This is a medical device used to treat embolic strokes. In particular, it is a surgical device usually delivered through an intravascular catheter. It may be used in several ways. It may, for instance, be used to open a clear passageway adjacent a thrombus to allow both blood and medication to bypass the clot. It may be used to pierce and to remove a thrombus. These thrombi are often found in tortuous vasculature. The device may include several sections: an elongated core element, a proximal cage assembly, a distal filter, and an actuator. The core element is at least a core wire. Placed around the distal end of the core element is a collapsible, but preferably self-expanding or self-collapsing, proximal cage assembly and a more distally located, preferably self-expanding or self-collapsing, distal filter, cage assembly, or other filter component. These components are preferably radio-opaque. The proximal end of the proximal cage is typically is affixed to an actuator in such a way as to allow expansion of the cage after deployment. The proximal cage assembly may be used for collecting emboli or for displacing them to allow blood flow to resume, either with or without concurrent clot-dissolving drug treatment. The distal sector, whether a cage or a fan, is placed distally of the thrombus to collect portions of the thrombus which may loosen during the treatment or removal procedure.
This surgical device is designed to displace or to penetrate emboli found in the human vasculature. The device has several major components including a proximal (or displacing cage) and a distal filter. Depending upon the chosen procedure, the device is inserted so that the displacing or proximal cage is either towards the venous side of the clot or adjacent the clot. The proximal cage is expanded either to displace the clot away from the arterial wall and allow flow of fluid (e.g., blood and medications such as anti-thrombolytics or other lysing agents) past (or to) the formerly occluded site or to engage the clot for removal using the cage as a collector assembly, expand once past the target emboli, and catch or net the embolism (or a portion of the embolism) for removal from patient's blood vessels. In some situations, the device may be used to move the clot to another position in the vasculature; perhaps for recovery using another device or to canalize the clot for improved blood flow. The distal filter member is always placed distal to the thrombus to catch any portions which may break away.
Other devices to treat vascular emboli are known. The use of inflatable balloons to remove emboli has been practiced for many years. The “Fogarty catheter” has been used, typically in the periphery, to remove clots from arteries found in legs and in arms. These well known devices have been described in some detail in U.S. Pat. No. 3,435,826, to Fogarty and in U.S. Pat. Nos. 4,403,612 and 3,367,101. These patents describe a balloon catheter in which a balloon material is longitudinally stretched when deflated.
Emboli occasionally form around the valves of the heart and then are dislodged and follow the blood flow into the distal regions of the body. They are particularly dangerous if the emboli passes to the brain and causes an embolic stroke. As will be discussed below, many such occlusions lodge in the middle cerebral artery (MCA), although such is not the only site where emboli come to rest. Obviously, when blood flow is inhibited or cut off completely from a portion of the brain, the brain's oxygen supply is limited causing severe health problems.
In procedures for removing emboli using the Fogarty catheter or other similar catheters, it is typical, first, to locate the clot using fluoroscopy. The embolectomy catheter is then inserted and directed to the clot. The distal tip of the balloon catheter is then carefully moved through the center of the clot. Once the balloon has passed through the distal side of the clot, the balloon is inflated. The balloon catheter is then gradually and gently withdrawn. The balloon, in this way, acts to pull the clot ahead of the balloon. The majority of procedures using a Fogarty catheter repeat these steps until the pertinent vessel is cleared of clot material.
Such vaso-occlusions occur in a wide variety of sites within the body. The lodging of thrombus in various sites is often complicated by the presence of atherosclerosis. This disease causes the vessels to become tortuous and narrowed. These anomalies are often considered to be the result of the growth of atherosclerotic plaque. Clots occurring in these diseased vessels are difficult to remove using balloon or Fogarty catheters.
