The invention relates to a lock device.
Such a lock device has a first connecting module and a second connecting module, of which the first connecting module can be arranged in a closing direction on the second connecting module and is then mechanically catch-lockingly engaged in a closing position with the second connecting module.
The lock device can be opened in that the first connecting module can be detached from the second connecting module by terminating the catch locking engagement by a movement of the first connecting module, or of a part of the first connecting module serving as actuating element, in an opening direction, which differs from the closing direction.
In a lock device known from WO 2008/006357 A2 a first connecting module and a second connecting module each have for example one or multiple magnets which attractingly act between the first connecting module and the second connecting module in such a way that the first connecting module catch-lockingly engages with the second connecting module. Locking the lock takes place here in a closing direction which is directed essentially perpendicular to the planes of extension of the first connecting module and the second connecting module. As the first connecting module or an actuating element of the first connecting module is turned or shifted relative to the second connecting module, the catch locking elements of the first connecting module and of the second connecting module come out of engagement, wherein by the movement at the same time the magnetic attracting force between the first connecting module and the second connecting module—caused by a movement of the magnets relative to each other—is weakened, so that the first connecting module can be detached from the second connecting module. As, to support the closing movement, magnets are provided whose effect weakens upon opening, both the closing process and the opening process can take place in an easy and haptically pleasant manner.
In a lock device known from WO 2009/010049 A2, in which a first connecting module and a second connecting module can, magnetically supported, be catch-lockingly brought into engagement with each other, releasing the catch locking engagement takes place by a shifting or turning movement of the first connecting module, or of a part of the first connecting module, relative to the second connecting module, wherein by the shifting or turning movement a catch locking element of the one connecting module runs up onto a slope of the other connecting module and is thereby pushed out of engagement with an allocated catch locking element of the other connecting module, so that the catch locking engagement of the first connecting module and the second connecting module is terminated.
The lock devices of WO 2008/006 357 A2 and of WO 2009/01 00 49 A2 have in common that the catch-locking locking of the first connecting module with the second connecting module can be released in the closing position by a movement of the first connecting module, or of a part of the first connecting module (in the form of an actuating element), relative to the second connecting module in an opening direction, which differs from the closing direction to establish the locking. As a user in a suitable manner actuates the first connecting module, or an actuating element provided on said connecting module, by moving it in the opening direction, the first connecting module is detached from the second connecting module. Thereby, releasing the locking can take place essentially unobstructed and free by suitable actuation of the first connecting module or of the part of the first connecting module (in the form of an actuating element).
It is desirable that releasing the lock device can only take place when this is also intended. In particular, it can also be desirable, to make possible a release only under specific circumstances and by specific persons, for example to provide an anti-theft protection.
It is the object of the present invention to provide a lock device of the kind mentioned in the beginning, which in a simple and user-friendly manner is secured against an unintended release.
In a lock device of the kind mentioned in the beginning, a locking device is provided to prevent a movement of the first connecting module, or of the part of the first connecting module, in the opening direction when the first connecting module and the second connecting module are positioned in the closing position, wherein the locking device can be unlocked to move the first connecting module or the part of the first connecting module in the opening direction.
It is an idea of the present invention to provide a locking device, which prevents an unintended movement of the first connecting module, or of the part of the first connecting module, for releasing the lock device. The locking device in the closing position thereby retains the first connecting module, or the part of the first connecting module which is to be actuated to release the lock device, so that it cannot be moved in the opening direction and thereby the lock device also cannot be opened. The locking device is here designed in such a way that it can be unlocked, and when the locking device is unlocked a movement of the first connecting module or the part of the first connecting module in the opening direction is possible, so that the catch locking engagement of the first connecting module with the second connecting module can be terminated and the first connecting module can be detached from the second connecting module.
The locking device represents a safeguarding measure which prevents an unintended release of the lock device. In this manner, the lock device securely holds together the first connecting module and the second connecting module and guarantees a secure connection also during operation and under strain.
The phrase, the opening direction differs from the closing direction, shall presently be understood to mean that the opening direction points in another direction than the closing direction and is not directed parallel to it. In particular, the opening direction is thus not directed contrary to the closing direction.
The movement of the first connecting module, or of the part of the first connecting module which is to be actuated to open the lock device, can particularly be a shifting movement transverse to the closing direction, a rotation movement in a plane transverse to the closing direction or a pivoting movement on a rotation axis transverse to the closing direction. It is essential herein that the opening direction (which can also be a direction of rotation) differs from the closing direction, so that the connection of the first connecting module to the second connecting module to close the lock device takes place in the closing direction, the opening, however, is caused by a movement in an opening direction different from the closing direction, for example running transverse to the closing direction.
In the closing position the first connecting module and the second connecting module are mechanically catch-lockingly engaged with each other. For this purpose, at least one spring lock element, i.e. an elastically mounted locking element, is provided on the first connecting module or on the second connecting module, which engages with at least one blocking piece on the other connecting module to form a spring catch locking. The spring lock element can for example be an elastic catch locking element as a kind of clip. The blocking piece can for example be a locking catch, which the spring lock element positive-lockingly acts on.
Additionally, magnetic means can be provided, which, to support the transfer of the first connecting module into the closing position, cause a magnetic attracting force between the first connecting module and the second connecting module. By providing the magnetic means the lock device is lockable in an easy and haptically pleasant manner, in that the closing process upon attaching the first connecting module onto the second connecting module is magnetically supported and the mechanical catch locking engagement is established in an automatic manner.
The spring catch locking can be catch-lockingly engaged by arranging the first connecting module in the closing direction on the second connecting module, wherein herein the at least one spring lock element comes into positive-locking engagement with the at least one blocking piece. Upon establishing the closing position the first connecting module and the second connecting module are attracted by the magnetic means, so that the spring catch locking can advantageously engage largely automatically.
