted to rotate a portion of the colon or rectum or the prolongation thereof.
  • 41. An apparatus according to claim 1, wherein the operation device comprises a motor operatively connected to the adjustment device.
  • 42. An apparatus according to claim 41, comprising an implantable reversing device for reversing the motor.
  • 43. An apparatus according to claim 41, wherein the motor is fixed to the restriction device.
  • 44. An apparatus according to claim 41, wherein the motor is remote from the restriction member and is connected to the adjustment device by a power transmission conduit.
  • 45. An apparatus according to claim 1, wherein the servo means comprises a motor, preferably an electric motor.
  • 46. An apparatus according to claim 45, wherein the motor is reversible.
  • 47. An apparatus according to claim 1, wherein the operation device comprises hydraulic means for operating the adjustment device.
  • 48. An apparatus according to claim 47, further comprising a reservoir containing a predetermined amount of fluid for supplying the hydraulic means with fluid.
  • 49. An apparatus according to claim 48, wherein the reservoir defines a chamber for the predetermined amount of fluid and the hydraulic means is adapted to change the volume of the chamber.
  • 50. An apparatus according to claim 48, wherein the hydraulic means comprises a pump adapted to pump fluid between the reservoir and the adjustment device.
  • 51. An apparatus according to claim 48, wherein the hydraulic means of the operation device comprises a fluid conduit, the reservoir forming part of the conduit.
  • 52. An apparatus according to claim 1 further comprising a wireless remote control for non-invasively controlling the adjustment device.
  • 53. An apparatus according to claim 52, wherein the remote control is capable of obtaining information from implantable components of the apparatus and of commanding the adjustment device to adjust the restriction device in response to obtained information.
  • 54. An apparatus according to claim 52, wherein the remote control comprises a separate signal transmitter and/or receiver and an implantable signal receiver and/or transmitter, for transmitting and/or receiving a control signal.
  • 55. An apparatus according to claim 54, wherein the signal receiver comprises a control unit adapted to control the adjustment device in response to the control signal.
  • 56. An apparatus according to claim 55, further comprising an implantable energiser unit for providing energy to energy consuming components of the apparatus to be implanted in the patient.
  • 57. An apparatus according to claim 56, wherein the servo means comprises a motor.
  • 58. An apparatus according to claim 57, wherein the control unit is adapted to control the energiser unit to power the motor with energy in response to the control signal.
  • 59. An apparatus according to claim 57, wherein the motor is an electric motor.
  • 60. An apparatus according to claim 56, wherein the energiser unit is adapted to transform energy from the control signal, as it is transmitted to the signal receiver, into electric energy.
  • 61. An apparatus according to claim 60, further comprising an implantable electric motor for operating the adjustment device, wherein the energiser unit comprises a rechargeable electric power supply for storing the electric energy and the control unit is adapted to power the electric motor with energy from the rechargeable electric power supply in response to the control signal.
  • 62. An apparatus according to claim 56, wherein the energiser unit is adapted to transform energy from the control signal into a direct or alternating current.
  • 63. An apparatus according to claim 56, wherein the energiser unit comprises a battery, an electrically operable switch adapted to connect the battery to the signal receiver in an “on” mode when the switch is powered and to keep the battery disconnected from the signal receiver in a “standby” mode when the switch is unpowered, and a rechargeable electric power supply for powering the switch.
  • 64. An apparatus according to claim 63, wherein the control unit is adapted to power the electric motor with energy from the battery in response to a control signal received from the signal transmitter, when the switch is in its “on” mode.
  • 65. An apparatus according to claim 56, further comprising an external energy transmitter for transmitting wireless energy, wherein the energiser unit comprises a battery and a switch operable by the wireless energy transmitted by the external transmitter, for connecting the battery to the signal receiver in an “on” mode when the switch is powered by the wireless energy and to keep the battery disconnected from the signal receiver in a “standby” mode when the switch is unpowered.
  • 66. An apparatus according to claim 65, wherein the external energy transmitter is adapted to directly power the switch with the wireless energy to switch into the “on” mode.
  • 67. An apparatus according to claim 54, wherein the signal comprises digital or analog pulses.
  • 68. An apparatus according to claim 67, wherein the digital or analog pulses comprise a magnetic field or an electric field.
  • 69. An apparatus according to claim 54, wherein the signal comprises a wave signal.
  • 70. An apparatus according to claim 69, wherein the wave signal comprises an electromagnetic wave signal, a sound wave signal or a carrier wave signal.
  • 71. An apparatus according to claim 70, wherein the carrier signal is frequency, amplitude or frequency and amplitude modulated.
  • 72. An apparatus according to claim 70, wherein the control signal comprises a wave signal comprising one of a sound wave signal including an ultrasound wave signal, an electromagnetic wave signal including an infrared light signal, a visible light signal, an ultra violet light signal and a laser light signal, a micro wave signal, a radio wave signal, an x-ray radiation signal, and a gamma radiation signal.
  • 73. An apparatus according to claim 1, further comprising an implantable energiser unit for providing energy to energy consuming components of the apparatus to be implanted in the patient.
  • 74. An apparatus according to claim 73, further comprising an external energy transmitter for transmitting wireless energy, wherein the energiser unit is adapted to transform the wireless energy into electric energy.
  • 75. An apparatus according to claim 74, wherein the operation device comprises an implantable electric motor for operating the adjustment device, wherein the energiser unit is adapted to power the electric motor with the electric energy transformed from the wireless energy.
  • 76. An apparatus according to claim 73, further comprising an external energy transmitter for transmitting wireless energy, wherein the energiser unit comprises a battery and a switch operable by the wireless energy transmitted by the external transmitter, for connecting the battery to the implantable energy consuming components of the apparatus in an “on” mode when the switch is powered by the wireless energy and to keep the battery disconnected from the energy consuming components in a “standby” mode when the switch is unpowered.