Removal of emboli using balloon catheters is rife with potential problems. One such problem occurs during removal of a clot. The resistance to such removal often causes the balloon portion of the catheter to evert over the tip of the catheter. Should the user need to partially deflate the balloon during such a deflation, the distal tip of the balloon may become distended and angulate. Another difficulty with balloon catheters is the possibility of damage to the intima of arteries. Inflation pressures can create forces significant enough to score such a vessel lining or dislodge plaque lodged on such a wall. In the worst case, the balloon may rupture leaving balloon portions in the bloodstream.
Movement of a balloon in the MCA using only a balloon can displace the clot through more proximal branches into other large vessels such as the internal carotid artery (ICA) and then into other vessels and may pressure the clot into branching vessels.
There are a variety of different devices intended for use in replacing balloon catheters and in using a device other than a balloon catheter in so removing the emboli.
One such device is shown in U.S. Pat. No. 4,030,503 to Clark III. This patent describes a spiral helix affixed to the distal end of a catheter. In particular, the spiral helix is designed to be rotated and pushed forward through the clot. It is said that the helix screws into the clot, and when it is firmly embedded or is past the clot, the catheter is pulled out of the vessel without rotation. The catheter is said to operate like a corkscrew.
A similar catheter is described in U.S. Pat. No. 4,706,671 to Weinrib. This catheter also has a coil section at its distal end. The coil section is said to be stretched initially into a generally linear insertion position for removing inwardly in a vessel. The coil member is then expanded into the form of a hollow conical scoop to then scoop clot material from the blood vessel. The coil member is stiffened by an internal wire which is then removed. The hollow passageway is then filled with a liquid to stiffen the coils. The coils are said to be of an elastomeric material.
U.S. Pat. No. 4,762,130 to Fogarty et al., describes a helical balloon attached to the distal end of a catheter. The helical or bellowed balloon is maintained in a generally linear condition and passed into a clot. Once the catheter balloon within the clot is inflated, the balloon and adjoining clot are removed together.
Another similar device used more to grip and shear atherosclerotic deposits rather than to remove thrombi is described in U.S. Pat. No. 4,890,611 to Monfort et al. This device incorporates a pair of helical wires placed on the distal end of a wire. The flexible wire is pulled against a flexible catheter and the two helically configured loops expand to form a shearing apparatus. The totality of the apparatus is then twisted by means of a handle so that the pair of helically wound loops cuts through and is said to retain sections of plaque for removal from the vessel.
Another thrombus extraction system is shown in U.S. Pat. No. 5,011,488, to Ginsberg. In using this device, an inflatable balloon having a proximal conic shape is deflated and passed through a thrombus. It is then expanded and retracted so that the proximal passage pulls the thrombus into contact with an aspirator. The aspirator then removes the clot or thrombotic material from the vessel.
An alternative configuration of the expandable member is also described in the Ginsberg patent mentioned just above. In this variation, a wire coil is attached to an extension wire which may be moved between an extended position and a retracted position. The retracted or expanded configuration is illustrated to have a conical shape. The cone is shown to be one which has a smaller end proximally.
U.S. Pat. No. 5,112,347, to Taheri, shows an inflatable balloon type embolectomy catheter. The balloon has a number of fingers arranged in a leaf spring arrangement inside the balloon. The balloon is hydraulically inflated and forms a cone after inflation. The deflated device is shown in FIGS. 11 through 14 to be passed distally past an embolism before inflation. After inflation, the large end of the balloon collects the embolism as it is pulled past the appropriate site in the vessel.
U.S. Pat. No. 5,192,286, to Phan, shows a retrieval catheter for removing materials from various body lumen. The retrieval catheter is shown to have a slack net which may be collapsed for passage into a lumen past the material to be collected. The net is unfolded and materials such as uretral stones are removed.
U.S. Pat. No. 5,411,509 to Hilal, shows an embolectomy catheter having an elastomeric foam tip attached distally. The foam tip has an actuator means suitable for forming the foam section both longitudinally and radially in response to activation of the actuation means. In practice, the catheter tip is pressed past an embolism, inflated, and retracted with the clot being pushed proximally as retraction occurs.
