The present disclosure relates to a mechanical contact device comprising a base, a mobile support capable of moving on the base in a direction X and a contact member carried by the support.
Generally, the mechanical contact device according to the invention can be any device equipping a machine or an apparatus and intended to have a working position in which it comes into contact with a part of a tool and is driven into rapid displacements, for example during maintenance or adjustment operations of the machine or the apparatus.
Thus, the contact member within the meaning of the present disclosure can for example be a tool-holder, for example for a drilling or machining tool, equipping a machine or a robot, or even a blocking or stress-relief pin for a workpiece which must undergo treatment in a machine. In particular, the contact member can be a back stop-pin of a press brake.
European patent application no. 1 264 647 discloses a press brake for sheet metal equipped with a mechanical contact device formed by a back stop device comprising a contact member formed by a stop-pin.
This press brake comprises a frame having on its front side a vertically mobile upper apron and a lower counter-bending apron. A piece of sheet metal needing to be bent is positioned in the space between the two aprons, the rear edge of this piece of sheet metal coming into abutment against the contact member of the rear stop device to ensure its correct positioning during bending. For bending, the upper apron is displaced downward and the tools that it carries carry out the bending in cooperation with the die held by the lower apron. The operating speeds of press brakes are high and the operations of positioning the piece of sheet metal and of adjusting the positions of the different elements constituting the press brake must be carried out rapidly. During these adjusting operations, a portion of the body of the operator, particularly his hands, may be situated in the space between the upper and lower aprons or in close proximity to one of these aprons, in particular the lower apron. Normally, during an adjusting or repositioning operation, the entire rear stop device is moved back. At the conclusion of such an operation, the assembly is rapidly moved forward so that the contact member moves into its working position, in which it carries out its function of back stop.
In particular, one or more back stop devices of the aforementioned kind are mounted on a main carriage which, upon completion of an adjusting or repositioning operation, moves this device(s) rapidly forward.
It is important to protect the operator from injuries which could occur if, during this rapid forward movement, the contact member were to strike a portion of his body, in particular his hand.
In certain press brakes, the forward movement occurs in two stages, that is a first rapid phase from the extreme rear position until an intermediate position, then a final phase of forward movement which, in the zone in which it risks hitting a portion of the operator's body, occurs slowly. However, this hinders manufacturing rates because overall, the speed of displacement of the contact device is affected thereby.
The same problems are posed in general in a machine or an apparatus equipped with a mechanical contact device, the position of which can be adjusted or modified by rapid displacement. It is in fact important to avoid that such a displacement, when it occurs in particular during an adjustment or maintenance operation of the machine or the apparatus, produces injuries or material damage if it causes an impact between the contact member and a portion of the body of a person or an object improperly positioned on the path of the contact member. It is also important to avoid systematically slowing the speed of such a displacement.
According to a first aspect, a mechanical contact device is proposed making it possible to limit or avoid risks of injuries to a person or material damages if a portion of the body of a person or an object were to be struck by the contact member during an operation or a manoeuvre, such as for example an adjustment or a repositioning of a machine or an apparatus equipped with the contact device, while substantially correcting the aforementioned disadvantages.
Thus, according to the first aspect, the mobile support is pivotally mounted on the base around a mobile support axis oriented in a direction Y substantially perpendicular to the direction X, and the mechanical contact device includes:
For example, the direction X is a horizontal direction for front-and-rear displacement, the directly Y is the vertical direction and the direction Z is a horizontal direction for left-and-right displacement. This is particularly the case when the contact device is a back stop device for a press brake.
It is understood that, when the retention means are active and thus retain the lever in its rest position, the contact member plays its role of mechanical contact, for example a press brake back stop. In fact, in this case, the displacement of the mobile support under the effect of a (rearward) thrust exerted in the direction X is restrained, so that the contact member can cooperate by static contact with a part, for example the rear edge of a piece of sheet metal needing to be bent. On the other hand, when the retention means are deactivated, if the contact member strikes an object or a portion of the body of a person during a forward displacement of the contact device in the direction X, this impact causes a (rearward) thrust on the contact member, this thrust causing, between the reaction member and the reaction zone, a reaction effort which causes pivoting of the lever about the lever axis, toward the pivoted position. This pivoting releases the rearward thrust of the contact member in the direction X, avoiding damage which could be caused by this impact, or reducing them considerably.