  • 77. An apparatus according to claim 1, further comprising implantable electrical components including at least one voltage level guard.
  • 78. An apparatus according to claim 77, further comprising an implantable capacitor or accumulator, wherein the charge or discharge of the capacitor or accumulator is controlled by use of the voltage level guard.
  • 79. An apparatus according to claim 78, wherein the capacitor has a capacity less than 0.1 μF.
  • 80. An apparatus according to claim 1, further comprising implantable electrical components including a single voltage level guard.
  • 81. An apparatus according to claim 1, further comprising an energy transfer means for wireless transfer of energy from outside the patient's body to the adjustment device and/or other energy consuming implantable components of the apparatus.
  • 82. An apparatus according to claim 81, wherein the energy transfer means is adapted to intermittently transfer the energy in the form of a train of energy pulses for direct use in connection with the energising of the energy consuming components of the apparatus.
  • 83. An apparatus according to claim 82, wherein the energy transfer means is adapted to transfer electric energy, and further comprising an implantable capacitor for producing the train of energy pulses.
  • 84. An apparatus according to claim 81, wherein the operation device comprises an implantable motor or pump for operating the adjustment device, wherein the energy transfer means is adapted to directly power the motor or pump with transferred energy.
  • 85. An apparatus according to claim 81, wherein the energy transfer means is adapted to transfer wireless energy in the form of electromagnetic waves excluding radio waves.
  • 86. An apparatus according to claim 81, wherein the energy transferred by the energy transfer means comprises an electric field or a magnetic field.
  • 87. An apparatus according to claim 81, wherein the energy transferred by the energy transfer means comprises a signal.
  • 88. An apparatus according to claim 81, wherein the energy transfer means is adapted to transfer magnetic energy, non-magnetic energy, electromagnetic energy, non-electromagnetic energy, kinetic energy, non-kinetic energy, sonic energy, non-sonic energy, thermal energy or non-thermal energy.
  • 89. An apparatus according to claim 1, wherein the operation device comprises an implantable motor or pump for operating the adjustment device, and an energy transmission device adapted to transmit wireless energy in the form of an magnetic field or electromagnetic waves for direct power of the motor or pump, as the wireless energy is being transmitted.
  • 90. An apparatus according to claim 1, further comprising a pressure sensor for directly or indirectly sensing the pressure against the restriction device.
  • 91. An apparatus according to claim 90, wherein the restriction device is controlled in response to signals from the pressure sensor.
  • 92. An apparatus according to claim 1, further comprising an implantable energy transforming device for transforming wireless energy directly or indirectly into energy different than the wireless energy for operation of the restriction device.
  • 93. An apparatus according to claim 92, wherein the energy transforming device transforms the wireless energy into kinetic energy for operation of the restriction device.
  • 94. An apparatus according to claim 92, wherein the energy transforming device transforms the wireless energy in the form of sound waves into electric energy for operation of the restriction device.
  • 95. An apparatus according to claim 94, wherein the energy transforming device transforms the wireless energy in the form of sound waves directly into electric energy.
  • 96. An apparatus according to claim 94, wherein the energy transforming device comprises a capacitor.
  • 97. An apparatus according to claim 96, wherein the capacitor is adapted to produce electric pulses from the transformed electric energy.
  • 98. An apparatus according to claim 1, further comprising an implantable reversing device, wherein the restriction device is capable of performing a reversible function and the reversing device reverses the reversible function.
  • 99. An apparatus according to claim 1, further comprising an implantable accumulator or battery and means for controlling the accumulator or battery from outside the patient's body to supply energy to the adjustment device and/or other implantable energy consuming components of the apparatus.
  • 100. An apparatus according to claim 1, wherein the adjustment device is adapted to adjust the restriction device in a non-invasive or non-manual manner.
  • 101. An apparatus according to any one of claim 1, further comprising an implantable gear transmission operatively connecting the operation device and adjustment device.
Parent Case Info

This application is a continuation of application Ser. No. 10/269,949, filed Oct. 15, 2002, which is a continuation of application Ser. No. 09/503,148, filed Feb. 11, 2000, now U.S. Pat. No. 6,464,628, issued Oct. 15, 2002, the entire contents of which are hereby incorporated by reference in this application.