But the lock device can also act purely mechanically—and thus have no magnetic means—and be lockable by manually attaching the connecting modules onto each other and by applying a compressive force in the closing direction.
Releasing the lock device takes place in that the first connecting module, or the part of the first connecting module which is to be actuated, is moved relative to the second connecting module in such a way that the at least one spring lock element and the at least one blocking piece of the spring catch locking come out of engagement.
In a first exemplary embodiment the at least one spring lock element and the at least one blocking piece of the spring catch locking can for this purpose be shifted relative to each other in such a way that the at least one spring lock element along the opening direction gets out of range of the at least one blocking piece, so that the catch locking engagement is terminated. The idea herein is that the spring lock element is shifted as far in the opening direction relative to the blocking piece until it gets out of range of the blocking piece and is thereby no longer held positive-lockingly by the blocking piece. In this shifted position, the catch locking engagement is thereby terminated. Shifting the spring lock element relative to the blocking piece can take place by a tangential, linear movement or also by a turning movement of the first connecting module, or of the part of the first connecting module which is to be actuated, relative to the second connecting module.
In an alternative embodiment it can also be provided that the at least one spring lock element is shifted relative to the at least one blocking piece in such a way that the at least one spring lock element is pushed out of engagement with the at least one blocking piece by running up onto a run-up slope transverse to the opening direction. The idea is here, that upon moving the spring lock element in the opening direction the spring lock element runs up onto a slope, which acts upon the spring lock element in such a way that said spring lock element is pushed out of engagement with the at least one blocking piece transverse to the opening direction, so that the positive-locking engagement of the spring lock element with the blocking piece is terminated. This can, yet again, take place by a linear shifting movement or by a turning movement of the first connecting module, or of the part of the first connecting module which is to be actuated, relative to the second connecting module.
In a third exemplary embodiment the at least one spring lock element and the at least one blocking piece of the spring catch locking are designed as a kind of thread, so that by turning the first connecting module, or the part of the first connecting module which is to be actuated, relative to the second connecting module the at least one spring lock element and the at least one blocking piece can be screwed out of engagement. The spring lock element and the blocking piece each have for this purpose at least one thread groove, which in the closing direction can in a spring-elastic manner be catch-lockingly brought into engagement with each other. As the spring lock element and the blocking piece are then screwed apart, the spring lock element can be brought out of engagement with the blocking piece, so that the catch locking engagement is terminated and the first connecting module can be taken away from the second connecting module.
Advantageously the magnetic means, used where applicable, are designed in such a way that by the movement of the first lock part, or of the part of the first lock part which is to be actuated, in the opening direction at the same time also the magnetic means are moved relative to each other in such a way that the magnetic attracting force between the first connecting module and the second connecting module is weakened. For the realization of the magnetic means in this context at least one magnet each, or on the one hand at least one magnet and on the other hand at least one magnetic, for example ferromagnetic, anchor (e.g. in the form of a steel or iron sheet), can be arranged on the first connecting module and on the second connecting module respectively. By the movement of the first connecting module, or of the part of the first connecting module which is to be actuated, in the opening direction then also the at least one magnet or the magnetic anchor of the first connecting module and the at least one magnet or the magnetic anchor of the second connecting module are moved relative to each other in such a way that the magnetic attracting force weakens.
When for example a magnet each is provided on the first connecting module and on the second connecting module respectively, to close the lock device these lie frontally opposite to each other with different poles so that they attract each other and establish the catch locking engagement of the first connecting module with the second connecting module. By moving the first connecting module, or the part of the first connecting module which is to be actuated, in the opening direction then for example the magnets can be moved tangentially relative to each other, so that they no longer lie frontally opposite to each other and the magnetic attracting force between them is weakened.
When on each connecting module two or more magnets are used, it is also conceivable that by the movement of the first connecting module, or of the part of the first connecting module which is to be actuated, like poles of the magnets are approximated to each other, so that the magnetic attracting force can, where applicable, even be reversed into a magnetic force of repulsion to thereby also magnetically support the opening of the lock device.
In an advantageous embodiment, furthermore, restoring means are provided to transfer the first connecting module, or the part of the first connecting module which is to be actuated, into a position in which the first connecting module can be catch-lockingly engaged with the second connecting module. The restoring means, for example formed by a mechanical spring, have the effect that upon attaching the first connecting module onto the second connecting module these are in due manner adjusted relative to each other in such a way that—with the support of the magnetic means—the catch locking engagement can be established. In other words, by the effect of the restoring means the first connecting module, or the part of the first connecting module which is to be actuated, is returned again from the position, into which it had been moved in the opening direction for opening, so that by attaching the first connecting module onto the second connecting module the lock device can readily be closed again.
In an advantageous embodiment these restoring means can also be realized by the magnetic means, so that additional means for example in the form of a mechanical spring are not required. The magnetic means, by the magnetic attracting force acting between their magnetic elements, herein have the effect that the first connecting module or its parts, which are provided for the catch locking engagement, automatically come into their position required for the catch locking engagement.
The locking device can for example have at least one locking element, movably arranged on the first connecting module or on a part of the first connecting module, to engage with a recess on the second connecting module or on a second part of the first connecting module in such a way that a movement of the first connecting module, or of the part of the first connecting module which is to be actuated, in the opening direction to detach the first connecting module from the second connecting module is prevented. The locking element can for example be designed as a locking bolt, which lockingly connects the first connecting module to the second connecting module, so that the first connecting module cannot be moved relative to the second connecting module and, thereby, opening the lock device is impossible.
It is also possible that the locking element lockingly connects a part of the first connecting module, which is to be actuated to open the lock device, to a fixed part of the first connecting module, so that the part which is to be actuated cannot be moved, for example cannot be turned or shifted, in the opening direction. It is essential herein that the locking element prevents a movement of the part of the first connecting module, which is to be actuated to open the lock device, so that opening the lock device is only possible when the locking element is unlocked, that is, no longer engages with the allocated recess.