Moreover, if an impact due to a relative displacement, operated in the direction Z, between the contact member and an object or a portion of the body of a person occurs while the retention means are deactivated, such an impact will also cause a reaction force between the reaction member and the reaction zone. Due to the inclination of the reaction surface, this reaction force will also cause the lever to pivot and will release the displacement of the contact member, this time by pivoting around its mobile support axis.
It is noted that the device defined above does not, or practically does not affect the normal movement speed of the contact member and consequently does not or practically does not affect the production rate of the machine, a press brake for example, which is equipped with the mechanical contact device.
Optionally, the device includes two reaction members positioned substantially on either side of a plane of symmetry, and the blocking arm has two reaction zones which, when the lever is in its rest position, are positioned substantially symmetrically on either side of said plane of symmetry, said plane of symmetry being parallel to the directions X and Y and being defined when the lever is in its rest position.
In particular, this arrangement makes it possible to obtain the same effect during an impact due to a relative displacement between the contact member and an object or the body of a person in the direction Z, in one direction or in the other, i.e. when the direction Z is a horizontal left-and-right direction, either to the right or to the left.
Optionally, the retention means are capable of being controlled between a retention configuration in which they are active and oppose pivoting of the lever, and the release configuration in which they are deactivated.
In this case, the retention means are not constantly effective. In particular, the retention means can be controlled into the retention configuration when the machine equipped with the contact device is in operation, for example during bending operations carried out in a press brake, and be controlled into a release configuration during adjustment operations of the machine prior to or consecutive with its operation, in particular of the kind requiring an intervention by an operator. In particular, the retention means can be controlled via an electronic control unit.
Optionally, the reaction surface is at least partly convex.
This favors, in the release configuration, sliding between the reaction member and the reaction zone, and thus favors pivoting of the lever.
Optionally, the lever axis is carried by the mobile support and said at least one reaction member is fixed with respect to the base.
Optionally, the retention means comprise a first retention member fixed with respect to the base and a second retention member carried by the lever.
Optionally, one of the first and second retention members comprises an element selected from among a latch, a permanent magnet, an electromagnet and a suction cup, while the other of the first and second retention members comprises a retention surface capable of cooperating with said element.
The retention means can also comprise other means, for example a weight carried by the lever or integral with it to naturally return the lever into its rest position under the effect of gravity. This weight can be directly integrated into the lever, by being for example formed by a secondary arm forming an angle with the blocking arm and having sufficient mass for returning the lever into the rest position. It can also be formed on the blocking arm or on another portion of the lever, provided that it has the tendency to return it to its rest position.
Such a weight can form the second aforementioned retention member. As for the first retention member, if it is present, the base can have a stop surface against which a portion of the lever abuts during its return by the weight under the effect of gravity.
In particular, the retention means can exert constant retention, such as for example when one of the first and second retention members comprises a permanent magnet or a permanent latch which can be unlatched by an effort opposing a constant elastic return into the latched position. In this case, the retention means are naturally active and are deactivated during an impact on the contact member, the intensity of which exceeds the retention effort exerted by said retention means.
However, as indicated, the retention means can be of the type capable of being controlled between the retention configuration and the release configuration. This is the case, for example, when one of the first and second retention members comprises a controlled latch, an electromagnet or a suction cup. In this case, the retention means are activated in the retention configuration, for example during bending operations carried out in a press brake, and can be deactivated in the release configuration, to allow adjustments of the press brake.
According to a second aspect, the lever carries a blocking stop, constantly returned into an inactive position and capable, in the event of a shock on the contact member causing pivoting of the lever when the retention means are active, of adopting an active position in which said pivoting of the lever is limited by a contact between said blocking stop and a counter-stop fixed with respect to the mobile support.