US Referenced Citations (582)
Number Name Date Kind
2060913 Weaver Nov 1936 A
2245030 Gottesfeld et al. Jun 1941 A
2455859 Foley Dec 1948 A
2795641 Rowell Jun 1957 A
3209081 Ducote et al. Sep 1965 A
3357432 Sparks Dec 1967 A
3598287 De Man Aug 1971 A
3626931 Bysakh Dec 1971 A
3662758 Glover May 1972 A
3692027 Ellinwood, Jr. Sep 1972 A
3705575 Edwards Dec 1972 A
3731679 Wilhelmson et al. May 1973 A
3731681 Blackshear et al. May 1973 A
3750194 Summers Aug 1973 A
3810259 Summers May 1974 A
3817237 Bolduc Jun 1974 A
3855122 Bourganel Dec 1974 A
3863622 Buuck Feb 1975 A
3875928 Angelchik Apr 1975 A
3906674 Stone Sep 1975 A
3923060 Ellinwood, Jr. Dec 1975 A
3926195 Bleier et al. Dec 1975 A
3954102 Buuck May 1976 A
4003379 Ellinwood, Jr. Jan 1977 A
4009711 Uson Mar 1977 A
4026305 Brownlee et al. May 1977 A
4044401 Guiset Aug 1977 A
4050449 Castellana et al. Sep 1977 A
4146029 Ellinwood, Jr. Mar 1979 A
4153059 Fravel et al. May 1979 A
4190040 Schulte Feb 1980 A
4201202 Finney et al. May 1980 A
4221219 Tucker Sep 1980 A
4235222 Ionescu Nov 1980 A
4243306 Bonini Jan 1981 A
4245623 Erb Jan 1981 A
4246893 Berson Jan 1981 A
4265241 Portner et al. May 1981 A
4271827 Angelchik Jun 1981 A
4274407 Scarlett Jun 1981 A
4304225 Freeman Dec 1981 A
4318396 Finney Mar 1982 A
4342308 Trick Aug 1982 A
4369771 Trick Jan 1983 A
4399809 Baro et al. Aug 1983 A
4400169 Stephen Aug 1983 A
4408597 Tenney, Jr. Oct 1983 A
4412530 Burton Nov 1983 A
4419985 Trick et al. Dec 1983 A
4424807 Evans Jan 1984 A
4483341 Witteles Nov 1984 A
4505710 Collins Mar 1985 A
4509947 Lattin Apr 1985 A
4538607 Saul Sep 1985 A
4542753 Brenman et al. Sep 1985 A
4549531 Trick Oct 1985 A
4550720 Trick Nov 1985 A
4556050 Hodgson et al. Dec 1985 A
4559930 Cobiski Dec 1985 A
4559931 Fischell Dec 1985 A
4563175 La Fond Jan 1986 A
4568851 Soni et al. Feb 1986 A
4580578 Barsom Apr 1986 A
4583523 Kleinke et al. Apr 1986 A
4584994 Bamberger et al. Apr 1986 A
4587954 Haber May 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592355 Antebi Jun 1986 A
4599081 Cohen Jul 1986 A
4602621 Hakky Jul 1986 A
4602625 Yachia et al. Jul 1986 A
4610658 Buchwald et al. Sep 1986 A
4623350 Lapeyre et al. Nov 1986 A
4628928 Lowell Dec 1986 A
4634443 Haber Jan 1987 A
4664100 Rudloff May 1987 A
4677534 Okochi Jun 1987 A
4679560 Galbraith Jul 1987 A
4692147 Duggan Sep 1987 A
4696288 Kuzmak et al. Sep 1987 A
4711231 Finegold et al. Dec 1987 A
4723538 Stewart et al. Feb 1988 A
4728328 Hughes et al. Mar 1988 A
4756949 Spence et al. Jul 1988 A
4771772 DeWitt Sep 1988 A
4771780 Sholder Sep 1988 A
4773403 Daly Sep 1988 A
4780064 Olsen Oct 1988 A
4786276 Haber Nov 1988 A
4822341 Colone Apr 1989 A
4828544 Lane et al. May 1989 A
4828990 Higashi et al. May 1989 A
4829990 Thuroff et al. May 1989 A
4846794 Hertzer Jul 1989 A
4878889 Polyak Nov 1989 A
4902279 Schmidtz et al. Feb 1990 A
4925443 Heilman et al. May 1990 A
4941461 Fischell Jul 1990 A
4942668 Franklin Jul 1990 A
4950224 Gorsuch et al. Aug 1990 A
4958630 Rosenbluth et al. Sep 1990 A
4976722 Failla Dec 1990 A
4979955 Smith Dec 1990 A
4982731 Lue et al. Jan 1991 A
4983177 Wolf Jan 1991 A
5006106 Angelchik Apr 1991 A
5012822 Schwarz May 1991 A
5042084 Daly Aug 1991 A
5048511 Rosenbluth et al. Sep 1991 A
5057075 Moncrief et al. Oct 1991 A
5062416 Stucks Nov 1991 A
5065751 Wolf Nov 1991 A
5074868 Kuzmak Dec 1991 A
5078676 Bailly Jan 1992 A
5098369 Heilman et al. Mar 1992 A
5112202 Oshima et al. May 1992 A
5123428 Schwarz Jun 1992 A
5151082 Gorsuch et al. Sep 1992 A
5152743 Gorsuch et al. Oct 1992 A
5160338 Vincent Nov 1992 A
5194145 Schoendorfer Mar 1993 A
5224926 Gorsuch et al. Jul 1993 A
5226429 Kuzmak Jul 1993 A
5250020 Bley Oct 1993 A
5261898 Polin et al. Nov 1993 A
5272664 Alexander Dec 1993 A
5282811 Booker et al. Feb 1994 A
5297536 Wilk Mar 1994 A
5304206 Baker, Jr. et al. Apr 1994 A
5316543 Eberbach May 1994 A
5324263 Kraus et al. Jun 1994 A
5336157 Hale Aug 1994 A
5337736 Reddy Aug 1994 A
5352183 Jonsson et al. Oct 1994 A
5358474 Kaldany Oct 1994 A
5397354 Wilk et al. Mar 1995 A
5415660 Campbell et al. May 1995 A
5435230 Phillips Jul 1995 A
5437605 Helmy Aug 1995 A
5449368 Kuzmak Sep 1995 A