For a secure locking, multiple locking elements can be provided which are to be actuated in an unlocking manner to open the lock device.
In an advantageous embodiment the locking device is designed for actuation by means of a key or a numerical code. Unlocking the locking device takes place then only by using a key or by entering a numerical code, so that the locking device at the same time also provides an anti-theft protection, in the scope of which unauthorized persons are unable to open the lock device.
It is furthermore possible and advantageous that the locking device is designed to automatically come into its locked position upon arranging the first connecting module on the second connecting module, so that in the closing position the first connecting module catch-lockingly engages with the second connecting module in an automatic manner and at the same time the lock device is locked in such a way that opening the lock device is only possible by unlocking the locking device. The locking elements of the locking device can for this purpose for example be pre-loaded by mechanical springs, so that upon establishing the closing state the locking elements automatically come into engagement with the allocated recesses in a locking manner.
Instead of forming the locking device by a separate locking element, movably arranged on the first connecting module, which has to be unlocked to unlock the lock device, in an alternative embodiment it can also be provided that the locking device can be unlocked by moving the first connecting module or a part of the first connecting module in an unlocking direction. The unlocking direction herein differs from the opening direction and is not directed parallel to it. For example, the unlocking direction can be directed transverse to the opening direction or, when the movement in the opening direction is configured as a linear movement, can be configured as a direction of rotation. It is also possible—but not imperative—that the unlocking direction differs both from the opening direction and from the closing direction and is not directed parallel to either of these.
Unlocking the lock device thereby takes place not by actuation of a separate locking elements, but by a movement of the first connecting module or of a part of the first connecting module, so that the locking device can be integrally formed with the first connecting module or a part of the first connecting module. The idea herein is to develop for the unlocking movement a further degree of freedom for the movability of the first connecting module or of a part of the first connecting module. In this way, the first connecting module can be attached onto the second connecting module in the closing direction, can be detached from the second connecting module by a movement in the opening direction, differing from the closing direction, for example directed transverse to the closing direction, but for this purpose has to be previously unlocked by a movement in the unlocking direction, differing at least from the opening direction.
In a concrete embodiment the locking device can be formed by a locking element, fixedly arranged on the first or the second connecting module, which in a locked, closed state of the lock device engages with a groove on the other of first and second connecting module. The opening direction can herein for example be directed transverse to the closing direction and the unlocking direction can be designed as a direction of rotation on the closing direction, wherein by turning the first connecting module or a part of the first connecting module in the unlocking direction the locking element can be brought out of engagement with the groove, to be able to move the first connecting module or the part of the first connecting module in the opening direction relative to the second connecting module and to thereby be able to open the lock device.
To ensure that upon closing the lock device and transferring the connecting modules into their closed, locked state the locking device securely locks, restoring means can be provided, which have the effect that the first connecting module or the part of the first connecting module, upon attachment onto the second connecting module, comes into a position in which it catch-lockingly engages with the second connecting module, and at the same time the locking device is locked. This return can, for example, be realized by additional spring means, pre-loading the first connecting module or the part of the first connecting module in a locked position, or by the magnetic means, which have the effect that the first connecting module or the part of the first connecting module, upon attachment onto the second connecting module, is for example turned in such a way that the locking device is automatically locked.
For example, the magnetic means can be formed by two magnets, identical in construction and not rotationally symmetric—for example rectangular—which stand opposite to each other with unlike poles and thereby attract each other and try to assume a position, in which both magnets stand congruently opposite to each other. When using rectangular magnets there are for example two positions, turned relative to each other by 180°, in which the magnets stand attracting congruently opposite to each other. These two positions then correspond to positions of the first (or the part of the first) connecting module and the second connecting module relative to each other, in which the first and the second connecting module can be locked with each other.
Alternatively, the magnetic means can also be polarized in such a way that magnets on the first connecting module and magnets on the second connecting module stand opposite to each other with multiple polarities and upon attaching the connecting modules onto each other automatically adjust into a preferential position, in which a locking can take place.
In another concrete embodiment the first connecting module or a part of the first connecting module can be pivotable on a rotation axis, directed transverse to the closing direction, in the opening direction to open the lock device relative to the second connecting module. In this case the locking device in the locked state prevents a pivoting movement of the first connecting module or of a part of the first connecting module, wherein the locking device is for example formed by a locking element, arranged on the one of first and second connecting module, and an engaging element, arranged on the other of first and second connecting module and in the locked state engaging with the locking element, and the locking device can be unlocked by a movement of the first connecting module or of a part of the first connecting module in an unlocking direction, differing from the opening direction.
In this case the first connecting module is in a closing direction attached onto the second connecting module and can be detached again from the second connecting module by moving at least a part of the first connecting module in a pivoting direction corresponding to the opening direction. The unlocking direction can in this case for example be directed transverse to or contrary to the closing direction and thereby differs from the opening direction.
In turn, restoring means can be realized by additional spring means or by the magnetic means provided anyway, which have the effect that the first connecting module or the part of the first connecting module upon closing the lock device automatically comes into a position in which it, upon attaching the connecting modules onto each other, comes into its locked state and can only be opened by a movement in the unlocking direction and a subsequent movement in the opening direction.
As the unlocking of the locking device takes place by a movement of the first connecting module or of a part of the first connecting module, the opening process divides into two movement components of the first connecting module or of a part of the first connecting module. First, to open the lock device, the first connecting module or a part of the first connecting module has to be moved by a predetermined distance in the unlocking direction to in this manner release the locking device. Afterwards, the first connecting module or the part of the first connecting module is then moved in the opening direction so that the mechanical catch locking engagement between the first connecting module and the second connecting module can be terminated and the connecting modules can thereby be separated from each other. The result is a haptically pleasant opening process, which at the same time guarantees a secure hold in the closed position of the lock device and, thereby, a secure connection of components which are to be connected.