For example, when the machine equipped with the mechanical contract device is a press brake, such a shock can be due to the sudden introduction of a piece of sheet metal needing to be bent in the press brake. If the introduction of the piece of sheet metal causes such a shock on the contact member, when a bending operation is starting, this shock could, if its intensity is very high, release in an untimely manner the displacement of the lever, bypassing the retention effort exerted by the retention means even though they are active, thus ensuring that the contact member also moves and thus leaves its desired operating position. The aforementioned blocking stop allows that to be avoided because, during such a shock on the contact member, the mobile support moves and causes pivoting of the lever to begin. However, the blocking stop, then in its active position, then prevents the lever from pivoting further thanks to contact between this blocking stop and the blocking surface of the mobile support, before the retention carried out by the retention means ceases to be effective. The lever is then stopped in a position that is only slightly pivoted, and this retention, combined with cooperation between the reaction member of the base and the reaction zone of the blocking arm, stops the displacement of the mobile support with respect to the base as long as the retention means remain active. Thus, the contact member does not move further than over the short path which caused the slight pivoting of the lever.
Conventionally, a shock causes an intense effort which ceases immediately. The contact between the blocking stop and the counter-stop occurs before this effort overcomes the retention effort exerted by the active retention means. It is only if a considerable effort is applied continuously, as in the case where an object is struck by the contact member in movement and would form an obstacle to its travel that, depending on its intensity, this effort will be able to overcome the retention force exerted by the active retention means. If this retention force is exceeded, the retention means are then deactivated, which allows the blocking stop to return to its inactive position, so that the pivoting of the lever is released, which allows displacement of the contact member.
Thus, the blocking stop is useful both when the retention means are of the constant type (for example with a weight, a latch or a permanent magnet) or exerting a by-passable retention force and when the retention means are of the type that can be controlled between the retention configuration and the release configuration, and consist for example of a controllable latch, an electromagnet or a suction cup.
Optionally, the device includes a stop actuator capable, in the event of a shock on the contact member, of cooperating with the blocking stop to bias the latter into its active position.
Optionally, the stop actuator is fixed with respect to the second retention member.
Optionally, the stop actuator is capable of cooperating with the blocking stop via at least one ramp which is provided on one of the elements comprising the stop actuator and the blocking stop.
The displacement of the mobile stop under the effect of the shock is thus facilitated and can occur in a direction different from that of the force exerted on it by the stop actuator.
Optionally, the device includes means for returning the lever into the rest position while the blocking stop is in contact with the counter-stop and the retaining means are in the retaining configuration.
As indicated previously, a shock can cause a slight pivoting of the lever, but it remains blocked by contact between the blocking stop and the counter-stop. Since this shock produces an instantaneous effort, the intensity whereof disappears after the shock, the retention means remain in the retention configuration. In this case, the lever is returned to the rest configuration and the slight displacement of the contact member which had occurred during the shock is cancelled.
Optionally, the second retention member is capable of moving with respect to a reaction portion of the lever which is rigidly linked to the blocking arm, the stop actuator being rigidly linked to the second retention member, and one of the elements comprising the stop actuator and the second retention member cooperates with said reaction portion via an elastic return means.
This constitutes a simple and effective means for returning the lever into the rest position while the blocking stop is in contact with the counter-stop and the retention means are in the retention configuration.
Optionally, said reaction portion is formed on a secondary arm of the lever, the second retention member and the actuator are positioned on either side of the secondary arm, and a return spring is interposed between the secondary arm and one of the elements formed by the stop actuator and the second retention member.
The present disclosure also relates to a press brake for sheet metal comprising a mechanical contact device of the type described above, forming a back stop device for the press brake, the press brake further comprising a frame having on the front side an upper, vertically mobile apron, substantially perpendicularly to the directions X and Z, and a lower, counter-bending apron, the base being carried by a main carriage, reciprocally movable in the direction X, preferably via a rail system allowing sliding of the base with respect to the main carriage in the direction Z.
The invention will be well understood and its advantages will appear more clearly upon reading the detailed description that follows, of an embodiment shown by way of a non-limiting example. The description refers to the appended drawings, in which:
A side cheek of a frame 1 of a press brake is shown in
The press brake also includes an upper apron 4 vertically reciprocally movable in the direction Y and carrying at its lower end a bending tool 5 cooperating with the die 3 to, when a piece of sheet metal 6 is positioned in the press brake, carry out bending of said sheet metal.
