Some mechanical devices perform specific functions through use of induced vibratory motion. Such devices include monitoring damage detection and structural assessment of civil structures and mechanical devices, damping in civil structures, searching for oil and gas with seismic impulse exciters, medical device and equipment, controlling fluid flow in a pipe, deliquifying screens, material separators, vibratory feeders and conveyors, attrition mills, mold shakeout machines, and vibratory compactors. Typically these devices utilize one or more force generators to create a predefined force profile for inducing vibration within the device. These force generators may include linear drives or imbalanced rotors driven by synchronous motors or induction motors whose speed is an integer fraction of the electrical source frequency. To vary the frequency of vibration, variable frequency drives (VFDs) are used in conjunction with these motors. To tailor the shape of the vibration profile or create a resonance for the purpose of amplifying the vibration response, springs, stabilizers, and/or mechanical pivots are used. When multiple synchronous or asynchronous motors are used on the same device and are coupled through common base vibration, they tend to synchronize with each other to produce a consistent and predesigned force profile.
The aforementioned devices are incapable of maintaining a desired vibration profile when operating conditions change, such as a change in material loading, changes in temperature, changes in material properties, or other variables that can alter the response of the mechanical device. In some cases, the aforementioned devices cannot create certain desirable vibration profiles. In other cases, the aforementioned devices cannot create a variety of selectable vibration profiles within limits imposed by the authority of their respective force generators.
In accordance with the present invention a system for creating a prescribed operating function within a mechanical device. The system comprises a mechanical device, at least one circular force generator (CFG), at least one sensor and a controller. The CFG is affixed to the mechanical device. The CFG is capable of producing a rotating force vector, wherein the rotating force vector includes a magnitude, a phase, and a frequency, wherein the CFG creates at least one vibration profile in the mechanical device. The at least one sensor is positioned on the mechanical device, wherein the sensor measures an operating function associated with and enabled by the vibration profile. The controller is in electronic communication with the sensor and with the CFG, the controller operably controlling the force vector based upon the measurement of the operating function, wherein the magnitude, phase and frequency are independently controllable by the controller, wherein the controller changes the force vector. Wherein a difference between the measured operating function and a prescribed operating function is reduced.
In accordance with the present invention a system for creating a prescribed vibration profile within a mechanical device. The system comprises a mechanical device, at least one circular force generator (CFG), at least one sensor and a controller. The CFG is affixed to the mechanical device. The CFG is capable of producing a rotating force vector, wherein the rotating force vector includes a magnitude, a phase, and a frequency, wherein the CFG creates at least one vibration profile in the mechanical device. The at least one sensor is positioned on the mechanical device, wherein the sensor measures a vibration profile associated with and enabled by the vibration profile. The controller is in electronic communication with the sensor and with the CFG, the controller operably controlling the force vector based upon the measurement of the vibration profile, wherein the magnitude, phase and frequency are independently controllable by the controller, wherein the controller changes the force vector. Wherein a difference between the measured vibration profile and a prescribed vibration profile is reduced.
In another aspect, the invention provides for a method for creating a prescribed operating function on a mechanical device having at least one CFG capable of producing a rotating force vector with a controllable magnitude, phase and frequency, a sensor and a controller, and the CFG is capable of creating at least one vibration profile in the mechanical device, the method comprising the steps of:
Numerous objects and advantages of the invention will become apparent as the following detailed description of the preferred embodiments is read in conjunction with the drawings, which illustrate such embodiments.
The invention described herein is applicable to a wide range of devices where a mechanically induced vibration is desired, the non-limiting examples of vibratory deliquifying machines, conveyors, and separators are used for illustration purposes.
Referring to the drawings,
In vibratory deliquifying machine 10, slurries (not shown) enter inlet 12 where a vibratory motion causes the slurry to convey across screen 14 suspended on springs 18. As the slurry is conveyed across screen 14, liquid passes through screen 14 while dry material (not shown) is extracted at exit 16.
Existing vibratory deliquifying machines 10 have a specific elliptical vibratory motion at one specific frequency providing for optimal performance. CFG 20, including controller 22, enables the use of a prescribed elliptical vibratory motion for optimal performance. In the case of the non-limiting example of vibratory deliquifying machine 10, the prescribed elliptical vibratory motion from CFGs 20 increases the separation of liquid and solid matter. This also enables the maintenance of the optimal vibratory motion even when the mass of the slurry or the center-of-gravity of the slurry on screen 14 changes with time or operating condition.