In an exemplary embodiment the lock device is for example made of a first connecting module and a second connecting module, wherein
in the first connecting module at least one magnet and in the second connecting module at least one anchor or a second magnet is arranged,
in the first connecting module a spring lock element and in the second connecting module a blocking piece is arranged, which together form a spring catch locking,
during the closing process between the first connecting module and the second connecting module the spring catch locking is closed by the attraction of magnet and anchor or second magnet,
to open, magnet and anchor are shifted laterally or tangentially, wherein
additionally, spring lock element and blocking piece are moved against each other, so that the spring catch locking is laterally bypassed during the opening process without the spring lock element being pushed aside, or
the spring lock element is gradually pushed aside during a lateral shifting by means of a force-deflecting slope, or
spring lock element and blocking piece are designed thread-like, catch-lockingly engage upon closing and are opened upon opening by screwing,
an unlockable locking device is provided, which prevents the lateral or tangential opening movement between spring lock element and blocking piece, but does not impede the engaging movement of the first connecting module and the second connecting module.
The advantage of this lock device is that opening cannot take place unintended, as two actuations are needed: Unlocking and lateral shifting or rotating to open. On the other hand, the lock device closes in a very pleasant manner, as the magnet closes the catch locking automatically. After the engagement the locking is then manually locked.
The idea underlying the invention shall subsequently be further explained with the help of the exemplary embodiments illustrated in the figures. In the figures:
For the realization of magnetic means as a kind of a magnet-anchor system a magnet 3, 4 each (or on the one hand a magnet and on the other hand a magnetic anchor) is arranged on the first connecting module 1 and the second connecting module 2 respectively, which in the closing position, illustrated in
The lock device, illustrated in the closing position in
To prevent an unintended opening of the lock device, a locking device is provided which prevents a lateral opening movement in the opening direction Y between the spring lock elements 5a, 5b and the blocking pieces 6a, 6b. The locking device is in the exemplary embodiment according to
The locking element 7 can be pre-loaded in a locking position against the first connecting module 1 by the use of a mechanical spring in such a way that upon closing the lock device it automatically comes into the locking position, illustrated in
The locking element 7 on its end which engages with the recess 8 can be formed, for example be bevelled, in such a way that a movement in the opening direction Y is blocked, but not a movement in another direction, for example a movement counter to the opening direction Y.
To open the lock device the locking device is to be unlocked by actuating the locking element 7 in that the locking element 7 is removed from the recess and thereby the positive-locking locking is terminated.
In the position illustrated in
When the lock device is to be closed again, the first connecting module 1, as shown in
Additional restoring means can also be dispensed with, in that the return is taken on by the magnetic attracting force of the magnets 3, 4. By the magnetic attracting force the first connecting module 1 is automatically pulled into a position in which it can catch-lockingly engage with the second connecting module 2, and the catch locking engagement is automatically established. A sufficiently strong dimensioning of the magnetic attracting force is a prerequisite.
To close the lock device the first connecting module 1 and the second connecting module 2 are attached onto each other, wherein the closing process takes place magnetically supported by the magnetic attracting force of the magnets 3, 4 and thus the catch locking engagement of the first connecting module 1 with the second connecting module 2 is essentially established automatically. When the locking element 7 has previously been returned by a spring pre-load into its locking position, upon closing in the closing direction X the locking element 7 also automatically engages with the recess 8 again, so that the lock device is secured against an unintended opening without a further actuation of the locking element 7.
In a second exemplary embodiment, illustrated in
The same reference signs as in
At this point it shall be noted that the first connecting module 1a, 1b of the lock device can also be designed as one part, analogous to the embodiment according to
A magnet 3 is arranged on the first module part 1a, which in the closing position (
The second module part 1b of the first connecting module is in the closing position (
To open the lock device the first module part 1a, which serves as actuating element, is moved in the opening direction Y relative to the second module part 1b, until the blocking pieces 6a, 6b come out of engagement with the spring lock elements 5a, 5b (see
For the realization of the locking device multiple locking elements 9a, 9b, 9c are arranged on the second module part 1b, which are pre-loaded via return springs 10a, 10b, 10c against the second module part 1b and in the closing position engage with allocated recesses 90 of the locking of the first module part 1a, so that the first module part 1a cannot be shifted relative to the second module part 1b and is thereby fixed in the opening direction Y relative to the second connecting module 2.
By pushing in the actuating bolts 11a, 11b, 11c, which stand in operative connection with the locking elements 9a, 9b, 9c, the locking elements 9a, 9b, 9c can be brought out of engagement with the recesses 90 to release the locking between the first module part 1a and the second module part 1b. Here, in the locking position illustrated in
In the present exemplary embodiment the actuating bolts 11a, 11b, 11c are to be actuated so that the locking elements 9a, 9b, 9c are pushed into the second module part 1b against the force of the respective return spring 10a, 10b, 10c and stop at a predetermined position. Two variants of bolt lengths of the locking elements 9a, 9b, 9c are provided:
Either the length of the upper actuating bolt 11a, 11b, 11c and lower locking element 9a, 9b, 9c is measured in such a way that the plane of osculation of the upper actuating bolt 11a, 11b, 11c and the lower locking element 9a, 9b, 9c lies specifically on the shifting plane between the first module part 1a and the second module part 1b. The locking element 9a, 9b, 9c is in this case unlocked in the non-actuated state, i.e. without actuation it does not stand opposed to a shifting of the first module part 1a and the second module part 1b, but blocks after actuation.
Or the length of the upper actuating bolt 11a, 11b, 11c and lower locking element 9a, 9b, 9c is measured in such a way that only after an actuation the plane of osculation of the upper actuating bolt 11a, 11b, 11c and the lower locking element 9a, 9b, 9c lies in the shifting plane of the first module part 1a and the second module part 1b. In this case the locking element 9a, 9b, 9c locks in the non-actuated state and is unlocked by an actuation.
