The present invention relates to mechanical digital displays, and more specifically to an operating device which can transmit a movement to a mechanical digital display incorporated into a wristwatch.
Most digital display wristwatches usually include elements such as light-emitting diodes having electro-optical properties, placed in a rigid display panel and connected to an electronic circuit in such a way that the desired time indication is obtained by the excitation of certain segments of each of the sets forming the geometric figures from which the time indication is produced.
However, digital displays for wristwatches made in a wholly mechanical form are known in the prior art. CH 568600 describes a mechanism whose segments are formed by the deposition of tritium on the watch dial. Said segments can be masked by plates positioned on yokes in the form of bent levers. These levers are operated by cams which are driven by a watch movement. The pivoting of the bent yokes displaces the plates parallel to themselves in such a way that they cover the appropriate segments. A mention is made of the possibility of depositing the tritium directly onto the yokes, which could be bodies of revolution. These bodies of revolution appear partly in the slits of the dial and are driven by cams.
Other partially mechanical digital display devices are in use in similar fields such as the indication of speed or temperature measurements. FR 2 543 337 discloses such a device having display elements in the form of elongate prisms. These serve as segments making up a digit and can pivot on their respective longitudinal axes. Each face of the prism has a colour contrasting with those of the adjacent faces, so that the display of a digit is produced by the dissimilarity of the colours visible through slits formed in a casing, the visible colour being determined by the orientation of the prism about its longitudinal axis.
Each prism is rotated by a motor, and thus seven separate motors are required to drive the seven segments of a digit. This type of drive is therefore relatively bulky and can only be installed in display systems of a large size.
The object of the present invention is to propose a mechanical digital display having a drive device for rotating the display elements which is compact, so that it can be incorporated in a wristwatch, for example.
According to the invention, this object is achieved by means of a mechanical digital display as claimed in claim 1. This mechanical display includes at least one digit consisting of at least seven segments for the display of alphanumeric characters. Each segment is an elongate body in the form of a bar which can pivot about its longitudinal shaft, each of the said bars having at least two areas resembling a first and a second strip. These have different appearances, and are arranged along the length of the bar in such a way that the orientation of the bar by rotation about its longitudinal shaft enables either the first or the second strip to be made visible. The display of an alphanumeric character is achieved by the dissimilarity of the appearance between the first and second strip of the set of bars. The pivoting of one or more bars to replace the first strip with the second strip or vice versa creates the display of different alphanumeric characters. At least one pinion, fixed to the bar, is positioned around each longitudinal shaft adjacent to at least one of the ends of said bar. The bars are pivoted by means of cams interacting directly or indirectly with each pinion.
The characteristics of the invention will be made clearer by the description of a number of embodiments, provided solely by way of example and without restrictive intent, with reference to the schematic figures, in which:
In the principal embodiment of the invention, the mechanical digital display is adapted so that it can be incorporated into a wristwatch. This display has four digits, showing respectively tens of hours, hours, tens of minutes and minutes. Each digit consists of a mechanism including seven bars (1), of which four are vertical while the other three, which are shorter, are horizontal.
Each bar (1) has four faces and can pivot about its longitudinal shaft (3). A pinion (2) is placed adjacent to one of the ends of each bar (1) on the longitudinal shaft (3) of the latter. The pinion (2) is fixed to the bar (1) in such a way that the bar can be pivoted when said pinion (2) is driven, so that it can be positioned in different orientations.
Each bar (1) is pivoted by driving the pinion (2) by means of a cam (4). Seven cams (4) are therefore fixed to a shaft (5) so that each of the seven bars (1) can be pivoted. Four of the seven cams (4) are positioned coaxially adjacent to each other on the shaft (5) at one end of the mechanism forming the digit. This shaft (5) is positioned along the length of the mechanism including the seven bars (1) forming the digit (
Two of the four cams (4) are designed to drive directly the pinion (2) of a first and a second vertical bar (1) respectively, while the other two cams (4) are designed to drive the pinion (2) of the first horizontal bar (1) and of the central horizontal bar (1) respectively, by means of a first and a second pinion (2′) mounted on a second shaft (5′) (
Three other cams (4) are positioned coaxially adjacent to each other at the other end of the digit on the shaft (5). Two of these three cams (4) are designed to drive directly the pinion (2) of a third and a fourth vertical bar (1) respectively, while the third cam (4) is designed to drive the last horizontal bar (1) by means of a third gear train (6) (
An operating device, as described below, enables the necessary power to be transmitted to the different cams (4) in the form of pulses, so that the bars (1) can be pivoted through 90° on their longitudinal shafts (3), in order to make another face of each bar, having a different appearance, visible through apertures (7) formed in the dial (8) of the watch (
The profile of each cam (4) is determined in such a way as to pivot the appropriate bars (1) to display the
Consequently, the profiles of the cams (4) used in the mechanism designed to display, for example, the tens of minutes digit, differ from the profiles of the cams (4) used in the mechanism designed to display the minutes digit, since the pivoting of one or more bars (1) must be carried out in such a way as to display successively only the
Each visible face of the bars (1) can be fitted with a plurality of gemstones. For example, a face can be fitted with transparent diamonds only, while the next face can be fitted with black diamonds only. Many different configurations can be provided. However, particular attention will be paid to the choice of coating between the first face of the bar (1) and the face made visible after the rotation of the bar through 90° to provide adequate contrast to facilitate the reading of the display.
The mechanical digital display includes an operating device. This enables the mechanical digital display to be adapted to a base watch movement, of the Valjoux™ type for example.