5453079 Schwaninger Sep 1995 A
5454840 Krakovsky et al. Oct 1995 A
5501703 Holsheimer et al. Mar 1996 A
5504700 Insley Apr 1996 A
5505733 Justin et al. Apr 1996 A
5509888 Miller Apr 1996 A
5518499 Aghr May 1996 A
5518504 Polyak May 1996 A
5531684 Ensminger et al. Jul 1996 A
5540731 Testerman Jul 1996 A
5562598 Whalen et al. Oct 1996 A
5569187 Kaiser Oct 1996 A
5578069 Miner, II Nov 1996 A
5582580 Buckman, Jr. et al. Dec 1996 A
5632753 Loeser May 1997 A
5665065 Colman et al. Sep 1997 A
5676674 Bolanos et al. Oct 1997 A
5690108 Chakeres Nov 1997 A
5690691 Chen et al. Nov 1997 A
5702431 Wang et al. Dec 1997 A
5704893 Timm Jan 1998 A
5704915 Melsky et al. Jan 1998 A
5713939 Nedungadi et al. Feb 1998 A
5735809 Gorsuch Apr 1998 A
5735887 Barreras et al. Apr 1998 A
5738792 Schoendorfer Apr 1998 A
5743917 Saxon Apr 1998 A
5749909 Schroeppel et al. May 1998 A
5769877 Barreras Jun 1998 A
5771903 Jakobsson Jun 1998 A
5814020 Gross Sep 1998 A
5823991 Shim Oct 1998 A
5827286 Incavo et al. Oct 1998 A
5836935 Ashton et al. Nov 1998 A
5848962 Feindt et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5876425 Gord et al. Mar 1999 A
5900909 Parulski et al. May 1999 A
5902336 Mishkin May 1999 A
5910149 Kuzmak Jun 1999 A
5928195 Malamud et al. Jul 1999 A
5938584 Ardito et al. Aug 1999 A
5938669 Klaiber et al. Aug 1999 A
5954715 Harrington et al. Sep 1999 A
5964789 Karsdon Oct 1999 A
5978712 Suda et al. Nov 1999 A
5980478 Gorsuch et al. Nov 1999 A
5995874 Borza Nov 1999 A
5997501 Gross et al. Dec 1999 A
6003736 Ljunggren Dec 1999 A
6034878 Umemura Mar 2000 A
6039748 Savage et al. Mar 2000 A
6050982 Wheeler Apr 2000 A
6067991 Forsell May 2000 A
6074341 Anderson et al. Jun 2000 A
6077215 Leysieffer Jun 2000 A
6095968 Snyders Aug 2000 A
6095969 Karram et al. Aug 2000 A
6099460 Denker Aug 2000 A
6102887 Altman Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6113574 Spinello Sep 2000 A
6116193 Goeckner Sep 2000 A
6117067 Gil-Vernet Sep 2000 A
6129685 Howard, III Oct 2000 A
6134470 Hartlaub Oct 2000 A
6135945 Sultan Oct 2000 A
6145505 Nikolchev et al. Nov 2000 A
6162238 Kaplan et al. Dec 2000 A
6170484 Feng Jan 2001 B1
6185452 Schulman et al. Feb 2001 B1
6193732 Frantzen et al. Feb 2001 B1
6197055 Matthews Mar 2001 B1
6210347 Forsell Apr 2001 B1
6215727 Parson Apr 2001 B1
6221060 Willard Apr 2001 B1
6233474 Lemelsom May 2001 B1
6266560 Zhang et al. Jul 2001 B1
6275737 Mann Aug 2001 B1
6302910 Yamazaki et al. Oct 2001 B1
6319191 Sayet et al. Nov 2001 B1
6321282 Horowitz Nov 2001 B1
6332466 Yoon Dec 2001 B1
6346099 Altman Feb 2002 B1
6377640 Trans Apr 2002 B2
6400988 Gurewitsch Jun 2002 B1
6402767 Nash et al. Jun 2002 B1
6436054 Viola et al. Aug 2002 B1
6450173 Forsell Sep 2002 B1
6450946 Forsell Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454698 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6454700 Forsell Sep 2002 B1
6454701 Forsell Sep 2002 B1
6456883 Torgerson et al. Sep 2002 B1
6460543 Forsell Oct 2002 B1
6461292 Forsell Oct 2002 B1
6461293 Forsell Oct 2002 B1
6463935 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6464653 Hovland et al. Oct 2002 B1
6464655 Shahinpoor Oct 2002 B1
6470892 Forsell Oct 2002 B1
6471635 Forsell Oct 2002 B1
6471688 Harper et al. Oct 2002 B1
6475136 Forsell Nov 2002 B1
6480946 Tomishima Nov 2002 B1
6482145 Forsell Nov 2002 B1
6501983 Natarajan et al. Dec 2002 B1
6502161 Perego et al. Dec 2002 B1
6503189 Forsell Jan 2003 B1
6516282 Hedlund Feb 2003 B2
6558315 Kuyava May 2003 B1
6571127 Ben-Haim et al. May 2003 B1
6572585 Choi Jun 2003 B2
6576010 Ulert et al. Jun 2003 B2
6589229 Connelly et al. Jul 2003 B1
6600953 Flesler et al. Jul 2003 B2
6638208 Natarajan et al. Oct 2003 B1
6638303 Campbell Oct 2003 B1
6640309 Doblar Oct 2003 B2
6650943 Whitehurst et al. Nov 2003 B1
6659936 Furness et al. Dec 2003 B1
6678561 Forsell Jan 2004 B2
6689085 Rubenstein et al. Feb 2004 B1
6709385 Forsell Mar 2004 B2
6740075 Lebel et al. May 2004 B2
6743220 Sheffer et al. Jun 2004 B2
6745077 Griffith et al. Jun 2004 B1
6772011 Dolgin Aug 2004 B2
6776783 Frantzen et al. Aug 2004 B1
6839393 Sidiropoulos Jan 2005 B1
6843766 Nemir et al. Jan 2005 B1