Multiple such bars together form a combination lock, which with an increasing number of bars offers more and more combination possibilities.
In
In
In the position illustrated in
Caused by the return springs 10a, 10b, 10c (
The locking device of the exemplary embodiment according to
In a further exemplary embodiment of a lock device in the form of a strap buckle, e.g. for the use as a buckle for a helmet, illustrated in
A spring lock element 5 in the form of a spreading ring, which is arranged on a base plate 20 in such a way that the spring lock element 5 state can move aside in a radial direction to establish the closing, is part of the second connecting module 2 (female part). A magnet 3 is arranged on the base plate 20 in such a way that after the closing it lies attracting opposite a magnet 4 on the first connecting module 1 (male part).
In a closing position (
To establish the closing position the first connecting module is attached onto the second connecting module 2 in the closing direction X, so that the blocking piece 6 catch-lockingly engages with the spring lock element 5 (
The spring lock element 5 in the form of the spreading ring has a lateral recess 53, so that the spring lock element 5 is not closed circumferentially, but instead is open to one side. Thereby, it is possible, by shifting the first connecting module 1 relative to the second connecting module 2 in the opening direction Y transverse to the closing direction X, to shift the spring lock element 5 out of engagement with the blocking piece 6, so that the catch-locking, positive-locking connection of the first connecting module 1 to the second connecting module 2 is terminated and the lock device can be released. By the shifting in the opening direction Y at the same time the magnets 3, 4 are also removed from each other so that their magnetic attracting force weakens and the first connecting module 1 can readily and in a haptically pleasant manner be detached from the second connecting module 2.
In the closing position a locking element 9, arranged on the second connecting module 2, engages with an allocated recess 8 on the first connecting module 1 (see
To unlock the lock device, the unlocking button 17 has to be actuated, which is mounted movable via an actuating bolt 11 on the second connecting module 2 on a guiding rail 13 in the form of a shaft-like recess. The actuating bolt 11 stands in operative connection with the locking element 9 on the first connecting module 1 and acts, upon actuating the unlocking button 17, by applying a compressive force in the closing direction X upon the locking element 9 in such a way that the locking element 9 comes out of engagement with the recess 8 on the second connecting module 2 (
After actuating the unlocking button 17 the first connecting module 1 can be shifted in the opening direction Y relative to the second connecting module 2.
A further exemplary embodiment of a lock device, illustrated in various partial sectional views in
The lock device has four magnets 3a, 3b, 4a, 4b, of which the magnets 3a, 3b are arranged on a rotation core 1a′, fixedly connected to the module part 1a, and the magnets 4a, 4b are arranged on a base plate 20 of the second connecting module 2. The magnets 3a, 4a and 3b, 4b attract each other in pairs, wherein by turning the magnets relative to each other—analogously to as this is specified for example in WO 2008/006357 A2—the magnetic attracting force can be weakened and be reversed into a magnetic repulsion.
As can be seen in the exploded view according to
The second connecting module 2 has a fixed module part 23, on which a spring lock element 5 in the form of a spreading ring, in sections open towards the side, and a base plate with the magnets 4a, 4b are arranged torque-proof.
The spring lock element 5 has locking catches 50a, 50b, which in a closing position engage positive-lockingly with blocking pieces 6a, 6b of the kind of locking catches on the rotation core 1a′ and catch-lockingly connect the first connecting module 1 to the second connecting module 2 in a positive-locking manner.
The magnets 3a, 3b and 4a, 4b are polarized in pairs in such a way that upon attaching the first connecting module 1 onto the second connecting module 2 to close the lock device in the closing direction X unlike poles mutually attract each other and cause a turning of the rotation core 1a′ together with the module part 1a into a position, in which the blocking pieces 6a, 6b of the rotation core 1a′ can enter into engagement with the locking catches 50a, 50b of the spring lock element 5. For this purpose, on the one hand the magnets 3a, 3b have unlike poles (N and S) on their side facing the second connecting module 2 and on the other hand the magnets 4a, 4b also have unlike poles (S and N) on their side facing the first connecting module 1, so that in a turning position a torque and at the same time a magnetic attracting force into the due closing position is created.
On the first connecting module 1 a locking device is provided having actuating bolts 11a-11f, arranged on the module part 1a and guided in recesses 14a-14f, which stand in operative connection with locking elements 9a-9f, mounted elastically on the thrust bearing 1b′ via return springs 10a-10f, wherein the locking elements 9a-9f in a locking position engage lockingly with the recesses 14a-14f and can be unlocked by actuation via the actuating bolts 11a-11f.
Yet again, the locking device can realize a combination lock, in which predetermined actuating bolts 11a-11f have to be actuated for unlocking, analogous to as this has been specified above.
Analogous to as it is specified above, the locking elements 9a-9f and also the actuating bolts 11a-11f have, depending on the predetermining, one of two different lengths:
Either the locking element 9a-9f is not actuated in the locking position, i.e. it is so long that in the non-actuated state it blocks the module part 1a (and thereby also the rotation core 1a′) and is upon actuation pushed by the actuating bolt 11a-11f in the unlocking position. This is the case in the present exemplary embodiment e.g. in the locking element 9c.
Or the locking element 9a-9f lies non-actuated in the unlocking position, i.e. it is so short that in the non-actuated state it gives free the module part 1a. Upon actuation, however, the locking element 9a-9f engages with the thrust bearing 1b′ and locks the module part 1a. This is the case in the present exemplary embodiment e.g. in the locking element 9a.
In the position illustrated in
In a further exemplary embodiment of a lock device in the form of a rotation lock, illustrated in
To establish the closing position the first connecting module 1 is attached onto the second connecting module 2 in the closing direction X, so that the spring lock elements 5a, 5b, 5c come into catch-locking engagement with the blocking pieces 6a, 6b, 6c of the second connecting module 2.