The press brake comprises a back stop device 10 comprising a base 12, a mobile support 14 capable of moving on the base 12 in a front-and-rear horizontal direction X and a contact member 16, carried by the mobile support 14 and forming in this particular case a back stop-pin of the press brake. In this particular case, the contact member is carried by the support via a spacer 18 attached to the mobile support via a pivoting axis 19 extending in a right-to-left horizontal direction Z which, in certain circumstances, allows the spacer and the contact member to rise by pivoting.
In this particular case, the contact member 16 is therefore positioned on the front of the spacer 18. The back stop device also comprises, in this case, a back cleat 17 carried by the support 14 at its rear end.
In this particular case, the base 12 is carried by the main carriage 20 which is reciprocally movable in the direction X, for example via a worm drive system 22. In this particular case, the base 12 is carried by the main carriage 20 through a rail system allowing sliding of the base 12 with respect to the main carriage 20 along the right-left horizontal direction Z, perpendicular to the plane of the figure. In this particular case, the rail system comprises rail-forming tubes 24 carried by the main carriage 20 and sliders 26 carrying the base 12. The drive system of the slider 26 comprises for example a belt drive device 28 shown with a broken line.
In
The device comprises a lever 34 which is pivotally mounted around a lever axis 36 which, in the example shown, is carried by the mobile support 14.
The conformation of the lever 34 will be better understood by referring to
The device comprises retention means which, in
In this particular case, these retention means comprise a n electromagnet 40 which forms a first retention member fixed with respect to the base 12. The lever comprises a second retention member 42 which, in this particular case, is carried by a secondary arm 44 of the lever positioned in such a manner that, with the blocking arm 38, it forms substantially an L, the blocking arm forming in this case the short leg of the L and being oriented downward. The second retention element 42 has a surface made of a material sensitive to magnetic attraction, to be able to be retained against the electromagnet 40 when the latter is activated.
It is possible to provide for other retention means. For example, the electromagnet could be replaced by a pneumatic suction cup, in which case the surface of the second retention member located facing the suction cup would be a solid surface (the threading 46 visible in
The retention means could also comprise a latch, comprising for example, as the second retention member carried by the lever 34, a staple formed by a depression or a bore 44′ in an extension 44″ of the arm 44 facing a wall of the base 12 and a bolt, carried by the base and capable of extending into this staple and to be retracted into that wall of the base. The edge of the bore would then form the retention surface.
The retention means can be of the type capable of being controlled between the retention configuration and the release configuration, for example by an electronic control unit ECU controlling one of the retention members. In this particular case,
However, the retention means can be of the constant retention type. For example, the retention means can comprise a weight, a permanent magnet or a constant latch the bolt of which could however retract if a considerable effort is exerted on the lever, for example if the lever is displaced and strikes a part or a portion of the body of a person such as an operator. For example cooperation between the bolt and the staple could occur via a ramp tending to return the bolt into the retracted position during a displacement between the staple and the bolt, countering a constant elastic return of the bolt into the extended position, the stiffness of the elastic return being determined so as to allow retraction of the bolt based only on a given intensity of the efforts against the staple and the bolt.
As indicated,
On the other hand, in
In
More precisely, the space 18 has a window 18′ in which, when the spacer and the contact member are in the normal lowered position as in particular in
With reference in particular to
In this particular case, the blocking arm 38 has two reaction zones, respectively 38A and 38B which, when the lever is in its rest position and the contact member is in its working position, are positioned substantially symmetrically on either side of a plane of symmetry P defined by the horizontal direction X and the vertical direction Y. Likewise, the base 12 carries two reaction members, respectively 48A and 48B, to cooperate respectively with each of the two reaction zones. These reaction members are positioned substantially symmetrically with respect to the plane P. In this particular case, these reaction members are formed by screw heads, respectively 50A and 50B, screwed into legs, respectively 12A and 12B, of the base 12 which delimit between them the recess 13 previously defined. These screws, which can be retained by nuts 51A and 51B, can also be adjusted in position so as to be able to precisely adjust the position of the reaction members.
