The present invention relates to a mechanical clock movement equipped with a device for regulating its working formed by a resonator linked with an escapement. Escapement is understood in the clockmaking field to mean a system formed by a mechanism for maintaining oscillation of the resonator and a mechanism for counting this oscillation to set the work rate of a display of at least one item of time information. The resonator and the mechanism for maintaining its oscillation together define an oscillator. It will be noted that the mechanism for maintaining oscillation and the counting mechanism are formed by the very same mechanism for the distribution of energy supplied by a drive device, which perform both functions.
More specifically, the present invention is concerned with increasing the quality factor of the regulator device in order to improve the working precision of the mechanical clock movement, in particular to improve the isochronism of the oscillator and reduce the power lost by the regulator device.
It has already been proposed to reduce the friction of air on the resonator in order to increase the quality factor of a regulator device of a clock movement.
In order to reduce the air friction on a resonator in the spring balance of a mechanical clock movement in particular, it is known from document FR 2054540 to incorporate this movement entirely in an air-sealed case, inside which the pressure is reduced to below atmospheric pressure to obtain a low pressure or reduced pressure in this case. To ensure the adjustment of the oscillation frequency of the spring balance, this document provides a system of two bimetallic blades acting on the classic index when one or other of these blades is heated either by an electric current supplied through electrical contacts arranged in the base of the case or by a light beam through a glass of the case.
In a second embodiment with an electronic movement it is provided to place an electromagnetic oscillator in a hermetically sealed chamber, in which this oscillator and the means for maintaining and regulating it are housed. The oscillation of the balance is maintained by two coils linked to magnets borne by this balance. The adjustment of the active length of the spring is conducted in a similar manner to the previous embodiment by an electric current supplied by bimetallic blades. As can be seen in
It is therefore noted that document FR 2054540 published in 1971 instructs placing the oscillator in its own hermetic chamber in the case of an electronic movement, whereas in the case of a mechanical movement it is provided to incorporate the entire clock movement in a sealed case and to reduce the pressure in this watch case. It can be noted that this instruction has prevailed in the clockmaking field. Since the proposed embodiment for an electronic movement is relatively simple to manufacture, in particular for a quartz resonator, this instruction has become established for electronic movements. In contrast, in the case of mechanical movements various significant problems have not enabled mechanical watches to be fabricated commercially with their movements each housed in a hermetic case, in which a reduced pressure prevails.
Firstly, mechanical watches generally have mechanical elements that pass through the case for the adjustment and/or operation of various functions, and this complicates the design of the case to enable this to ensure that a relatively stable reduced pressure is maintained over a long period. Then, in the event of an after-sales service that requires that the case is opened, there must be the means available to once again provide an air void in this case until a low pressure is produced. Moreover, since the adjustment of the frequency of the resonator depends on the ambient pressure, this adjustment poses a manufacturing problem. The solution comprising acting on an index using bimetallic blades by supplying an electric current or a light beam via the base of the case once the movement is encased and the low pressure has been established in particular poses a problem with respect to the precision of such an adjustment and a problem in the production process, since the individual adjustment of each watch must be done once the movement has been encased.
Recently document WO 2013/084040 has sought to solve the problem of the adjustment of the balance spring of a mechanical watch having a watch case, in which a reduced pressure is provided to improve the quality factor of this oscillator. This document proposes a solution, in which the adjustment is conducted at ambient pressure while taking into account an adjustment difference measured for operation at ambient pressure and operation at a determined reduced pressure. However, it will be observed that this document remains within the concept of the previous document by proposing to place the clock movement entirely in a watch case, inside which an air void is provided to obtain the desired reduced pressure. Hence, apart from a process that enables a particular device in the watch to be omitted in order to conduct the adjustment of the working thereof under reduced pressure, all the other problems remain.