In
In the non-limiting example illustrated in
In the non-limiting example of vibratory deliquifying machine 10 illustrated in
The signals from sensors 30 are received by controller 22. Controller 22 commands the force magnitude, phase, and frequency of each CFG 20. Within controller 22 resides at least one algorithm comparing performance, as measured by sensors 30, with a desired performance to produce an error. The algorithm then produces CFG commands that that will reduce or minimize this error. Many methods are known to those skilled in the art for reducing an error based on sensor 30 feedback, including various feedback control algorithms, open-loop adaptive algorithms, and non-adaptive open-loop methods. In one exemplary embodiment, controller 22 uses a filtered-x least mean square (Fx-LMS) gradient descent algorithm to reduce the error. In another exemplary embodiment, the controller uses a time-average gradient (TAG) algorithm to reduce the error.
Sensors include all types of vibration sensors, including digital, analog, and optical. Sensors also include accelerometers, thermocouples, infrared sensors, mass flow rate sensors, particle matter sensors, load sensors and optical sensors. The sensors may be selected from the group consisting of vibration sensors, accelerometers, thermocouples, infrared sensors, mass flow rate sensors, particle matter sensors, load sensors, optical sensors and combinations thereof. A plurality of sensors of the same type or a plurality of different types sensors are employed to maximize the measurement of the operating condition.
The mechanical devices contemplated herein perform specific operating functions through use of induced vibratory profiles. Operating functions material flow or movement, material separation, material compaction, drying, pumping, as well as others. All of the operating functions are enabled by the induced vibratory profile and react to vibratory input from CFGs 20.
In an exemplary embodiment, sensors 30 are accelerometers directly measuring the operating function of screen structure 24. In this non-limiting embodiment, the operating condition measured is the vibration profile of screen structure 24. Within controller 22 the measured operating function is compared with a desired or prescribed vibration profile to produce an error. Controller 22 then implements an algorithm that produces CFG commands such that the measured operating function moves toward the prescribed vibration profile reducing the error. By way of illustration,
In another illustrative non-limiting example,
Application of the present invention enables a prescribed elliptical vibratory motion for optimal performance of vibratory feeder 100. Optimal performance includes precision metering of material flow or high material conveyance rate without damaging or dispersing the material. The present invention also enables the maintenance of the optimal vibratory motion even when the mass of the material on feeder bed 102 or the center-of-gravity of the material on feeder bed 102 changes with time or operating condition. In other embodiments or other uses the prescribed vibration is selected from the group consisting of linear, elliptical and orbital, as determined by the desired outcome.
Vibratory feeder 100 illustrated in
Referring to
θ(t)=φt+ω (Equation (1)
where ω is the rotational speed and φ is the rotational phase. Rotational phase φ corresponds to the phase of the motor (and thus the imbalanced mass) with respect to an internal reference tachometer signal. Both imbalanced masses 32a, 32b co-rotate at nominally the same speed ω, and each imbalanced mass 32a, 32b creates a centrifugal force whose magnitude is mathematically determined by using Equation (2):
|F|=mr ω2 Equation (2)
where mr is the magnitude of imbalanced mass 32a, 32b which is typically expressed in units of Kg-m. The phase of the first imbalanced mass 32a with respect to the second imbalanced mass 32b (i.e., the relative phase) within CFG 20 will determine the magnitude of resultant rotating force vector 26.
Referring to
Referring to
Preferably, the first CFG 20 includes the first imbalance mass 32a controllably driven about a first mass axis 42 with a first controllable imbalance phase φ1 and a second imbalance mass 32b controllably driven about a second mass axis 44 with a second controllable imbalance phase φ2, the first controllable imbalance phase φ1 and the imbalance phase φ2 controlled in reference to the vibration reference signal. The mth CFG 20 includes a first imbalance mass (massm
Referring to
Referring to
Other embodiments of the current invention will be apparent to those skilled in the art from a consideration of this specification or practice of the invention disclosed herein. Thus, the foregoing specification is considered merely exemplary of the current invention with the true scope thereof being defined by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/066500 | 10/23/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61719084 | Oct 2012 | US |