It is seen, in particular in
Due to the inclination of the reaction surface with respect to the direction X, thrust on the contact member 16 in the direction X- will cause pivoting of the lever as can be seen in
Likewise, due to the inclination of the reaction surfaces with respect to the direction Z, thrust is exerted on the contact member in the direction Z− parallel to the direction Z will cause pivoting of the lever, thus allowing the blocking arm 38 to escape the legs 12A and 12B of the base 12 between which is arranged the recess 13 and consequently allowing the support 14 to pivot around the axis 30 in the direction Z−, due to the fact of the thrust reaction between the reaction zone 38A and the reaction member 48A. Conversely, thrust on the contact member 16 in the direction Z+, parallel to the direction Z but opposite to the direction Z−, will this time cause a reaction between the reaction zone 38B and the reaction member 48B and will therefore cause pivoting of the lever, thus allowing the blocking arm to escape the aforementioned legs 12A and 12B and consequently allowing the support 14 to pivot with respect to the axis 30 in the direction Z+.
Moreover, as can be seen in the perspective view of
In the appended figures is shown the case where the lever 34 is carried by the support 14, i.e. its axis 36 is carried by the support, while the reaction members 48A and 48B are carried by the base. The configuration could of course be the reverse, in which case the axis of the lever would be carried by the base, while the reaction member(s) would be carried by the support 14.
In the example shown, the mechanical contact device includes means for avoiding untimely displacement of the contact member during a shock occurring when the contact member is in the working position and intended to be functional to implement a back stop for a piece of sheet metal which is to be bent in the press brake. These means are more visible in particular in
Moreover, the arm 44 has a central bore 54′. In this particular case, the second retention member 42 is not directly formed by the lower face of the arm 44, but rather it is formed in a plate applied to this arm. In the central region, this plate has a tubular extension 66 which passes through the bore 65 in the arm 44. A faceplate 68 having a vertical section shaped substantially like a U, the legs whereof are positioned downward, is retained with respect to the second retention member 42 using a screw 70 of which the shank is screwed into the threading 46 of the tubular extension 66. In this particular case, a protective cover 72 is interposed between the screw and the faceplate 68. A coil spring 74 is positioned around the tubular extension 66 and is supported, on the one hand, on the upper face of the arm 44 and, on the other hand, on the lower face of the faceplate 68. This spring therefore tends to constantly separate the faceplate from the upper face of the arm 44 and, therefore, to bring the arm 44 closer to the second retention member 42. The faceplate 68 plays the role of a stop actuator which, during a shock on the contact member, cooperates with the stops 60A and 60B to bias them into their active stop position. Thus, the arm 44 plays the role of a reaction portion which is rigidly linked to the blocking arm 38 and with respect to which the second retention member 42 can be moved. For its part, the faceplate plays the role of a stop actuator which is rigidly linked to the second retention member 42 and which cooperates with the reaction portion (arm 44) via the spring 74.
This will be better understood by comparing
On the other hand, when a shock occurs when the retention means are in their retention configuration, the blocking stops come into contact against the counter-stops. This is what
However, the plate 42, (second retention member) was still retained against the electromagnet 40. For example, the retention effort exerted by the electromagnet is of the order of 240 N or more. Because the plate is rigidly linked to the faceplate 68 and the spring 74 is interposed between the faceplate and the arm 44, this spring then returns the arm toward the plate 42, which returns the lever into its rest position and therefore returns the contact member to its working position. In this particular case, the spring 74 works in compression. The effect obtained could be the same with a spring operating in tension, which would be interposed between the plate 42 and the arm 44.
In
The same elements are visible in the exploded perspective of
Overall, the base 12, the support 14 and the lever 36 are symmetrical with respect to the plane P (considered when the contact member is in its working position).
The foregoing detailed description refers to a back stop device of a press brake. It must be understood that a press brake can include, and generally includes, several similar back stop devices, spaced from one another along the length of the rails 24. Moreover, as has been indicated, the mechanical contact device according to the invention can be any device, equipping any machine or apparatus, and intended to have a working position in which it comes into contact with a part or a tool and to be driven into rapid movements, for example during maintenance or adjustment operations of the apparatus or the machine.
Number | Date | Country | Kind |
---|---|---|---|
15 58325 | Sep 2015 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
4055070 | Wingate | Oct 1977 | A |
4411150 | Klein | Oct 1983 | A |
5526672 | Cain | Jun 1996 | A |
8683835 | Austaller | Apr 2014 | B2 |
Number | Date | Country |
---|---|---|
1264647 | Dec 2002 | EP |
2002292430 | Oct 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20170066032 A1 | Mar 2017 | US |