U.S. Pat. No. 5,490,859, to Mische et al., shows an intravascular occlusion material removal device having an expandable material removal element made up of a number of wires passing between the two ends of such element, a catheter shaft, a drive shaft for spinning the material movement element within the blood vessel, and a collection portion placed on the material removal element for collecting any occlusion material removed by the expandable material removal element. The drive shaft may be operated by a motor connected to the proximal end of the drive shaft.
None of these devices show the device described below.
This is a surgical device usually delivered through an intravascular catheter. It is designed variously to displace or to pierce and remove emboli particularly when found in tortuous vasculature.
This embolectomy device includes several sections. First, the device has a core element. The core element preferably has at least several major finctions: first, the distal portion may act as a guidewire for vessel navigation to the treatment site; second, the distal portion assists in puncturing the clot or displacing it away from the arterial wall; and third, it cooperates with the collection assembly during the deployment of that assembly. The core element may be a simple core wire (perhaps enhanced with an adherent braid) fixedly attached to the distal end of the cage assembly or a tubular member attached to the collection assembly having a removable core or guidewire in its interior passageway. Preferably, the core element is able to rotate freely with respect to collection assembly to preserve its abilities as a guidewire while preserving the cage assembly shape and integrity.
Placed distally on the core element are a pair of cage or filter elements. The proximal element preferably is an expandable and collapsible self expanding cage assembly. The proximal element may be self-expanding or self-collapsing. The distal element may also be a cage and design similar to the proximal element or of other filter design. The distal element is intended to catch any errant thrombus or clot fragments. Both elements may either be fixedly or rotatably joined to the core wire. Most preferred of the designs for the cage assembly involves a super-elastic alloy ribbon or wire braid wrapped with a platinum wire or otherwise made radio-opaque.
The assembly further may have an actuator which permits or causes the collector assembly to expand or to contract after deployment. The actuator may be mechanical in nature or electrolytic, or may include a balloon. When the actuator is mechanical, it is typically attached to the proximal end of the proximal cage assembly to allow or cause controllable expansion of the distal and proximal cage assemblies.
Another embolectomy device in accordance with an embodiment of the present invention includes an elongated core wire with a coil tip coupled to the distal end of the elongated core wire and a cage assembly substantially coaxial to the corewire, having a first deployment shape and a second expanded shape. The corewire is freely moveable axially through the cage assembly. The device further includes an inner coil surrounding the core wire within the cage assembly and an actuator element, having a first position and a second position, located proximally to the cage assembly, wherein when the actuator element is in the first position, the cage assembly is in the first deployment shape and when the actuator element is in the second position, the cage assembly is in the second expanded shape.
This device is a surgical implement. It is designed variously to move a thrombus aside and provide a fluid passageway along that thrombus or to penetrate and at least partially to retrieve emboli situated in human vasculature. It is intended to be used rapidly as a flow restoration device. Even in those instances where the embolism is not or cannot be completely removed, this inventive device is believed to be useful in displacing, extracting, or removing a portion of the clot and thereby permitting restoration of partial blood flow. It can be used to move the clot to a more advantageous site in the body. It is suitably flexible to be placed in the distal tortuous vasculature of the brain and hence is useful in treating blocking emboli found there. This device may be considered a partial treatment for embolic stroke, for instance, when used with the addition of thrombolytics.
As a matter of practical experience, a large proportion of emboli sloughed into the brain are seldom longer than about 1 to 2 centimeters and, for a variety of reasons both physiological and hemodynamic, settle in the middle cerebral artery (MCA). As is shown in
Treatments for such embolic occlusions include catheterization of the patient and introduction of tissue plasminogen activator (TPA) or urokinase or other clot lysing agents to the site of the occlusion. Additionally the embolic occlusion may be penetrated—often with a microcatheter—and the TPA or urokinase introduced distally of the occlusion. Removal of the catheter provides a modest passageway for resumed or increased blood flow past the then-partial occlusion.
