The present invention belongs to the technical field of engineering machinery, in particular to a continuous prop lifting pre-tightening device for mechanical constant-resistance single prop and a method thereof.
Mechanical constant-resistance single props are widely applied in the coal mine support field, owing to their characteristics including strong supporting ability, stable supporting effect, easy use, and low application cost, etc. How to apply pre-tightening force is a key factor influencing quick and effective roof supporting with mechanical constant-resistance single props. However, in the process of pre-tightening force application, prop lifting pre-tightening devices have to be removed and installed repeatedly to attain the purpose of applying pre-tightening force, owing to the limitation of the section height of roadway support and the extension length of cylinder piston rod. Such prop lifting pre-tightening devices are complex to operate and have poor stability.
Therefore, in order to improve the supporting performance of single props, it is an urgent task to improve single prop pre-tightening devices.
The object of the present invention is to provide a continuous prop lifting pre-tightening device for mechanical constant-resistance single prop and a method thereof, in order to solve the above-mentioned problems in the prior art. The device can attain the purpose of continuous prop lifting of a single prop for applying pre-tightening force, and is simple in structure and easy to operate.
To solve the above problems, the present invention provides the following technical scheme:
The object of the present invention is to provide a continuous prop lifting pre-tightening device for mechanical constant-resistance single prop, which comprises a continuous prop lifter, a pressurization system, an oil supply pipeline, and a monitoring unit; the continuous prop lifter is a core component and comprises a hydraulic oil cylinder, a prop casing clamping hoop, and a prop rod clamping hoop, wherein the prop rod clamping hoop is fixedly connected to a piston rod of the hydraulic oil cylinder via a cylinder head block, and the prop casing clamping hoop is fixedly connected to the cylinder tail of the cylinder body of the hydraulic oil cylinder; the pressurization system is a part of the continuous prop lifting pre-tightening device, and may employ a manual pressurizing pump or motor-driven pressurizing pump for pressurization; the oil supply pipeline comprises two oil pipes, the two ends of the oil pipes are connected to oil ports in the continuous prop lifter and the pressurization system respectively, and the two oil ports in the continuous prop lifter are arranged in the cylinder body of the hydraulic oil cylinder; the monitoring unit is a pressure meter arranged on the front end of the pressurization system.
The prop rod clamping hoop is an openable hoop, one side of the hoop is fixedly connected via a rotating shaft, and the other side of the hoop is equipped with a prop rod bolt hole. The prop rod clamping hoop is controlled to close or open through the connection and disconnection of a prop rod clamping bolt and a clamping nut with the prop rod bolt hole.
The prop casing clamping hoop is an openable hoop, one side of the hoop is fixedly connected via a rotating shaft, and the other side of the hoop is equipped with a prop casing bolt hole, and the prop casing clamping hoop is controlled to close or open through the connection and disconnection of a prop casing clamping bolt and a clamping nut with the prop casing bolt hole.
A removable conical bush is assembled inside the prop rod clamping hoop, and the removable conical bush is connected with the prop rod clamping hoop in a slidable mode via a stop bolt, i.e., the central part of a side of the prop rod clamping hoop has a groove in width slightly greater than the diameter of the stop bolt, so that the conical bush can move in the radial direction inside the prop rod clamping hoop.
The inner surface of the conical bush and the inner surface of the prop casing clamping hoop are concave-convex threaded structures, in order to increase the friction force between the conical bush and the prop casing clamping hoop and the single prop.
The present invention further provides a continuous prop lifting pre-tightening method for the mechanical constant-resistance single prop, comprising the following steps:
The present invention has the following advantages and beneficial effects:
The structure of the continuous prop lifting pre-tightening device and the method thereof are described in detail in an embodiment in which the pressurization system is a manual pressurizing pump.
In the figures: 1—hydraulic oil cylinder; 2—oil pipe 1; 3—oil pipe 2; 4—oil circuit control switch; 5—manual pressurizing pump handle; 6—manual pressurizing pump oil tank; 7—prop casing clamping hoop; 8—prop rod clamping hoop; 9—piston rod; 10—rotating shaft; 11—conical bush; 12—stop bolt; 13—clamping bolt; 14—clamping nut; 15—cylinder head block; 16—manual pressurizing pump; 17—continuous prop lifter; 18—pressure meter.