The aim of the present invention is to solve problems of the prior art in the case of watches equipped with a mechanical movement, in which it is provided to increase the quality factor of the oscillator by reducing vibrations due to air acting on the resonator. Moreover, the objective of the present invention is also to provide a mechanical watch that allows the chamber to also remain hermetically sealed during maintenance services, in particular when the oil traditionally provided on the bearings of various wheels must be renewed or a certain quantity of such an oil must simply be added to ensure correct lubrication of the wheels of the mechanical movement.
For this, the present invention relates to a mechanical clock movement comprising a resonator, an escapement linked to this resonator and a display of at least one item of time information, wherein this display is driven by a mechanical drive device via a counter wheel train, the work rate of which is set by the escapement. At least the resonator is housed in a hermetically sealed chamber, in which a reduced pressure in relation to atmospheric pressure prevails. According to the invention the escapement is a magnetic escapement comprising an escape wheel coupled directly or indirectly to the resonator via a magnetic coupling system. This magnetic coupling system is formed from at least one first magnetic element and a second magnetic element that exhibit? a magnetic interaction at least periodically between them. The hermetically sealed chamber comprises a wall, which runs between the first and the second magnetic elements so that the first magnetic element is inside the chamber, whereas the second magnetic element and the escape wheel are outside this chamber and the wall is arranged to permit said magnetic interaction through this wall.
Magnetic escapement is understood to mean an escapement, in which at least two of its elements are coupled magnetically without contact.
According to a particular embodiment the mechanical drive device, the counter wheel train and the display device are located outside the hermetically sealed chamber, in which the reduced pressure prevails. Thus, the hand setting and various other controls of the functions of the mechanical movement can be performed in the classic manner through a watertight case and acting on the part of the movement that is not housed in the chamber at low pressure.
According to a preferred embodiment the mechanical movement does not have any wheel that pivots with a mechanical friction in the bearings in the hermetically sealed chamber. Thus, there is no need to supply oil to reduce the mechanical friction and to have a sliding friction with a film of oil. Therefore, firstly, no renewal of oil needs to be provided in the hermetically sealed chamber. Then, there is no risk of generating dust as a result of the pivoting movement of a wheel in the hole of a mechanical bearing. Moreover, this particular feature allows the working precision of the watch to be increased since the differences in working between various possible positions of the watch are minimised. Finally, such an embodiment also allows a reduction in the power necessary for maintaining the resonator and therefore for increasing the power reserve of the watch.
Other particular features of the invention are outlined below in the detailed description of the invention.
The invention will be described below by means of attached drawings given as non-restrictive examples:
A second general embodiment of a mechanical movement according to the invention is shown schematically in a block diagram in
It will be observed that the magnetic mechanism for maintaining oscillation can be similar in design to a magnetic escapement such as that of the first embodiment, and can therefore correspond, for example, to one of the particular embodiments that will be described below. The same observation applies to the counting and drive magnetic mechanism. In particular, at least one of these two magnetic mechanisms comprises an escape wheel coupled directly or indirectly to the resonator 10A via a magnetic coupling system. This magnetic coupling system is formed from at least one first magnetic element and a second magnetic element that exhibit at least periodically a magnetic interaction between them. According to the invention there is provided a hermetically sealed chamber 14A, which comprises a wall running between the first and second magnetic elements, so that the first magnetic element is inside the chamber, whereas the second magnetic element and the escape wheel are outside this chamber. The wall is arranged to allow said magnetic interaction through this wall.