This inventive device is for the rapid restoration of fluid or blood flow past the occlusion. We have found that it may be used in a variety of ways. For instance, when approaching the clot from the arterial end, the device can be used either to bypass the clot along the vessel wall and, upon expansion of the proximal cage assembly, to allow flow of blood across the occlusion using the interior of the proximal cage assembly as a fluid passageway.
Alternatively, the inventive device may be used to canalize or remove an occlusion, via the steps of penetrating the occlusion, expanding a cage assembly distally of the embolism, and preferably removing at least a part of the embolism along with the cage and its attendant catheter.
The distal cage or filter element is to catch and retain any thrombus fragments and prevent them from moving distally.
The assembly typically includes a core element, often a core wire (202), and optional coil tip (204) to provide a measure of radio-opacity to the distal tip and protect against damage to the intima, a distal cage assembly, filter, or element (206) which may be used as an embolism collector, and a proximal cage assembly or element (208). Because of the “fineness” of the device, the coil tip (204) may also serve the same function as a guidewire tip. The length of the coil tip (204) may be up to 4 or 5 centimeters in such instances. Further, and as is discussed below, the core element may be an assembly comprising a tubular member further containing a removable core or guidewire. In one highly desirable variation of the invention, a separation member (210) is used to separate distal cage or element (206) from the proximal cage (208). As will be explained in greater detail below, a preferred variation of the invention is one in which the distal member (206) and the proximal cage (208) are made of a single tubular member woven variously from wire or ribbon. The two cages are separated by a separation member (210) which, as seen in partial cross section in
The distal cage assembly (206) and proximal cage assembly (208) are collapsible for passage along-side of or for penetration and passage through the embolism and are generally self expandable once in position. Other components and devices may, obviously, be used to expand the distal cage assembly (206) and proximal cage assembly (208), are discussed at some length below.
The distal cage assembly (206) and proximal cage assembly may either self-expand when the actuator element (212) is permitted to move from its introduction position to its deployment position or it may self-collapse. Self-collapsing may provide a measure of safety in the event that the device becomes inoperable. Withdrawal of a collapsed device is simpler than is removal of an expanded device. The actuator element (212) is operable by the person.
The distal cage assembly (206) and proximal cage assembly (208) are preferably made of a super-elastic alloy wire or ribbon. Some stainless steels are suitable but the ready availability of nickel-titanium alloys in a wide variety of shapes and sizes makes this choice an easy one. In particular, we have found that ribbons as thin as 0.75 mils in thickness and as narrow as 2 mils in width are suitable for this device. Thicker and wider ribbons are also suitable in some instances as the situation requires. Preferred ribbons are between 0.75 and 1.5 mils in thickness and 3 and 7 mils in width. Most preferred are 0.8 mils and 4 mils respectively.
By “wires” we mean to include filamentary shapes having cross-sections where the thickness/width ratio is greater than 0.5 to and including 1.0. The cross-sectional form may be circular, square, oval, etc.
At least a minority of the ribbons may be a suitable stainless steel (e.g., 304SS, 306SS, etc.) or other such alloy. A desirable variant is the substitution of one or more ribbons of the braid (or the addition of one or more ribbons) with a radio-opaque material such as platinum. This obviously permits the user to visualize the position of the distal cage assembly (206) and proximal cage assembly (208) during a procedure.
A technical basis for the term “super-elastic” is found in the class of nickel-titanium alloys known as “nitinol”—alloys discovered by the United States Naval Ordnance Laboratory. These materials are discussed at length in U.S. Pat. Nos. 3,174,851 to Buehler et al., 3,351,463 to Rozner et al., and 3,753,700 to Harrison et al. Alloys especially suitable for this invention are those containing at least 1.5% (wt.) and up to about 8% (wt.) or more, of one or more alloying members selected from the group consisting of vanadium, chromium, manganese, iron, and cobalt. By the term “ribbon”, we intend to include elongated shapes, the cross section of which are not square or round and may typically be rectangular, oval, or semi-oval. They should have an aspect ratio of 0.5 (thickness/width) or less.