6862479 Whitehurst et al. Mar 2005 B1
6895280 Meadows et al. May 2005 B2
6896651 Gross et al. May 2005 B2
6911002 Fierro Jun 2005 B2
6915165 Forsell Jul 2005 B2
6928338 Buchser et al. Aug 2005 B1
6929625 Bierman Aug 2005 B2
6948918 Hansen Sep 2005 B2
6953429 Forsell Oct 2005 B2
6954871 Kuhn Oct 2005 B2
6960218 Rennich Nov 2005 B2
6960233 Berg et al. Nov 2005 B1
6979351 Forsell et al. Dec 2005 B2
6988983 Connors et al. Jan 2006 B2
7003684 Chang Feb 2006 B2
7008372 Chaussy et al. Mar 2006 B2
7011624 Forsell Mar 2006 B2
7017583 Forsell Mar 2006 B2
7043295 Starkebaum May 2006 B2
7066922 Angel et al. Jun 2006 B2
7108686 Burke et al. Sep 2006 B2
7165153 Vogt Jan 2007 B2
7207936 Forsell Apr 2007 B2
7214233 Gannoe et al. May 2007 B2
7217236 Calderon et al. May 2007 B2
7222224 Woo May 2007 B2
7235044 Forsell Jun 2007 B2
7238165 Vincent Jul 2007 B2
7250037 Shermer et al. Jul 2007 B2
7311690 Burnett Dec 2007 B2
7313639 Perego et al. Dec 2007 B2
7330753 Policker et al. Feb 2008 B2
7338437 Forsell Mar 2008 B2
7367938 Forsell May 2008 B2
7371208 Forsell May 2008 B2
7395822 Burton et al. Jul 2008 B1
7407479 Forsell Aug 2008 B2
7407481 Forsell Aug 2008 B2
7442165 Forsell Oct 2008 B2
7455663 Bikovsky Nov 2008 B2
7473261 Rennich Jan 2009 B2
7569050 Moberg et al. Aug 2009 B2
7621863 Forsell Nov 2009 B2
7648455 Forsell Jan 2010 B2
7666132 Forsell Feb 2010 B2
7669601 Tal Mar 2010 B2
7670280 Gloth Mar 2010 B2
7844342 Dlugos et al. Nov 2010 B2
7846160 Payne et al. Dec 2010 B2
7931582 Forsell Apr 2011 B2
7972354 Prestezog et al. Jul 2011 B2
7987853 Swann et al. Aug 2011 B2
7988616 Forsell Aug 2011 B2
7991476 Nachum Aug 2011 B2
8070768 Kim et al. Dec 2011 B2
8096938 Forsell Jan 2012 B2
8096939 Forsell Jan 2012 B2
8126558 Forsell Feb 2012 B2
8195296 Longhini et al. Jun 2012 B2
8287444 Forsell Oct 2012 B2
8290594 Forsell Oct 2012 B2
8313423 Forsell Nov 2012 B2
20010011543 Forsell Aug 2001 A1
20010016738 Harrington et al. Aug 2001 A1
20010041824 Zappala Nov 2001 A1
20020022759 Forsell Feb 2002 A1
20020028846 Yeager et al. Mar 2002 A1
20020028980 Thierfelder et al. Mar 2002 A1
20020032462 Houser et al. Mar 2002 A1
20020040208 Flaherty et al. Apr 2002 A1
20020055711 Lavi et al. May 2002 A1
20020072698 Chiang et al. Jun 2002 A1
20020072759 Fry Jun 2002 A1
20020095139 Keogh et al. Jul 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020099259 Anderson et al. Jul 2002 A1
20020111577 Sirimanne et al. Aug 2002 A1
20020120219 Hovland et al. Aug 2002 A1
20020151922 Hogendijk et al. Oct 2002 A1
20020165575 Saleh Nov 2002 A1
20020183588 Fierro Dec 2002 A1
20030009201 Forsell Jan 2003 A1
20030009221 Forsell Jan 2003 A1
20030014010 Carpenter et al. Jan 2003 A1
20030014086 Sharma Jan 2003 A1
20030021822 Lloyd Jan 2003 A1
20030032855 Shahinpoor Feb 2003 A1
20030032857 Forsell Feb 2003 A1
20030040804 Stack et al. Feb 2003 A1
20030050591 McHale Mar 2003 A1
20030055442 Laufer et al. Mar 2003 A1
20030060814 Capuano et al. Mar 2003 A1
20030060893 Forsell Mar 2003 A1
20030066536 Forsell Apr 2003 A1
20030069547 Gonon Apr 2003 A1
20030088148 Forsell May 2003 A1
20030092962 Forsell May 2003 A1
20030100929 Forsell May 2003 A1
20030105385 Forsell Jun 2003 A1
20030109771 Forsell Jun 2003 A1
20030114729 Forsell Jun 2003 A1
20030125605 Forsell Jul 2003 A1
20030125768 Peter Jul 2003 A1
20030144575 Forsell Jul 2003 A1
20030144648 Forsell Jul 2003 A1
20030163029 Sonnenschein et al. Aug 2003 A1
20030200407 Osaka Oct 2003 A1
20030208247 Spinelli et al. Nov 2003 A1
20030220621 Arkinstall Nov 2003 A1
20030231543 Matsui Dec 2003 A1
20030233143 Gharib et al. Dec 2003 A1
20040006291 Rehrig Jan 2004 A1
20040015041 Melvin Jan 2004 A1
20040024285 Muckter Feb 2004 A1
20040024419 Slepian et al. Feb 2004 A1
20040034275 Forsell Feb 2004 A1
20040068299 Laske et al. Apr 2004 A1
20040089313 Utley et al. May 2004 A1
20040098113 Forsell et al. May 2004 A1
20040098545 Pline et al. May 2004 A1
20040102804 Chin May 2004 A1
20040122526 Imran Jun 2004 A1
20040122527 Imran Jun 2004 A1
20040147871 Burnett Jul 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040172141 Stack et al. Sep 2004 A1
20040177918 Murata et al. Sep 2004 A1