In a preferred variant the two magnetic mechanisms 24 and 26 are of the same type and each comprise a wheel. The wheel of mechanism 24 transmits energy from the drive device to the resonator to maintain its oscillations and, moreover, to enable it to in turn drive the mechanism 26 and the display device 8. The wheel of mechanism 26 is a wheel forming a counter wheel train for oscillations of the resonator, and this counter wheel train drives the display device. Thus, in this preferred variant the two magnetic mechanisms 24 and 26 each comprise an escape wheel coupled directly or indirectly to the resonator 10A via a magnetic coupling system and the chamber 14A comprises a first wall, which runs through a first non-contact magnetic coupling system of mechanism 24, i.e. between magnetic elements of this first system creating the non-contact magnetic coupling, and a second wall, which runs through a second non-contact magnetic coupling system 26, i.e. between magnetic elements of this second system creating the non-contact magnetic coupling. As several magnetic mechanisms forming magnetic escapements can have reversible function for whatever adaptations, a person skilled in the art will easily understand that the specific configurations given below for the first general embodiment as non-restrictive examples can also apply to either one of the two mechanisms 24 and 26 forming the magnetic escapement of the second general embodiment. In a first mode of operation energy is transmitted from the escape wheel to the resonator and in a second mode of operation energy is transmitted from the resonator to the escape wheel. It is often necessary to introduce an imbalance in the mechanism to define the direction of rotation. Thus, the pallet stones and teeth of the drive pallet devices, for example, are slightly different from the pallet stones and teeth of a classic escapement. A person skilled in the art will know to take this into account for the configuration of the magnetic mechanism for counting oscillations of the resonator and driving the display device.
A third embodiment of a clock movement according to the invention is described below with reference to
The device for regulating the operation of the clock movement 32 comprises a resonator 34 and an escape wheel 36 directly magnetically coupled to the resonator. This resonator is housed in a hermetically sealed chamber 38, in which a reduced pressure in relation to atmospheric pressure prevails, whereas the escape wheel is provided outside this chamber. The reduced pressure is preferably lower or substantially equal to a millibar (1 mbar). In a preferred variant, it is provided to introduce a gas trap, also called a getter, into the chamber to absorb residual gases after this chamber is hermetically sealed. As a result of such a device the pressure inside the chamber can be further reduced and it can also be determined that this chamber has no leakage or has not lost its air tightness after a certain period. The escape wheel is secure to a first end of a shaft 42 mounted in a double ball bearing 43 and 44, which ensures guidance of this shaft and allows a stable rotation of the wheel 36 around a defined rotation axis. This double ball bearing is mounted in a bar 46, which is firmly secured by at least one screw to a plate 48, on a surface of which the chamber 38 is arranged. A small wheel 50 is secured to the second end of the shaft 42. This small wheel is for coupling the regulating device with the barrel and the counter wheel train of the clock movement. It will be noted that this small wheel generally forms a pinion meshing with a wheel of the power chain between the barrel and the display. The escape wheel 36 bears a plurality of magnets 40 having a magnetisation direction parallel to the rotation axis of this wheel. This plurality of magnets forms magnetic elements of a first part of a magnetic coupling system between this wheel and the resonator, this system forming the magnetic escapement.
The resonator 34 is formed by a tuning fork 52 mounted at its centre on a base 53 and respectively bearing two small bars 54 and 56 at the end of its two branches. At a first end each small bar comprises a small plate 58A and 58B respectively bearing two extended magnets 62A and 63A, 62B and 63B respectively, forming magnetic elements of a second part of the magnetic coupling system forming the magnetic escapement. These magnets also have a magnetisation direction parallel to the rotation axis of the wheel 36. Each small bar additionally comprises a counterweight 60A and 60B respectively for balancing the resonator 34 and possibly compensating magnetic forces of the magnetic coupling system. Only the resonator 34 is arranged in the chamber 38, which comprises a non-magnetic wall 66, in particular a small crystal plate, which runs between the magnets 40 of the escape wheel and the magnets 62A, 63A, 62B, 63B secured to the resonator. The thickness of this small plate 66 is as small as possible so that the distance between the magnets 40 and the magnets borne by the resonator is also as small as possible to ensure an adequately strong magnetic interaction between the first and second parts of the magnetic coupling system of the magnetic escapement. The chamber 38 is formed by a small plate 67, on which is secured the base 53 of the resonator, a side wall 68 formed in a single piece with the small plate 67 or sealed on this, and the wall 68 defining a cover that is glued or welded to the side wall by known means. The air void in this chamber is obtained by means known to a person skilled in the art, in particular by closing the cover in a chamber at reduced pressure or by a hole provided in the side wall of the chamber and then hermetically sealed. It will be observed that different variants can be provided for the chamber. In particular, the wall 66 can have a low thickness only in the area superposed on the wheel 36. Moreover, to strengthen the chamber, cross bars can be arranged in the chamber between the base 67 and the cover 66, in particular between the two branches of the tuning fork.
