The present disclosure relates generally to fiber optic systems and devices. More particularly, the present disclosure relates to devices and systems for mounting fiber optic components to fiber management trays or other structures.
Optical fiber distribution systems may include equipment such as fiber management trays that are mounted in telecommunications enclosures or at other locations. A typical fiber management tray includes fiber routing paths for allowing excess length of optical fiber to be stored in looped configurations without violating minimum bend radius requirements for the optical fiber. Fiber optic components such as holders for holding fiber optic fusion splices, passive optical splitters, wavelength division multiplexers and the like are often mounted to fiber management trays. Improved structures are needed for connecting and releasing fiber optic components such as holders to and from structures such as fiber management trays or other structures.
Teachings of the present disclosure relate to a mechanical connection interface that can allow for simple and reliable connecting and releasing of optical components. In certain examples, the connection interface can be easily interlocked in an intuitive manner. In certain examples, the connection interface is configured to allow a latch of the interface to be flexed down from a latching position to an unlatched position by laterally moving a component desired to be latched, as compared to requiring the latch to be directly pressed down. In certain examples, the mechanical interface allows a first component desired to be coupled to a second component to be loaded into a flush configuration relative to the second component prior to any latch or latches being flexed or deflected. This allows for more intuitive and easier coupling of the interface. In certain examples, mechanical interfaces in accordance with the principles of the present disclosure can provide actuation of a latch by direct sliding or lateral movement relative to the latch. This allows the latch to be flexed and the component to move to an interlocked position in one step, as compared to requiring the latch to be initially flexed prior to sliding the component into a latched position.
Aspects of the present disclosure relates to a mechanical connection interface for securing first and second structural elements together. In a preferred example, the structural elements are parts (e.g., pieces, components, members, etc.) of a fiber optic telecommunications system, unit or device. In one example, the first structural element is a holder for holding optical components such as passive optical splitters, wavelength division multiplexers, optical splice protectors or the like, and the second structural element is a structure such as a tray, bracket, flange, shelf, panel, housing wall, housing cover, housing base, or the like.
Another aspect of the present disclosure relates to a mechanical connection interface adapted for coupling together first and second structural elements. The mechanical interface includes first and second connection interface arrangements that are configured to be interlocked with one another to couple the first and second structural elements together. Preferably, the first and second connection interfaces can also be selectively disengaged from one another to allow the first and second structural elements to be de-coupled from each other. The first connection interface arrangement defines an attachment opening defining a groove portion and an enlarged portion. The groove portion has a length that extends along a first reference line and a first width that extends perpendicular to the first reference line. The enlarged portion defines a second width perpendicular with respect to the first reference line that is larger than the first width. The first connection interface arrangement further including a flexible cantilever latch positioned within the enlarged portion of the attachment opening. The flexible cantilever latch has a length that extends along the first reference line. The flexible cantilever latch includes a base end and a free end. The enlarged portion of the attachment opening includes an interlock receiving portion defined between the free end of the flexible cantilever latch and the groove portion of the attachment opening. The free end of the flexible cantilever latch defines a stop surface, and the flexible cantilever latch defines a stop receptacle. The second connection interface arrangement includes an interlock and a stop aligned along a second reference line. The stop includes a stop surface. The interlock defines a third width that extends perpendicular to the second reference line. The third width is smaller than the second width and larger than the first width. At least one of the stop receptacle and the stop includes a ramp surface. The second connection interface arrangement is connected to the first connection interface arrangement by orienting the second connection interface arrangement in a first position relative to the first connection interface arrangement in which: a) the first and second reference axes are aligned; b) the interlock is received within interlock receiving portion of the enlarged portion of the attachment opening; and c) the first stop is positioned within the stop receptacle of the of the flexible cantilever latch; and then sliding the second connection interface arrangement along the aligned first and second reference axes from the first position to a second position in which: a) the first interlock is received within and interlocked with the groove portion of the attachment opening; b) the stop is positioned within the interlock receiving portion of the enlarged portion of the first attachment opening with the stop surface of the stop opposing the stop surface at the free end of the flexible cantilever latch; c) the interlock is received within and interlocked with the groove portion of the second attachment opening. As the second connection interface arrangement is slid from the first position to the second position, the ramp surface causes the flexible cantilever latch to deflect from a latching position to an unlatched position. After the stop moves past the free end of the flexible cantilever latch, the flexible cantilever latch elastically returns from the unlatched position to the latching position.
A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate to individual features and to combinations of features. It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventions and inventive concepts upon which the examples disclosed herein are based.