The distal cage (206) and proximal cage (208) may be made by winding a ribbon or a wire onto a mandrel having an exterior form to produce the relaxed shape found in
In some designs of the device, it is permissible to use an actuator as an active deployment element rather than as a mere restraint on the premature expansion of the cage assembly. Examples of such actuators are shown in U.S. patent application Ser. Nos. 08/686,304, 08/701,155, and 08/869,346 assigned to Target Therapeutics and all of which are incorporated by reference.
An independent feature shown in
As noted elsewhere, the location of the cage assembly should be visible using fluoroscopy. Various methods have been suggested above. One highly preferred method is shown in
Another material suitable for such a service is a structural material filled with a radio-opaque material. For instance, a suitably fine tubing of, e.g., nitinol or stainless steel, filled with platinum or gold is commercially available. Fort Wayne Metals of Fort Wayne, Ind. sells such a product as a “drawn filled tube.”
As an example of the device shown in
The variations of the cage assemblies shown in
Many clots such as clot (402) will push the core wire (406) tip aside as the guidewire contacts the clot. Indeed, in most instances, such is preferred. The core wire (406) then slips along the wall of the artery (400) as the device (404) is advanced.
Upon expansion of the cage assemblies (408, 410) to their expanded shape, blood will flow from the arterial to venous end of the clot (402) through the lumen of the open proximal cage assembly (410). Desirably, distal cage assembly (408) has an expanded diameter which approximates the size of the artery (400) lumen. The distal filter assembly (408) is there solely to prevent distal movement of the clot (402) or fragments of the clot. Thrombolytics may be introduced through the orifices (416) to dissolve clot (402). It is highly desirable that the proximal cage assembly (410) be used to restrain the clot (402) from movement in the vessel (400) so that the thrombolytics may completely dissolve the clot (402) while so restrained. This procedure obviously provides a continuing source of thrombolytics to the clot (402) and further provides a large clot surface area upon which the thrombolytics may work.
Alternatively, or in addition to the steps outlined above, clot (402) can be retained or retrieved by the expanded distal cage assembly (408) and removed to another site along with the distal cage assembly (408) and catheter (412).
It should be apparent that the cage assembly of this invention may be re-collapsed and re-deployed as necessary to displace or collect emboli as necessary or desired.
The design of such variations is routine and is within the skill of an ordinary designer in this art. Similarly, obvious variants of the invention described above are within the scope of the invention. This and other known or non-critical items have been omitted from the drawings for the sake of brevity and clarity of the invention disclosed here.
This application is a continuation of U.S. application Ser. No. 09/452,528, filed on Dec. 1, 1999, now U.S. Pat. No. 6,383,205, which is a continuation of U.S. application Ser. No. 08/941,514, filed on Sep. 30, 1997, now U.S. Pat. No. 6,066,149.