The operation of the magnetic escapement of this third embodiment will not be described in detail here. The person skilled in the art will find detailed explanations as well as improved embodiments of such a magnetic escapement in European Patent Application EP 14176816, or in a patent application claiming the priority of this European Application. In general, a force couple is supplied to the escape wheel 36 by the drive device via the pinion wheel 50 to drive this escape in rotation. The magnets are configured and arranged so that the rotation of the wheel 36 stimulates the resonator such that the branches of the tuning fork start to vibrate and the small plates 58A and 58B start to oscillate. The magnetic interaction between the magnets in a variant in magnetic repulsion is provided so that the magnetic coupling system periodically accumulates potential magnetic energy, which it gives back at least to a major part to the resonator in each period when a magnet 40 exits radially from one of the magnetised zones 62A, 63A, 62B or 63B, wherein these magnetised zones perform a movement back and forth substantially in the radial direction of the escape wheel. Thus, the oscillation of the resonator is maintained. Moreover, in a determined torque range the magnetic coupling system ensures synchronisation between the oscillation frequency of the resonator and the angular speed of the escape wheel. In a main variant the small plate 58A and 58B respectively executes an oscillation period while the wheel 36 executes a rotation of an angular period defined by the angular distance between the centres of two adjacent magnets 40. It will be noted that in a variant of the magnetic coupling system the magnets 40 or the magnets borne by the resonator can be replaced by elements made of ferromagnetic material. In another variant the magnets are arranged in magnetic attraction formation.
In a particular variant another type of resonator is provided that comprises a balance having a shaft formed at least partially by a magnetic material and pivoting substantially without mechanical friction between two magnetic bearings. A configuration of this type will be explained below. In another particular variant the resonator is formed by a balance wheel and flexible blades, which connect this wheel to the chamber, wherein these flexible blades are arranged to allow the balance to perform an oscillation with a determined frequency. A configuration of this type will also be explained below.
A fourth embodiment of a clock movement according to the invention is described below with reference to
The escape wheel 76 comprises a peripheral magnetised ring defining a plurality of magnetised zones 84. This plurality of magnetised zones defines an angular magnetic period and forms a first part of a magnetic coupling system of the magnetic escapement of the clock movement 72. The wheel 76 is firmly mounted on a shaft 82, the two ends of which are respectively inserted into two ball bearings 88 and 92, these being respectively arranged in a plate 90 and in a small plate 94, which projects from the chamber 80 at the level of its base 96. An escapement pinion 86 is also firmly mounted on the shaft 82, this pinion serving to mechanically couple with the drive device and counter wheel train of the clock movement. The intermediate member 78 forms an anchor, which is similar in operation to an anchor of a Swiss anchor escapement, but the coupling between the anchor and the escape wheel is magnetic here. The anchor is mounted on a shaft 98 and on one side comprises a ever 100 terminated by a fork 116 and a guard pin 122 and on the other side comprises two arms 104 and 106 that bear two magnets 108 and 109 at their respective ends, these two magnets forming a second part of the magnetic coupling system of the magnetic escapement. The anchor oscillates between two stable positions defined by two pins 101 and 102.