Two magnets 3a, 3b are arranged on the first connecting module 1 and two magnets 4a,4b are arranged on the second connecting module 2, which attract each other in pairs in such a way that—analogous to as it has been explained above with the help of the embodiment according to
In the closing position the magnets 3a, 3b, 4a, 4b stand frontally attracting opposite to each other in pairs. To open the lock device the first connecting module 1 can be screwed in the opening direction Y relative to the second connecting module 2 in such a way that the thread-shaped locking catches 50a, 50b, 50c are screwed in the opening direction out of engagement with the likewise thread-shaped blocking pieces 6a, 6b, 6c. By the screwing movement the magnets 3a, 3b, 4a, 4b are also turned relative to each other, so that the magnetic attracting force, acting in the closing position, weakens and in the opened position is reversed into a repulsive force, so that taking out the first connecting module 1 from the second connecting module 2 can take place in a magnetically supported manner.
In the exemplary embodiment according to
In a lock device illustrated in
Two magnets 3a, 3b, 4a, 4b each are arranged on the connecting modules 1, 2, which in the closing position stand frontally attracting opposite to each other in pairs and are constructed in such a way that the catch-locking connection of the connecting modules 1, 2 is established largely automatically. The magnets 3a, 3b, 4a, 4b here at the same time also have the effect that the plugging section 18 of the first connecting module 1 and the plug housing 22 of the second connecting module 2 upon establishing the closing position are brought into their due position relative to each other, so that the locking catches 50a, 50b of the spring lock element 5 can come into positive-locking engagement with the blocking pieces 6a, 6b.
To release the connection the first connecting module 1 is shifted relative to the second connecting module 2 in the opening direction Y, so that the locking catches 50a, 50b run up onto the run-up slopes 19a and are thereby pushed out of engagement with the blocking pieces 6a, 6b, so that the first connecting module 1 can with its plugging section 18 be taken out of the plug housing 22 of the second connecting module 2.
As is evident from the comparing views in the closing position (
To open, the first connecting module 1 is shifted in the opening direction Y (
The shifting of the connecting modules 1, 2 out of the closing position is blocked by a locking device in the form of a locking element 7, which is movably arranged on the first connecting module 1, lockingly engages with a recess 8 on the second connecting module 2 in the locked position and is to be actuated to open the lock device by being pulled out of the recess 8 (see
The lock device according to
An exemplary embodiment of a lock device, illustrated in
The first connecting module 1 has a first module part 1a in the form of a casing and a second module part 1b in the form of an actuating lever, which is arranged pivotable on a swivel axis D on the first module part 1a. Blocking pieces 6a, 6b are provided on the first module part la (see
To open the lock device the second module part 1b in the form of the actuating lever of the first connecting module 1 can be pivoted, whereby the spring lock elements 5a, 5b, with run-up slopes 52a, 52b arranged upon them, run up onto run-up slopes 19a, 19b on the module part 1b and are thereby, as illustrated in
The run-up slopes 19a, 19b, 52a, 52b, moreover, act as ejection support in that they, in the actuated state (
On each the second module part 1b in the form of the actuating lever of the first connecting module 1 and on the second connecting module 2 a magnet 3, 4 is arranged respectively, which point towards each other with different poles and which hence attract each other to establish the closing position and in the closing position of the lock device. The magnets 3, 4 (one of which can also be constructed as a magnetic anchor) are here dimensioned in such a way that upon attaching the first connecting module 1 onto the second connecting module 2 the catch-locking connection of the spring lock elements 5a, 5b to the blocking pieces 6a, 6b is established in an automatic manner so that closing the lock device can take place simply and in a haptically pleasant manner.
Upon opening the lock device (
Additionally, a locking device in the form of a hook-like locking element 7, arranged movably in a shifting direction V on the module part 1b, is provided, which in the locked state engages with the second connecting module 2 in such a way that the module part 1b cannot be pivoted on the swivel axis D relative to the second connecting module 2. Thereby, the lock device is locked and secured in its closing position and can only be opened when the locking element 7 has been moved in the shifting direction V out of its locking engagement.
Other locking devices are also conceivable here, which are to be actuated for example by a key or by entering a numerical code.
A lock device illustrated in
The module part 1a has a rotation core 1a′, on which a blocking piece 6 in the form of a ring-shaped locking catch is arranged on the end of the rotation core 1a′ which is facing the second connecting module 2.
The blocking piece 6 in a closing position of the lock device engages positive-lockingly with locking catches 50a, 50b of a ring-shaped, elastic spring lock element 5, which is arranged torque-proof on a base plate 20 of the second connecting modules 2. The base plate 20 is connected to a module part 23, wherein the locking catches 50a, 50b of the spring lock element 5 reach through recesses 230 of the module part 23.
In the closing position (
Two magnets 3a, 3b, 4a, 4b each are arranged on the rotation core 1a′ and on the module part 23 respectively, which magnetically attract each other to close the lock device and are here planned in such a way that they establish the catch-locking connection largely automatically (in other words, the magnets 3a, 3b, 4a, 4b are dimensioned in such a way that the magnetic attracting force exceeds the force required to establish the catch locking connection). The magnets 3a, 3b, 4a, 4b here also act restoringly in that they turn the rotation core 1a′ by the effect of the magnetic attracting force into a position, in which the blocking piece 6 can lock with the locking catches 50a, 50b. For this purpose the magnets 3a, 3b have on their side facing the magnets 4a, 4b unlike poles, as vice versa also the magnets 4a, 4b have unlike poles, wherein the magnets 3a, 4a and 3b, 4b attract each other in pairs (see
To open the lock device the module part 1a in the form of the rotary actuating lever can be turned in the opening direction Y, whereby also the rotation core 1a′ in the housing opening 231 of the module part 23 is turned. To bring the locking catches 50a, 50b out of engagement with the blocking piece 6, on the rotation core 1a′ above the blocking piece 6 run-up slopes 19a and unlocking sections 19c are arranged, which are constructed in such a way that upon turning the rotation core 1a′ out of the closing position (
By turning the rotation core 1a′ at the same time also the magnets 3a, 3b, 4a, 4b are turned relative to each other, so that in the non-engaged position (
The ring-shaped spring lock element 6 with its ring section is planned especially softly elastic and thereby offers especially soft haptics with, at the same time, a stable mechanical locking by transverse tension on the locking catches 50a, 50b. The locking catches 50a, 50b are each bevelled in such a way that they, to close the lock device, in the closing direction can come into catch-locking engagement with the blocking piece 6 in a positive-locking manner.