20040186344 Jannuzzi Sep 2004 A1
20040215159 Forsell Oct 2004 A1
20040215283 Camps et al. Oct 2004 A1
20040220516 Solomon et al. Nov 2004 A1
20040230718 Polzin et al. Nov 2004 A1
20040236877 Burton Nov 2004 A1
20040242956 Scorvo Dec 2004 A1
20040249451 Lu et al. Dec 2004 A1
20040260316 Knudson et al. Dec 2004 A1
20050009178 Yost et al. Jan 2005 A1
20050038484 Knudson et al. Feb 2005 A1
20050049509 Mansour et al. Mar 2005 A1
20050055025 Zacouto et al. Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050075697 Olson et al. Apr 2005 A1
20050192642 Forsell Sep 2005 A1
20050209633 Callister et al. Sep 2005 A1
20050209652 Whitehurst et al. Sep 2005 A1
20050222678 Lashinski et al. Oct 2005 A1
20050238506 Mescher et al. Oct 2005 A1
20050240229 Whitehurst et al. Oct 2005 A1
20050245957 Starkebaum et al. Nov 2005 A1
20050256587 Egan Nov 2005 A1
20050261712 Balbierz et al. Nov 2005 A1
20050266042 Tseng Dec 2005 A1
20050267405 Shah Dec 2005 A1
20050267596 Chen et al. Dec 2005 A1
20050276261 Kim Dec 2005 A1
20060025855 Lashinski et al. Feb 2006 A1
20060030887 Letort et al. Feb 2006 A1
20060034358 Okamura Feb 2006 A1
20060041243 Nayak et al. Feb 2006 A1
20060047180 Hegde et al. Mar 2006 A1
20060069414 Imran et al. Mar 2006 A1
20060083899 Burazin et al. Apr 2006 A1
20060127246 Forsell Jun 2006 A1
20060129028 Krakousky Jun 2006 A1
20060142635 Forsell Jun 2006 A1
20060149124 Forsell Jul 2006 A1
20060149129 Watts et al. Jul 2006 A1
20060161217 Jaax et al. Jul 2006 A1
20060167539 Mcewan Jul 2006 A1
20060173238 Starkebaum Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060200194 Yun Sep 2006 A1
20060212055 Karabey et al. Sep 2006 A1
20060224177 Finitsis Oct 2006 A1
20060229688 McClure et al. Oct 2006 A1
20060235482 Forsell Oct 2006 A1
20060247719 Maschino et al. Nov 2006 A1
20060247721 Maschino et al. Nov 2006 A1
20060247722 Maschino et al. Nov 2006 A1
20060257446 Tropsha et al. Nov 2006 A1
20060264699 Gertner Nov 2006 A1
20070015959 Forsell Jan 2007 A1
20070038232 Kraemer Feb 2007 A1
20070038831 Kim Feb 2007 A1
20070043256 Banik Feb 2007 A1
20070049790 Wagner et al. Mar 2007 A1
20070073099 Forsell Mar 2007 A1
20070092862 Gerber Apr 2007 A1
20070109019 Wu May 2007 A1
20070121389 Wu May 2007 A1
20070156204 Denker et al. Jul 2007 A1
20070162670 Yang Jul 2007 A1
20070167670 Coleman et al. Jul 2007 A1
20070185373 Tsonton Aug 2007 A1
20070193632 Shu Aug 2007 A1
20070204924 Delgiacco et al. Sep 2007 A1
20070225802 Forsell Sep 2007 A1
20070232848 Forsell Oct 2007 A1
20070233019 Forsell Oct 2007 A1
20070250020 Kim et al. Oct 2007 A1
20070255335 Herbert et al. Nov 2007 A1
20070255336 Herbert et al. Nov 2007 A1
20070265675 Lund et al. Nov 2007 A1
20080004487 Haverfiled Jan 2008 A1
20080045783 Forsell Feb 2008 A1
20080051718 Kavazov et al. Feb 2008 A1
20080065167 Boggs et al. Mar 2008 A1
20080086179 Sharma Apr 2008 A1
20080097487 Pool et al. Apr 2008 A1
20080103544 Weiner May 2008 A1
20080139873 Peters et al. Jun 2008 A1
20080139980 Fladl et al. Jun 2008 A1
20080154256 Payne et al. Jun 2008 A1
20080178889 Tal Jul 2008 A1
20080195172 Furness et al. Aug 2008 A1
20080195228 Uno et al. Aug 2008 A1
20080200753 Forsell Aug 2008 A1
20080214888 Shalom Sep 2008 A1
20080245371 Gruber Oct 2008 A1
20080269548 Vecchiotti et al. Oct 2008 A1
20080275296 Forsell Nov 2008 A1
20080300449 Gerber et al. Dec 2008 A1
20090018388 Forsell Jan 2009 A1
20090024108 Lee-Sepsick et al. Jan 2009 A1
20090054725 Forsell Feb 2009 A1
20090082705 Asfora Mar 2009 A1
20090131959 Rolland May 2009 A1
20090216076 Kain Aug 2009 A1
20090240100 Forsell Sep 2009 A1
20090240294 Forsell Sep 2009 A1
20090247817 Forsell Oct 2009 A1
20090247818 Forsell Oct 2009 A1
20090248033 Forsell Oct 2009 A1
20090248109 Forsell Oct 2009 A1
20090250068 Forsell Oct 2009 A1
20090254106 Forsell Oct 2009 A1
20090266366 Swann et al. Oct 2009 A1
20100016657 Robertson et al. Jan 2010 A1
20100145138 Forsell Jun 2010 A1
20100145139 Forsell Jun 2010 A1
20100210955 Forsell Aug 2010 A1
20100211091 Forsell Aug 2010 A1
20100211092 Forsell Aug 2010 A1
20100217067 Forsell Aug 2010 A1
20100217289 Forsell Aug 2010 A1
20100217295 Forsell Aug 2010 A1