Although the escapement is a magnetic escapement, the anchor being coupled magnetically to an escape wheel formed by a magnetised annular structure, this embodiment is noteworthy in that the mechanical coupling between the anchor 78 and the balance 75 of the resonator is identical to that of a classic Swiss anchor escapement. On its shaft 126 the balance thus bears a large plate 120, to which a pin 118, also called an impulse pin, and a small plate having a recess in the guard pin 122. This mechanical coupling system enables the oscillations of the spring balance to be maintained as well as the anchor to be driven intermittently in a movement back and forth between its two stable positions, wherein this movement defines an oscillation that is synchronous with that of the spring balance. The oscillation movement of the anchor allows the magnets 108 and 109 to alternately have a magnetic interaction with the magnetised zones 84 of the escape wheel 76. Each magnetised zone 84 is preferably provided with an angular magnetic ramp formed by a magnetised material forming a magnetic flux, which increases angularly, and this is indicated in the figures by the sign ‘−’ followed by the sign ‘+’. Provided after this magnetic ramp is a magnetic potential barrier indicated by the sign ‘+++’, which serves to angularly stop the rotation of the wheel 76 by virtue of the magnetic coupling system. This potential barrier thus forms a magnetic stop. It is created by a magnet supplying a magnetic field of the highest intensity sufficient to ensure that the resulting couple on the escape wheel is higher than the couple supplied to the escape wheel by the drive device. Each zone 84 can be formed in a variant by three adjacent magnets having magnetisations whose intensity increased in clockwise direction from one magnet to the next. In another variant there are only two magnets per zone, the first part of each zone, indicated by the sign ‘−’ having no magnetised material.
As regards the operation of this magnetic escapement, in the configuration shown in
The spring balance and the anchor are housed in a chamber 80 where a low pressure in relation to atmospheric pressure prevails. This chamber is closed by a non-magnetic plate 112, e.g. made of transparent crystal. In the superposed area between the escape wheel and the anchor 78 the plate is thinner to reduce to the maximum the distance between the magnets of the anchor and the magnetised zones of the escape wheel, between which according to the invention this plate passes to form a wall of the hermetically sealed chamber. In the variant shown the plate 112 defines a cover, which is screwed onto the case, in which are arranged the resonator, devices for controlling its frequency and the anchor, by means of screws firmly connecting the respective projecting parts 114 and 145 of the cover and the case. A sealing strip 146 is provided to ensure an airtight closure. The case is made of brass, for example. In a variant all the walls of the chamber are transparent.
To regulate the oscillation frequency of the spring balance a device is provided that is similar to a classic device with an index 134 mounted on a stud holder 136, but is specific to the present invention in that the balance cock 132 (balance bridge) is arranged above this index and the stud holder in relation to the spring balance, in contrast to a standard construction, and that the index is arranged above the stud holder, which requires longer pins that in a classic configuration. The assembly of these members on the balance cock is achieved in a similar manner to a classic configuration and the balance cock can be secured to the base of the chamber 80 in particular by means of at least one screw. To enable the active length of the spring to be adjusted once the chamber 80 is closed and the air void has been at least partially created, the index bears a magnet 138 at one end. The angular position of the index can be varied by magnetic coupling by at least one tool 140 that has a magnet arranged to attract magnet 138 at its end. A groove is provided in the base 96 of the chamber to facilitate this operation in particular if the base 96 is not transparent. It will be noted that alternatives are conceivable to regulate the oscillation frequency of the resonator. For example, a balance can be provided that has an inertia that is initially too high and then reduce this inertia by material ablation by means of a laser beam through a wall of the chamber that is provided to be transparent to the wavelength of this laser. However, this simple solution has the disadvantage of not allowing the oscillation frequency to be reduced slightly again once a first adjustment has been conducted.
According to a preferred variant there is no wheel provided in the chamber 80 that pivots with a mechanical friction in the bearings. The need for lubrication in this chamber can thus be avoided. In the shown variant the shaft 16 of the balance 75 is made at least partially from a magnetic material and it pivots substantially without mechanical friction between two magnetic bearings 128 and 130 that are shown schematically. Moreover, the intermediate member 78 has a shaft 98 made at least partially from a magnetic material and it pivots substantially without mechanical friction between two magnetic bearings 110 and 111 that are also shown schematically. A person skilled in the art has several documents available to him relating to magnetic bearings that can be employed in the clockmaking field. In particular, patent application WO 2012/062524 and the documents cited in the attached search report of this application can be cited in particular. It will be noted that the magnetic bearings 111 and 130 are arranged in holes provided in the small plate 112 assuring an airtight closure. However, in a variant these magnetic bearings can be arranged on the inside surface of the plate 112, like magnetic bearings 110 and 128. In this case the magnets are elongated or the arms of the anchor each have an angled section or an elbow that allows the magnets 108 and 109 to be arranged at a lower level. Such an arrangement can also allow the shafts 98 and 126 on the side of the small plate 112 to be advantageously extended.