Number | Name | Date | Kind |
---|---|---|---|
3174851 | Buehler, at al. | Mar 1965 | A |
3351463 | Rozner et al. | Nov 1967 | A |
3367101 | Garner et al. | Feb 1968 | A |
3435826 | Fogarty | Apr 1969 | A |
3472230 | Fogarty | Oct 1969 | A |
3592186 | Oster | Jul 1971 | A |
3683904 | Forster | Aug 1972 | A |
3753700 | Harrison et al. | Aug 1973 | A |
3889657 | Baumgarten | Jun 1975 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4030503 | Clark, III | Jun 1977 | A |
4046150 | Schwartz et al. | Sep 1977 | A |
4295464 | Shihata | Oct 1981 | A |
4403612 | Fogarty | Sep 1983 | A |
4425908 | Simon | Jan 1984 | A |
4447227 | Kotsanis | May 1984 | A |
4561439 | Bishop et al. | Dec 1985 | A |
4580568 | Gianturco | Apr 1986 | A |
4590938 | Segura et al. | May 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4631052 | Kensey | Dec 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4650466 | Luther | Mar 1987 | A |
4662885 | DiPisa, Jr. | May 1987 | A |
4692139 | Stiles | Sep 1987 | A |
4705517 | DiPisa, Jr. | Nov 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4728319 | Masch | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4762130 | Fogarty et al. | Aug 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4790813 | Kensey | Dec 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4794931 | Yock | Jan 1989 | A |
4800882 | Gianturco | Jan 1989 | A |
4807626 | McGirr | Feb 1989 | A |
4842579 | Shiber | Jun 1989 | A |
4857045 | Rydell | Aug 1989 | A |
4857046 | Stevens et al. | Aug 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4885003 | Hillstead | Dec 1989 | A |
4886061 | Fischelle et al. | Dec 1989 | A |
4890611 | Monfort et al. | Jan 1990 | A |
4898575 | Fischell et al. | Feb 1990 | A |
4904431 | O'Maleki | Feb 1990 | A |
4907336 | Gianturco | Mar 1990 | A |
4921478 | Solano et al. | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4926858 | Gifford, III et al. | May 1990 | A |
4950277 | Farr | Aug 1990 | A |
4955895 | Sugiyama et al. | Sep 1990 | A |
4957482 | Shiber | Sep 1990 | A |
4969891 | Gewertz | Nov 1990 | A |
4979951 | Simpson | Dec 1990 | A |
4986807 | Farr | Jan 1991 | A |
4997435 | Demeter | Mar 1991 | A |
4998539 | Delsanti | Mar 1991 | A |
5002560 | Machold et al. | Mar 1991 | A |
RE33569 | Gifford, III et al. | Apr 1991 | E |
5007896 | Shiber | Apr 1991 | A |
5007917 | Evans | Apr 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5019088 | Farr | May 1991 | A |
5034001 | Garrison et al. | Jul 1991 | A |
5041126 | Gianturco | Aug 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5053044 | Mueller et al. | Oct 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5071425 | Gifford, III et al. | Dec 1991 | A |
5085662 | Willard | Feb 1992 | A |
5087265 | Summers | Feb 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5100424 | Jang et al. | Mar 1992 | A |
5100425 | Fischell et al. | Mar 1992 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5104399 | Lazarus | Apr 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5112347 | Taheri | May 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5135531 | Shiber | Aug 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5171233 | Amplatz et al. | Dec 1992 | A |
5180368 | Garrison | Jan 1993 | A |
5190546 | Jervis | Mar 1993 | A |
5192286 | Phan et al. | Mar 1993 | A |
5195955 | Don Michael | Mar 1993 | A |
5224953 | Morgentaler | Jul 1993 | A |
5306286 | Stack et al. | Apr 1994 | A |
5308354 | Zacca et al. | May 1994 | A |
5314444 | Gianturco | May 1994 | A |
5314472 | Fontaine | May 1994 | A |
5318576 | Plassche, Jr. et al. | Jun 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5330484 | Gunther et al. | Jul 1994 | A |