This device has a first operating member designed, on the one hand, to convert the movement of the seconds wheel of the watch movement to a pulse occurring once every minute, and, on the other hand, to transmit this pulse, by means of a minutes gear train (9), so as to impart a rotary movement to the seven cams (4) of the mechanisms forming the minutes digit and the tens of minutes digit respectively, in order to enable the bars (1) to pivot instantaneously or virtually instantaneously.
A second operating member is designed to convert the movement of the cannon pinion of the watch movement into a pulse occurring once every hour, the pivoting of the bars (1) forming the hours digit and the tens of hours digit being formed on the same principle as that stated above.
The first operating member for the display of the two digits showing tens of minutes and minutes respectively includes a minutes yoke (10) which can pivot on the shaft (11) and a minute snail (12), the latter being fixed to the seconds wheel of the watch movement, the said snail (12) consequently completing one full revolution every minute. One end of the minutes yoke (10) interacts with the periphery of the minute snail (12), while its other end is provided with a hinged point (13) which can drive, by at least one step, a minutes star wheel (14) fixed to a first wheel (15) of the minutes gear train (9).
The profile of the snail (12) is such that a certain amount of mechanical energy can be accumulated constantly and progressively and is transmitted by the minutes yoke (10) to its return spring (not shown). When the stop (16) of the minute snail (12) rides over the end of the yoke (10) (
The minutes gear train (9) has a first 90° direction changing gear (17) designed to transmit the pulse by means of other wheel systems (not shown) to the shaft (5) of the minutes and tens of minutes digits respectively. The shafts (5) of the minutes and tens of minutes digits are thus given an axial movement, each of the shafts (5) driving the seven cams (4). Each of the seven cams (4) of each digit is thus given an intermittent rotary movement so that it can pivot one of the bars (1) forming the minutes digit and the tens of minutes digit respectively.
The second operating member for the display of the two digits showing tens of hours and hours respectively includes an hours yoke (18) which can pivot on the shaft (19) and an hour snail (20), the latter being fixed to a 60-tooth star wheel (21) mounted on the cannon pinion of the watch movement, the said snail (20) consequently completing one full revolution every hour.
One end of the hours yoke (18) can drive, by means of a second retractable point (13′), an hours star wheel (22) arranged to engage with a second 90° direction changing gear (23). Said yoke (18) has a projection (24) designed to interact with the periphery of the hours snail (20).
The conversion of the movement of the cannon pinion into a pulse occurring once every hour on the hours star wheel (22) is achieved by the same principle as that described previously. The 90° direction changing gear (23) is designed to transmit the pulse by means of other wheel systems (not shown) to the shafts (5) of the hours digit and the tens of hours digit respectively.
The first and second operating members are connected by a system for synchronizing the pivoting of the two yokes (10, 18), to ensure that the hours and minutes digits are incremented virtually simultaneously, and for damping the pulses generated by said yokes (10, 18).
This system includes a one-way clutch (25) mounted coaxially on a pinion (26), said pinion (26) being designed to be driven by a rack (27) forming an integral part of the hours yoke (10). This clutch (27) is provided, on either side of its center, with two arms (28, 28′), both of which can bear on a part of the periphery of a partial disk (29) resembling a crescent. This partial disk (29) is fixed to a star wheel (30), which can be driven by a point (31) fixed to the minutes yoke (10).
When the system is in the configuration in which the minutes yoke (10) is on the point of pivoting (
One of the two arms (28, 28′) of the clutch (25) therefore remains in contact at all times with this partial disk (29) for an hour, thus damping the 59 jumps of the minutes yoke (10) occurring during this period.
In this embodiment, each face of each bar (1) has two distinct patterns alternating with each other.
A first minutes correction control (32), which can be actuated by a push button (33), is arranged so as to act simultaneously on the minutes star wheel (13) and on the 60-tooth star wheel (21). A second hours correction control (34), which can be actuated by a push button (35), is arranged so as to act directly on the hours star wheel (22) to increment the hours by at least one unit (
The minutes digit is corrected initially by pressing the button (33) for a maximum of 59 times. The hours correction is carried out by pressing the button (35) for a maximum of 11 times. The retractable points (13, 13′) of the two yokes (10, 18) are retracted during the fast correction, to enable the minutes star wheel (14) and the hours star wheel (22) to rotate.
The use of a damping mechanism can be considered in order to avoid the unfavorable dynamic effects on the operating mechanism, the synchronization and the drive system.
In a second embodiment shown in
In another embodiment, as shown in
Clearly, the invention is not limited to the embodiments described above, but includes all variant embodiments. For example, the minute snail (12) can be replaced with a cam having N apices, said cam completing one revolution in N minutes.
Number | Date | Country | Kind |
---|---|---|---|
06020372 | Sep 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3683523 | Boyles | Aug 1972 | A |
3965668 | Tomokazu et al. | Jun 1976 | A |
4017154 | Kobayashi | Apr 1977 | A |
4024532 | Sherwin | May 1977 | A |
4152853 | Lewis | May 1979 | A |
4193256 | Tobeta et al. | Mar 1980 | A |
4860471 | Bonanomi | Aug 1989 | A |
5315775 | Parker et al. | May 1994 | A |
5388356 | Kalivas | Feb 1995 | A |
6625911 | Kim | Sep 2003 | B2 |
Number | Date | Country |
---|---|---|
568 600 | Mar 1975 | CH |
2543337 | Sep 1984 | FR |
Number | Date | Country | |
---|---|---|---|
20080295370 A1 | Dec 2008 | US |