20100222894 Forsell Sep 2010 A1
20100286735 Garfield et al. Nov 2010 A1
20100305656 Imran et al. Dec 2010 A1
20100312047 Forsell Dec 2010 A1
20100312048 Forsell Dec 2010 A1
20100312049 Forsell Dec 2010 A1
20100312050 Forsell Dec 2010 A1
20100312163 Forsell Dec 2010 A1
20100312164 Forsell Dec 2010 A1
20100312356 Forsell Dec 2010 A1
20100318116 Forsell Dec 2010 A1
20100318117 Forsell Dec 2010 A1
20100318118 Forsell Dec 2010 A1
20100324360 Forsell Dec 2010 A1
20100324361 Forsell Dec 2010 A1
20100324362 Forsell Dec 2010 A1
20100324591 Forsell Dec 2010 A1
20100331614 Forsell Dec 2010 A1
20100331615 Forsell Dec 2010 A1
20100331616 Forsell Dec 2010 A1
20100331617 Forsell Dec 2010 A1
20100331945 Forsell Dec 2010 A1
20100332000 Forsell Dec 2010 A1
20110009894 Forsell Jan 2011 A1
20110009896 Forsell Jan 2011 A1
20110009897 Forsell Jan 2011 A1
20110015473 Forsell Jan 2011 A1
20110015474 Forsell Jan 2011 A1
20110040143 Forsell Feb 2011 A1
20110066254 Forsell Mar 2011 A1
20110087337 Forsell Apr 2011 A1
20110144468 Boggs et al. Jun 2011 A1
20110192402 Forsell Aug 2011 A1
20110196192 Forsell Aug 2011 A1
20110196193 Forsell Aug 2011 A1
20110196194 Forsell Aug 2011 A1
20110196271 Forsell Aug 2011 A1
20110196371 Forsell Aug 2011 A1
20110196391 Forsell Aug 2011 A1
20110196411 Forsell Aug 2011 A1
20110196435 Forsell Aug 2011 A1
20110196466 Forsell Aug 2011 A1
20110196476 Forsell Aug 2011 A1
20110196481 Forsell Aug 2011 A1
20110196482 Forsell Aug 2011 A1
20110196483 Forsell Aug 2011 A1
20110196484 Forsell Aug 2011 A1
20110196485 Forsell Aug 2011 A1
20110196486 Forsell Aug 2011 A1
20110201870 Forsell Aug 2011 A1
20110201871 Forsell Aug 2011 A1
20110201873 Forsell Aug 2011 A1
20110202041 Forsell Aug 2011 A1
20110202129 Fofsell Aug 2011 A1
20110202131 Forsell Aug 2011 A1
20110208231 Forsell Aug 2011 A1
20110218394 Forsell Sep 2011 A1
20110224787 Forsell Sep 2011 A1
20110230930 Forsell Sep 2011 A1
20110263928 Forsell Oct 2011 A1
20110288499 Forsell Nov 2011 A1
20120029550 Forsell Feb 2012 A1
Foreign Referenced Citations (132)
Number Date Country
104 74 47 Dec 1990 CN
227 58 59 Mar 1998 CN
15 41 262 Jun 1969 DE
19511998 Oct 1996 DE
199 09 427 May 2000 DE
101 04 806 Aug 2002 DE
0102548 Mar 1984 EP
01 343 40 Mar 1985 EP
0 200 286 Nov 1986 EP
0 252 258 Jan 1988 EP
0300552 Jan 1989 EP
0 348 114 Dec 1989 EP
0 372 311 Jun 1990 EP
0378251 Jul 1990 EP
0 393 714 Oct 1990 EP
0412191 Feb 1991 EP
0 532 162 Mar 1993 EP
0 583 012 Feb 1994 EP
0611561 Sep 1994 EP
0626154 Nov 1994 EP
0876808 Nov 1998 EP
1 004 330 May 2000 EP
1 033 142 Sep 2000 EP
1 072 238 Jan 2001 EP
1 275 344 Jan 2003 EP
1 514 526 Mar 2005 EP
1563814 Aug 2005 EP
1563866 Aug 2005 EP
1563886 Aug 2005 EP
1 586 283 Oct 2005 EP
1 600 183 Nov 2005 EP
1598030 Nov 2005 EP
1 602 334 Dec 2005 EP
1 681 041 Jul 2006 EP
1 878 452 Jan 2008 EP
1 884 259 Feb 2008 EP
1 913 880 Apr 2008 EP
2 248 015 May 1975 FR
2688693 Sep 1993 FR
2692777 Dec 1993 FR
27565485 Jun 1998 FR
2797181 Feb 2001 FR
2908979 May 2008 FR
8 856 74 Dec 1961 GB
1174814 Dec 1969 GB
1194358 Jun 1970 GB
2021956 Dec 1979 GB
58-190437 Nov 1983 JP
62-8752 Jan 1987 JP
63-18177 Jul 1988 JP
1-305945 Dec 1989 JP
2-211170 Aug 1990 JP
3-63047 Mar 1991 JP
3-158154 Jul 1991 JP
2002-517277 Jun 2002 JP
1 635 980 Mar 1991 SU
WO 8401282 Apr 1984 WO
WO 9100094 Jan 1991 WO
WO 9427504 Dec 1994 WO
WO 9601597 Jan 1996 WO
WO 9611036 Apr 1996 WO
WO 9639932 Dec 1996 WO
WO 9703616 Feb 1997 WO
WO 9741799 Nov 1997 WO
WO 9806358 Feb 1998 WO
WO 9850099 Nov 1998 WO
WO 9918885 Apr 1999 WO
WO 9963907 Dec 1999 WO
WO 0009047 Feb 2000 WO
WO 0009048 Feb 2000 WO
WO 0015158 Mar 2000 WO
WO 0016686 Mar 2000 WO
WO 0021606 Apr 2000 WO
WO 0033825 Jun 2000 WO
WO 0112075 Feb 2001 WO
WO 0112078 Feb 2001 WO
WO 0112108 Feb 2001 WO
WO 0145486 Jun 2001 WO
WO 0145487 Jun 2001 WO
WO 0145590 Jun 2001 WO
WO 0147431 Jul 2001 WO
WO 0147575 Jul 2001 WO
WO 0150832 Jul 2001 WO
WO 0147434 Jul 2001 WO
WO 0147435 Jul 2001 WO
WO 0147439 Jul 2001 WO
WO 0158391 Aug 2001 WO
WO 0154615 Aug 2001 WO
WO 0167964 Sep 2001 WO
WO 0238217 May 2002 WO
WO 0239959 May 2002 WO
WO 0240083 May 2002 WO
WO 02053210 Jul 2002 WO
WO 02058563 Aug 2002 WO