5330500 | Song | Jul 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5354295 | Guglielmi et al. | Oct 1994 | A |
5354310 | Garnic et al. | Oct 1994 | A |
5356423 | Tihon et al. | Oct 1994 | A |
5366464 | Belknap | Nov 1994 | A |
5366473 | Winston et al. | Nov 1994 | A |
5370657 | Irie | Dec 1994 | A |
5370683 | Fontaine | Dec 1994 | A |
5376100 | Lefebvre | Dec 1994 | A |
5383887 | Nadal | Jan 1995 | A |
5383892 | Cardon et al. | Jan 1995 | A |
5383926 | Lock et al. | Jan 1995 | A |
5387235 | Chuter | Feb 1995 | A |
5395311 | Andrews | Mar 1995 | A |
5395349 | Quiachon et al. | Mar 1995 | A |
5397345 | Lazerus | Mar 1995 | A |
5405377 | Cragg | Apr 1995 | A |
5409454 | Fischell et al. | Apr 1995 | A |
5411509 | Hilal | May 1995 | A |
5415630 | Gory et al. | May 1995 | A |
5419774 | Willard et al. | May 1995 | A |
5421832 | Lefebvre | Jun 1995 | A |
5423742 | Theron | Jun 1995 | A |
5423829 | Pham et al. | Jun 1995 | A |
5423885 | Williams | Jun 1995 | A |
5425765 | Tiefenbrun et al. | Jun 1995 | A |
5443498 | Fontaine | Aug 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
4842579 | Shiber | Oct 1995 | A |
5454795 | Samson | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5462529 | Simpson et al. | Oct 1995 | A |
5476104 | Sheahon | Dec 1995 | A |
5484418 | Quiachon et al. | Jan 1996 | A |
5490859 | Mische et al. | Feb 1996 | A |
5507767 | Maeda et al. | Apr 1996 | A |
5512044 | Duer | Apr 1996 | A |
5527326 | Hermann et al. | Jun 1996 | A |
5527354 | Fontaine et al. | Jun 1996 | A |
5536242 | Willard et al. | Jul 1996 | A |
5540707 | Ressemann et al. | Jul 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5562724 | Vowerk et al. | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5569275 | Kotula et al. | Oct 1996 | A |
5628761 | Rizik | May 1997 | A |
5634897 | Dance et al. | Jun 1997 | A |
5643297 | Nordgren et al. | Jul 1997 | A |
5643298 | Nordgren et al. | Jul 1997 | A |
5658296 | Bates et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5695469 | Segal | Dec 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5709704 | Nott et al. | Jan 1998 | A |
5720764 | Naderlinger | Feb 1998 | A |
5728066 | Daneshvar | Mar 1998 | A |
5728123 | Lemelson et al. | Mar 1998 | A |
5728129 | Summers | Mar 1998 | A |
5746758 | Nordgren et al. | May 1998 | A |
5749848 | Jang et al. | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5769871 | Mers Kelly et al. | Jun 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5779722 | Shturman et al. | Jul 1998 | A |
5792157 | Mische et al. | Aug 1998 | A |
5792300 | Inderbitzen et al. | Aug 1998 | A |
5795322 | Boudewijn | Aug 1998 | A |
5797952 | Klein | Aug 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5817102 | Johnson et al. | Oct 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5833650 | Imran | Nov 1998 | A |
5836868 | Ressemann et al. | Nov 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5855565 | Bar-Cohen et al. | Jan 1999 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5893867 | Bagaoisan et al. | Apr 1999 | A |
5895398 | Wensel et al. | Apr 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5902263 | Patterson et al. | May 1999 | A |
5906618 | Larson, III | May 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5916193 | Stevens et al. | Jun 1999 | A |
5925016 | Chornenky et al. | Jul 1999 | A |
5925060 | Forber | Jul 1999 | A |
5925062 | Purdy | Jul 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5928203 | Davey et al. | Jul 1999 | A |
5928218 | Gelbfish | Jul 1999 | A |
5934284 | Plaia et al. | Aug 1999 | A |
5935139 | Bates | Aug 1999 | A |