A locking device is realized in the exemplary embodiment according to
The lock device according to
The first connecting module 1 in the lock device according to
With respect to the embodiment according to
As illustrated in the exploded views according to
The first connecting module 1 is made of the module part 106 and the handle element 107, which is connected torque-proof to the module part 106, wherein the module part 106 is via axially running bars 110, arranged on a cylindrical shell surface, positive-lockingly plugged into a recess 109 and grooves 111, which are arranged thereupon and are likewise running axially, so that the component 112 is held between the module part 106 and the handle element 107
In the locked, closed state, illustrated in
Indeed, in the closed and locked state of the lock device, illustrated in
By turning the first connecting module 1 relative to the second connecting module 2 the lock device comes into the state illustrated in
The state of the lock device, opened in such a way, is illustrated in
To ensure that the locking device—made of the locking element 102, the groove 101 and the ring shoulder 100—locks automatically upon attaching the first connecting module 1 onto the second connecting module 2, restoring means can be provided, which for example by using a mechanical spring pre-load the first connecting module 1 into the position introduced in
In an alternative embodiment the first and the second connecting module 1, 2 can also be designed and arranged in such a way that gravity moves both connecting modules 1, 2 preferably into the locked position. For example, the first connecting module 1 could be attached on a mobile phone and the second connecting module 2 on a belt holder. The locking element 102, the groove 101 and the ring shoulder 100 are then advantageously adjusted in such a way that the mobile phone normally hangs vertically downwards like a pendulum in such a way that the connecting modules 1, 2 are securely locked relative to each other (see position according to
Advantageously, the locking element 102 and the recess 103 are not exactly of the same size, but the recess 103 is in the circumferential direction slightly larger, so that unlocking the connecting modules can take place in a predetermined tolerance range of the rotation angle.
The lock device illustrated in
The views according to
In the present exemplary embodiment the opening direction Y is a linear shifting. Equally, the opening direction Y can also correspond to a rotation movement around a centre of rotation of the whole device. The recesses 103 of the individual connecting modules 1 in this case each lie tangentially to concentric circles around this centre (in the simplest case all recesses lie tangentially on a circle).
The result is a device, which can only be opened when the combination on the connecting modules 1 is correctly set, but which is locked when only one of the connecting modules 1 stands in a locked state with the second connecting module 2.
Obviously, other arrangements of the connecting modules 1, 2 and another number of lock devices are also conceivable, wherein by increasing the number of the connecting modules 1, 2 the combinatory security is increased.
As mentioned previously and evident for example from
In
On each the plug element 200 of the second connecting module 2 and on the lock element 209 of the first connecting module 1 respectively, magnetic means in the form of two magnets 3, 4 or in the form of on the one hand a magnet and on the other hand a magnetic anchor are arranged, which magnetically support transferring the lock device into its closed state. To close the lock device, the first connecting module 1 is here with the housing 201, arranged on the first module part 1a, attached onto the plug element 200 of the second connecting module 2 and shifted onto the plug element 200, so that catch locking elements 202, 203, arranged on the plug element 200, come into engagement with an engaging catch 211 on the lock element 209 of the second module part 1b.
In the locked state the locking catch 211 of the lock element 209 is plugged into an insertion opening 213 of the plug-in element 200 and is catch-lockingly connected to the catch locking elements 202, 203 so that the first connecting module 1 cannot be removed from the second connecting module 2 counter to the closing direction X.
The catch locking elements 202, 203 are arranged on the plug element 200 of the second connecting module 2, wherein the catch locking elements 202, 203 are mounted elastically on the first module part 1a of the first connecting module 1 by spring elements 204, 205. This shall yet be further explained subsequently with the help of the embodiment according to
The actuating element 208 is mounted on the lock element 209 shiftably via a slide guiding rail 210 along an unlocking direction Z, wherein the actuating element 208 can be pre-loaded into the position illustrated in
In its basic manner of operation the lock device according to
In the locked, closed state, illustrated in
In the closed, locked state of the lock device end stops 212 of the actuating element 208 on the end are in contact with the slide guiding rail 210 (see
The engaging elements 207 in this manner together with the locking elements 206 realize a locking device, which in the closed, locked state of the lock device blocks a movement of the second module part 1b of the first connecting module 1 in the opening direction Y and counteracts an opening of the lock device.
By shifting the actuating element 208 along the slide guiding rail 210 on the lock element 209 counter to the closing direction X the locking can be released by bringing the engaging elements 207 out of engagement with the locking elements 206 on the second connecting module 2.