The present invention discloses a continuous prop lifting pre-tightening device for mechanical constant-resistance single prop and the method thereof. The continuous prop lifting pre-tightening device for mechanical constant-resistance single prop comprises oil pipes, a continuous prop lifter, and a manual pressurizing pump. Two oil pipes are provided, and the two ends of the oil pipes are connected to oil ports in the continuous prop lifter and the manual pressurizing pump respectively. The continuous prop lifter comprises a hydraulic oil cylinder, a prop casing clamping hoop, and a prop rod clamping hoop, wherein the prop rod clamping hoop is fixedly connected to a piston rod of the hydraulic oil cylinder via a cylinder head block, and the prop casing clamping hoop is fixedly connected to the cylinder tail of the cylinder body of the hydraulic oil cylinder; the manual pressurizing pump is a power device for lifting the prop rod of the single prop. In the present invention, the piston rod of the continuous prop lifter is controlled to extend, stay, and retract by adjusting the oil circuit control switch in the manual pressurizing pump to different positions, and thereby the prop rod of the single prop is controlled to rise, and the purpose of continuous prop lifting of the single prop for applying pre-tightening force is attained.
Hereunder the present invention will be further detailed in embodiments, with reference to the accompanying drawings.
As shown in
As shown in
As shown in
A removable conical bush (11) is assembled inside the prop rod clamping hoop (8), and the conical bush is connected with the prop rod clamping hoop (8) in a slidable mode via a stop bolt (12), i.e., the central part of a side of the prop rod clamping hoop has a groove in width slightly greater than the diameter of the stop bolt, so that the conical bush can move in the radial direction inside the prop rod clamping hoop.
The inner surface of the conical bush (11) and the inner surface of the prop casing clamping hoop (7) are concave-convex threaded structures, to increase the friction force between the conical bush and the prop casing clamping hoop and the single prop.
The manual pressurizing pump (16) comprises an oil circuit control switch (4), a pressure meter (18), a manual pressurizing pump oil tank (6), and a manual pressurizing pump handle (5). The oil circuit control switch (4) has an oil supply position, a neutral position, and an oil return position, and the piston rod (9) of the continuous prop lifter (17) can be controlled to extend, stay, and retract by adjusting the position of the oil circuit control switch (4); the manual pressurizing pump oil tank (6) provides a space for oil supply and oil storage; the pressurizing pump handle (5) is an external auxiliary structure for providing power to the entire device.
The monitoring unit is a pressure meter (18) disposed on the front end of the manual pressurizing pump and used to monitor the indicated value of pressurization.
The present invention further provides a continuous prop lifting pre-tightening method for mechanical constant-resistance single prop, which comprises the following steps:
The present invention plays a key role in the support withdrawal technique for the working face 8216 in a coal mine. In the withdrawal process of the working face 8216, mechanical single props and timber cribs are used in combination for support, high constant pre-tightening force is applied to the mechanical single props timely and quickly with continuous prop lifters. Thus, the shield supports are withdrawn safely, and the roof collapses fully after the supports are withdrawn to a certain distance.
The working face 8216 is in 4 m height, the initial installation length of the single prop is 3.5 m, and the maximum extension length of the piston rod of the continuous prop lifter is 0.4 m. After a run of prop lifting is finished, the prop rod of the single prop hasn't come into contact with the roof yet. By adjusting the pressurization system, the piston rod retracts and then extends out again, and thereby the prop rod of the single prop comes into contact with the roof and applies pre-tightening force. The magnitude of the pre-tightening force is monitored by the monitoring unit, and is controlled at about 100 kN in the actual pre-tightening force application process.
While the present invention is described above in some preferred embodiments, it should be noted that those skilled in the art can make various improvements and modifications without departing from the principle of the present invention, and those improvements and modifications should be deemed as falling in the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2018 1 0165456 | Feb 2018 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/077809 | 3/12/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/166025 | 9/6/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2657009 | Neis | Oct 1953 | A |
3030889 | Parker | Apr 1962 | A |
4915281 | Berger et al. | Apr 1990 | A |
Number | Date | Country |
---|---|---|
2034966 | Mar 1989 | CN |
2424185 | Mar 2001 | CN |
1640805 | Jul 2005 | CN |
201212011 | Mar 2009 | CN |
101446214 | Jun 2009 | CN |
105084244 | Nov 2015 | CN |
107161903 | Sep 2017 | CN |
108425693 | Aug 2018 | CN |
Entry |
---|
International Search Report for Application No. PCT/CN2019/077809, dated Jun. 3, 2019. |
Number | Date | Country | |
---|---|---|---|
20200240269 A1 | Jul 2020 | US |