According to an alternative the resonator is formed by a balance wheel and flexible blades that connect this wheel to the chamber, wherein these flexible blades are arranged to allow the balance to perform an oscillation around a geometric rotation axis at a determined frequency. An example of a configuration that can be adapted to this third embodiment will be explained below. Moreover, at an alternative for the intermediate member, this is connected by flexible blades to the chamber, wherein these flexible blades are arranged to allow this intermediate member to oscillate synchronously with the resonator. As a result of these alternative solutions it is possible to have wheels without pivoted shafts in the chamber. This thus prevents any wear or ageing of a lubricant oil and it is therefore not necessary to open the hermetically sealed chamber during maintenance service of the clock movement. The problem of production and assembly tolerances relating to magnetic bearings is also avoided.
The variant of the fourth embodiment shown in
A fifth embodiment of a clock movement according to the invention is described below with reference to
The resonator is formed by a balance wheel 184 and flexible blades 186 and 188 secured to this wheel, wherein these flexible blades are arranged to allow the balance to perform an oscillation largely around a geometric axis 190 with a determined frequency. In the variant shown, these flexible blades are arranged in a cross shape, i.e. are shifted 90°. Each flexible blade is fixed at a first end to the base of the case 181 to form the hermetically sealed chamber 180 and at a second end diametrically opposed to the first end is fixed to the wheel 184 of the balance. Thus, the balance is not pivoted and there is no bearing provided in the chamber 180. The regulation of the oscillation frequency of such a resonator can be achieved at the level of the flexible blades by a thermal treatment or material ablation using a laser beam, and at the level of inertia of the wheel of the balance by material ablation also using a laser. It will be noted that at least one final regulation can be provided once the chamber is sealed to be airtight and has a reduced pressure.
As in the case of the previous embodiment, this fifth embodiment is noteworthy in that it proposes a magnetic escapement that is identical in part to a classic Swiss anchor escapement and that the magnetic coupling system enabling implementation of the present invention is arranged so that this magnetic escapement has a kinematic operation similar to that of the Swiss anchor escapement. Thus, the escape wheel is classic and the two arms 162 and 164 of the anchor that respectively bear two pallet stones 166 and 167 coupled mechanically to this escape wheel are also classic. In the variant shown the magnetic coupling system between the anchor and the balance wheel 184 has been designed to obtain control of the anchor 160 by the balance and generate pulses for maintaining the oscillation of this balance similar to the Swiss anchor escapement, as described above in relation to the fourth embodiment. For this, the anchor comprises a lever 168, which at its end bears an oblong magnet 170 located outside the chamber 180 facing a non-magnetic wall 182 of this chamber. This oblong magnet forms a first part of the magnetic coupling system. It performs two functions of the anchor, replacing the fork and the guard pin of a classic anchor. At its centre the wheel 184 of the balance has a disc 192 connected to its wheel by four arms 194 and bearing the second part of the magnetic coupling system located inside the chamber. This second part comprises a magnetic pin 198 formed by a magnet arranged for attraction relative to the magnet of the anchor and inserted in a hole of the disc 192, which corresponds to the large plate of a classic escapement, and a central magnetised disc 196 arranged for repulsion relative to the magnet of the anchor and provided with a slot 200. This central magnetised disc replaces the small plate of a classic escapement.
The operation of the magnetic coupling system is shown in
Number | Date | Country | Kind |
---|---|---|---|
13199427.9 | Dec 2013 | EP | regional |
13199428.7 | Dec 2013 | EP | regional |
14176816.8 | Jul 2014 | EP | regional |
14182532.3 | Aug 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/078518 | 12/18/2014 | WO | 00 |