WO 02087657 Nov 2002 WO
WO 02100481 Dec 2002 WO
WO 03002192 Jan 2003 WO
WO 03033054 Apr 2003 WO
WO 03086507 Oct 2003 WO
WO 2004012806 Feb 2004 WO
WO 2004018037 Mar 2004 WO
WO 2004019765 Mar 2004 WO
WO 2004060171 Jul 2004 WO
WO 2004071684 Aug 2004 WO
WO 2004087233 Oct 2004 WO
WO 2004101029 Nov 2004 WO
WO 2005072169 Aug 2005 WO
WO 2005084730 Sep 2005 WO
WO 2005105003 Nov 2005 WO
WO 2006014496 Feb 2006 WO
WO 2006044194 Apr 2006 WO
WO 2006114004 Nov 2006 WO
WO 2006122285 Nov 2006 WO
WO 2006134106 Dec 2006 WO
WO 2007017880 Feb 2007 WO
WO 2007041795 Apr 2007 WO
WO 2007051563 May 2007 WO
WO 2007106303 Sep 2007 WO
WO 2007109759 Sep 2007 WO
WO 2007121525 Nov 2007 WO
WO 2007124128 Nov 2007 WO
WO 2007137026 Nov 2007 WO
WO 2007149555 Dec 2007 WO
WO 2008100390 Aug 2008 WO
WO 2008135988 Nov 2008 WO
WO 2009010799 Jan 2009 WO
WO 2009048382 Apr 2009 WO
WO 2009048389 Apr 2009 WO
WO 2009096854 Aug 2009 WO
WO 2009096865 Aug 2009 WO
WO 2009096868 Aug 2009 WO
WO 2009115645 Sep 2009 WO
Non-Patent Literature Citations (42)
Entry
International Search Report for International Application No. PCT/SE01/00230.
U.S. Appl. No. 09/373,224, Forsell; filed Aug. 12, 1999.
U.S. Appl. No. 11/988,450, Forsell; filed May 27, 2009.
U.S. Appl. No. 12/865,061, Forsell; filed Jul. 28, 2010.
U.S. Appl. No. 13/080,118, Forsell; filed Apr. 5, 2011.
Webster's II New River side University, 1984, pp. 573,1000.
U.S. Appl. No. 13/122,809, Forsell; filed Apr. 6, 2011.
U.S. Appl. No. 13/122,825, Forsell; filed Apr. 6, 2011.
U.S. Appl. No. 13/122,907, Forsell; filed Apr. 6, 2011.
U.S. Appl. No. 13/123,019, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,025, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,037, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,041, Forsell; filed Jun. 30, 2011.
U.S. Appl. No. 13/123,082, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,151, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,182, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,197, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,145, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,183, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,231, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,232, Forsell; filed Apr. 7, 2011.
U.S. Appl. No. 13/123,255, Forsell; filed Apr. 8, 2011.
U.S. Appl. No. 13/123,261, Forsell; filed Apr. 8, 2011.
U.S. Appl. No. 13/123,284, Forsell; filed Apr. 8, 2011.
U.S. Appl. No. 13/123,330, Forsell; filed Apr. 8, 2011.
U.S. Appl. No. 13/123,394, Forsell; filed Apr. 8, 2011.
U.S. Appl. No. 13/123,402, Forsell; filed Apr. 8, 2011.
U.S. Appl. No. 13/123,425, Forsell; filed Apr. 8, 2011.
U.S. Appl. No. 13/123,436, Forsell; filed Apr. 8, 2011.
U.S. Appl. No. 13/123,446, Forsell; filed Apr. 8, 2011.
U.S. Appl. No. 13/123,536, Forsell; filed Apr. 11, 2011.
U.S. Appl. No. 13/123,537, Forsell; filed Apr. 11, 2011.
U.S. Appl. No. 13/123,583, Forsell; filed Apr. 11, 2011.
U.S. Appl. No. 13/123,586, Forsell; filed Apr. 11, 2011.
U.S. Appl. No. 13/123,587, Forsell; filed Apr. 11, 2011.
U.S. Appl. No. 13/123,667, Forsell; filed Apr. 11, 2011.
Anand, Sneh., “Electrical Pacing of the Ampullary Isthmic Junction for Contraception”, IEEE Engineering in Medicine & Biology 10th Annual International Conference, 1988.
S. K. Guha et al., “Feasibility study of the reversible occlusion device for the vas deferens,” Medical and Biological Engineering and Computing, vol. 14, No. 1, Jan. 1976, pp. 15-18.
Enclyclopedia Britannica definition of “ductus deferens” (retrieved from the Internet May 22, 2013: URL:http://www.britannica.com/EBchecked/topic/173003/ductus-deferens?sections=173003main&view=print)
Birmingham, A. T., “The human isolated vas deferens: its response to electrical stimulation and to drugs.” Nov. 1968, British Journal of Pharmacology, 34(3), 692-693.
U.S. Appl. No. 14/037,438, filed Sep. 26, 2013, Forsell.
U.S. Appl. No. 14/100,619, filed Dec. 9, 2013, Forsell.
Related Publications (1)
Number Date Country
20070073099 A1 Mar 2007 US
Continuations (2)
Number Date Country
Parent 10269949 Oct 2002 US
Child 11476107 US
Parent 09503148 Feb 2000 US
Child 10269949 US