5938645 | Gordon | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5951585 | Cathcart et al. | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5976172 | Homsma et al. | Nov 1999 | A |
5980555 | Barbut et al. | Nov 1999 | A |
5989210 | Morris et al. | Nov 1999 | A |
5989271 | Bonnette et al. | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013085 | Howard | Jan 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6059814 | Ladd | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6086605 | Barbut et al. | Jul 2000 | A |
6096053 | Bates | Aug 2000 | A |
6117154 | Barbut et al. | Sep 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6214026 | Lepak et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6224620 | Maahs | May 2001 | B1 |
6231544 | Tsugita et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6270513 | Tsugita et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6287321 | Jang | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6319268 | Ambrisco et al. | Nov 2001 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
Number | Date | Country |
---|---|---|
2000621 | Apr 1990 | CA |
28 21 048 | Jul 1980 | DE |
34 17 738 | Nov 1985 | DE |
40 30 998 | Oct 1990 | DE |
0 200 688 | Nov 1986 | EP |
0 293 605 | Dec 1988 | EP |
0 411 118 | Feb 1991 | EP |
0 418 677 | Mar 1991 | EP |
0 419 154 | Mar 1991 | EP |
0 427 429 | May 1991 | EP |
0 437 121 | Jul 1991 | EP |
0 472 334 | Feb 1992 | EP |
0 472 368 | Feb 1992 | EP |
0 472 368 | Feb 1992 | EP |
0 531 822 | Mar 1993 | EP |
0 533 511 | Mar 1993 | EP |
0 655 228 | Nov 1994 | EP |
0 686 379 | Jun 1995 | EP |
0 696 447 | Feb 1996 | EP |
0 737 450 | Oct 1996 | EP |
0 737 450 | Oct 1996 | EP |
0 743 046 | Nov 1996 | EP |
0 759 287 | Feb 1997 | EP |
0 771 549 | May 1997 | EP |
0 784 988 | Jul 1997 | EP |
0 852 132 | Jul 1998 | EP |
0 117 940 | Sep 1998 | EP |
2 580 504 | Oct 1986 | FR |
2 643 250 | Aug 1990 | FR |
2 666 980 | Mar 1992 | FR |
2 768 326 | Mar 1999 | FR |
2 020 557 | Nov 1979 | GB |
2 020 557 | Jan 1983 | GB |
8-187294 | Jul 1996 | JP |
764684 | Sep 1980 | SU |
WO 8809683 | Dec 1988 | WO |
WO 9203097 | Mar 1992 | WO |
WO 9414389 | Jul 1994 | WO |
WO 9424946 | Nov 1994 | WO |
WO 9535066 | Dec 1995 | WO |
WO 9601591 | Jan 1996 | WO |
WO 9604875 | Feb 1996 | WO |
WO 9610375 | Apr 1996 | WO |
WO 9619941 | Jul 1996 | WO |
WO 9623441 | Aug 1996 | WO |
WO 9633677 | Oct 1996 | WO |
WO 9717100 | May 1997 | WO |
WO 9727808 | Aug 1997 | WO |
WO 9742878 | Nov 1997 | WO |
WO 9742879 | Nov 1997 | WO |
WO 9802084 | Jan 1998 | WO |
WO 9802112 | Jan 1998 | WO |
WO 9823322 | Jun 1998 | WO |
WO 9833443 | Aug 1998 | WO |
WO 9834673 | Aug 1998 | WO |
WO 9836786 | Aug 1998 | WO |
WO 9838920 | Sep 1998 | WO |
WO 9838929 | Sep 1998 | WO |
WO 9839046 | Sep 1998 | WO |
WO 9839053 | Sep 1998 | WO |
WO 9846297 | Oct 1998 | WO |
WO 9847447 | Oct 1998 | WO |
WO 9849952 | Nov 1998 | WO |
WO 9850103 | Nov 1998 | WO |
WO 9851237 | Nov 1998 | WO |
WO 9855175 | Dec 1998 | WO |
WO 9909895 | Mar 1999 | WO |
WO 9922673 | May 1999 | WO |
WO 9923976 | May 1999 | WO |
WO 9925252 | May 1999 | WO |
WO 9930766 | Jun 1999 | WO |
0 934 729 | Aug 1999 | WO |
WO 9940964 | Aug 1999 | WO |
WO 9942059 | Aug 1999 | WO |
WO 9944510 | Sep 1999 | WO |
WO 9944542 | Sep 1999 | WO |
WO 9955236 | Nov 1999 | WO |
WO 9958068 | Nov 1999 | WO |
WO 0007655 | Feb 2000 | WO |
WO 0009054 | Feb 2000 | WO |
WO 0016705 | Mar 2000 | WO |
WO 0049970 | Aug 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20020082558 A1 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09452528 | Dec 1999 | US |
Child | 10082492 | US | |
Parent | 08941514 | Sep 1997 | US |
Child | 09452528 | US |