The optical interface unit of
Referring to
Referring to
The second connection interface arrangement 704 is connected to the first connection interface arrangement 700 by orienting the second connection interface 704 arrangement in a first position relative to the first connection interface arrangement 700 (see
After the first and second connection interface arrangements 700, 704 have been relatively oriented in the first position of
As the second connection interface arrangement 704 is slid from the first position to the second position, the ramp surface 744a of the first stop 738a engages the ramp surface 734 of the stop receptacle 732 to cause deflection of the flexible cantilever latch 718 (see
The groove portions 714a, 714b and the first and second interlocks 736a, 736b have dovetailed shapes in cross-sectional planes that are perpendicular to the first and second reference lines 712, 740 (see
A main body 749 of the bracket 741 includes first portion 750 having a top side 752 and a bottom side 754. The base end 720 of the flexible cantilever latch 718 is unitarily formed with the main body 749. The first and second attachment openings 710a, 710b extend through the first portion 750 of the main body 749 from the top side 752 to the bottom side 754. The stop receptacle 732 of the flexible cantilever latch 718 is defined at a top side 756 of the flexible cantilever latch 718 that is coplanar with the top side 752 of the first portion 750 of the main body 749 when the flexible cantilever latch 718 is in the latching position. The stop receptacle 732 extends downwardly into the flexible cantilever latch 718 from the top side 756 of the flexible cantilever latch 718 so that the stop receptacle 732 extends lower than the top side 752 of the first portion 750 of the main body 749 when the flexible cantilever latch 718 is in the latching position.
The first connection interface arrangement 700 defines a first seating surface 760 (e.g., the top side 752 of the portion 750 of the main body 749) through which the first and second attachment openings 710a, 710b extend. The second connection interface arrangement 704 defines a second seating surface 762 (e.g., the underside of the component holder 706) from which the first interlock 736a, the second interlock 736b, the first stop 738a and the second stop 738b project. The first and second seating surfaces 760, 762 are flush when the second connection interface arrangement 704 is in the first position relative to the first connection interface arrangement 700 and are also flush when the second connection interface arrangement 704 is in the second position relative to the first connection interface arrangement 700. The flexible cantilever latch 718 is in the latching position when the second connection interface arrangement 704 is in the first position relative to the first connection interface arrangement 700, and the flexible cantilever latch 718 is also in the latching position when the second connection interface arrangement 704 is in the second position relative to the first connection interface arrangement 700. Release openings 770 are defined through the first sealing surface 760 for allowing the cantilever 718 to be depressed with a tool such that the cantilever is moved to the non-latching position thereby allowing the second connection interface arrangement 704 to be disengaged from the first connection interface arrangement 700 by sliding the component holder 706 from the second position (see
This application is a National Stage Application of PCT/US2019/028245, filed on Apr. 19, 2019, which and claims the benefit of U.S. Patent Application Ser. No. 62/661,437, filed on Apr. 23, 2018, the disclosures of which are incorporated herein by reference in their entireties. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/028245 | 4/19/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/209643 | 10/31/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5337211 | Reiner et al. | Aug 1994 | A |
6304707 | Daems | Oct 2001 | B1 |
6944389 | Giraud | Sep 2005 | B2 |
7272291 | Bayazit | Sep 2007 | B2 |
7310471 | Bayazit | Dec 2007 | B2 |
7330629 | Cooke | Feb 2008 | B2 |
7502542 | Fujisawa | Mar 2009 | B2 |
7664360 | Cox | Feb 2010 | B2 |
8123185 | Winig | Feb 2012 | B2 |
8285104 | Davis | Oct 2012 | B2 |
8538227 | Cowen | Sep 2013 | B2 |
9042702 | Rodriguez | May 2015 | B2 |
9057859 | Solheid | Jun 2015 | B2 |
9541726 | Geens | Jan 2017 | B2 |
9684143 | Chen | Jun 2017 | B2 |
11194112 | Collart | Dec 2021 | B2 |
11199674 | Allen | Dec 2021 | B2 |
20080258018 | Cox et al. | Oct 2008 | A1 |
20090044456 | Syed | Feb 2009 | A1 |
20100322578 | Cooke et al. | Dec 2010 | A1 |
20130105420 | Ray | May 2013 | A1 |
20140079366 | Rodriguez et al. | Mar 2014 | A1 |
20140205254 | Rudenick | Jul 2014 | A1 |
20160161695 | Chen et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2019160995 | Aug 2019 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for International Patent Application No. PCT/US2019/028245 dated Aug. 9, 2019, 7 pages. |
Extended European Search Report for European Patent Application No. 19793744.4 dated Dec. 15, 2021, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20210239917 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62661437 | Apr 2018 | US |