The unlocked, but still closed state of the lock device is illustrated in
After unlocking, the second module part 1b (made of the actuating element 208 and the lock element 209) can be pivoted in the opening direction Y on the rotation axis D—as illustrated in
The released state, in which the connecting modules 1, 2 can be removed from each other, is illustrated in
An embodiment of a lock device, modified compared with the embodiment according to
The lock device according to
To unlock the lock device from its closed, locked state (see
The arms 214 are designed sufficiently flexible and guarantee a secure locking of the lock device in the closed, locked state. The arms 214 with the engaging elements 207 arranged thereupon at the same time guarantee an automatic locking upon establishing the closing state of the lock device, when a suitable pre-loading of the second module part 1b—mechanic or magnetic or caused by gravity—into the position illustrated in
This return can for example be caused by magnets 3, 4, arranged on the second module part 1b and on the second connecting module 2, which magnetically attract each other upon the transfer of the lock device into the closing state and thereby on the one hand support the closing movement and on the other hand automatically cause a return of the second module part 1b into the position illustrated in
Alternatively, the return can also be caused by a return anchor 31 (see
As the locking device has to be unlocked by actuating both arms 214 (namely by a pushing towards each other of these two arms 214) to open the lock device, the closing state of the lock device is securely locked and reliably secured against an unintended opening.
To transfer the lock device into its closing state the first connecting module 1 is attached with the housing 201 arranged thereupon onto the plug element 200 of the second connecting module 2. Herein, the engaging catch 211 is inserted into the insertion opening 213 on the plug element 200 until the engaging catch 211 enters into contact with the catch locking elements 202, 203, which are shiftably arranged transverse to the closing direction X on the second connecting module 2.
As the catch locking elements 202, 203 are not pre-loaded against the second connecting module 2, but instead are arranged smoothly shiftable on the second connecting module 2, the engaging catch 211 can upon contact with the catch locking elements 202, 203, for the time being, shift these readily outwards and thereby move past the locking catches, designed on the catch locking elements 202, 203.
Upon further plugging the first connecting module 1 onto the plug element 200, however, the spring elements 204, 205 come into contact with the catch locking elements 202, 203 on the rear side and pre-load these inwards in a direction towards each other in such a way that, after the engaging catch 211 has moved past the catch locking elements 202, 203, the positive-locking engagement of the engaging catch 211 with the catch locking elements 202, 203 is automatically established.
As the engaging catch 211 enters into contact with the catch locking elements 202, 203, when these are not yet (or not yet completely) loaded by the spring elements 204, 205, the force required to establish the mechanical catch locking engagement can be reduced, which has the effect that the magnets 3, 4 of the connecting modules 1, 2, serving to support the closing movement, can, where applicable, be dimensioned smaller.
By suitable adjustment of the spring elements 204, 205, the catch locking elements 202, 203 and the engaging catch 211 to each other, a tilting upon establishing the closing state can, moreover, be prevented, wherein in the closing state, by the spring elements 204, 205 acting upon the catch locking elements 202, 203, the mechanical catch locking engagement is securely established in the closing state. The result is a smooth and haptically pleasant closing process with automatic or almost automatic catch locking engagement.
In the closed, locked state, illustrated in
The idea underlying the invention can basically also be realized in other embodiments. In particular, the invention is independent of the movement of the lock device which is to be carried out for actuation, which can take place rotating, tilting or shifting, wherein the connecting modules are either shifted against each other as a whole or are actuated via an actuating device.
The additional locking device can be designed as a simply designed locking element, but also as a combination lock or as a lock which is actuated by a key.
Depending on the embodiment, the restoring means can cause the automatic return of the locking device into the locking position, for example by a pre-loading mechanical spring, by magnetic means or by gravity.
Also, the return of the connecting modules into a position, in which a catch-locking engagement to establish the closing position is possible, can take place by additional restoring means, for example by using a mechanical spring, or also, as specified above, by the magnetic effect of the magnets (or anchors) provided anyway or by gravity.
Furthermore, instead of the magnetic means, other pre-loading, force-generating means can also be used, for example by means of spring means, or gravity or an actuation force or a momentum can be made use of.
In other words: a mechanical lock is provided, which catch-lockingly closes by attaching a first connecting module onto a second connecting module in a closing direction by force action (magnetic force, spring force, gravity), wherein the first connecting module cannot readily be taken away counter to this closing direction from the second connecting module, but instead, to open, is to be moved in an opening direction, differing from the closing direction, wherein a locking device prevents the shifting of the connecting modules relative to each other in a locking position, but can be unlocked to open the lock.
A lock device of the specified kind is suited for a multitude of different uses and can be employed advantageously. In this way the lock device can be employed as a lock for bags, backpacks, suitcases, furniture or other storage or transport means or containers. The lock device can moreover be employed for the detachable connection of components or flexible tension means such as ropes or straps (e.g. for mountain climbing equipment or sailing equipment or also for dog collars, tow ropes or other ropes or cords), for fastening motorcycle or bicycle accessories onto a motorcycle or a bicycle (as e.g. for fastening saddlebags or other bags or pouches, tools or the like) or for baby car seats, strollers or child carriers. Moreover, the lock device can be employed for fastening mobile phones, weapons, truncheons or other utensils (e.g. for the police) onto a belt holder.
This list is herein in no way restrictive. Essentially, an application of a lock device of the kind specified is possible and advantageous everywhere, where an easily closing, but at the same time in the closed state securely locked and enduring lock is desired.
Number | Date | Country | Kind |
---|---|---|---|
102009038370.0 | Aug 2009 | DE | national |
102010006798.9 | Jan 2010 | DE | national |
202010010300.2 | Jul 2010 | DE | national |
This application is a divisional of U.S. patent application Ser. No. 13/390,759 filed Jun. 20, 2012, which is the United States national phase of International Patent Application Number PCT/EP2010/062262, filed Aug. 23, 2010, which claims priority of German Patent Application Number 10 2009 038 370.0, filed on Aug. 24, 2009, of German Patent Application Number 10 2010 006 798.9, filed on Jan. 29, 2010, and of German Utility Model Number 20 2010 010 300.2, filed on Jul. 13, 2010.
Number | Date | Country | |
---|---|---|---|
Parent | 13390759 | Jun 2012 | US |
Child | 15400429 | US |