The present disclosure relates to aircraft engines, and more particularly to hybrid aircraft engines.
Aircraft engines vary in efficiency and function over a plurality of parameters, such as thrust requirements, air temperature, air speed, altitude, and the like. Aircraft require the most thrust at take-off, wherein the demand for engine power is the heaviest. However, during the remainder of the mission, the aircraft engines often do not require as much thrust as during take-off. The size and weight of the engines allows them to produce the power needed for take-off, however after take-off the engines are in effect over-sized for the relatively low power required to produce thrust for cruising in level flight.
The conventional techniques have been considered satisfactory for their intended purpose. However, there is an ever present need for improved aircraft engines. This disclosure provides a solution for this need.
A hybrid propulsion system includes a heat engine configured to drive a heat engine shaft. An electric motor is configured to drive a motor shaft. A transmission system includes at least one gear box. The transmission system is configured to receive rotational input power from each of the heat engine shaft and the motor shaft and to convert the rotation input power to output power. The motor shaft includes a disconnect mechanism to allow the heat engine to rotate with the electric motor stopped. The heat engine shaft includes a disconnect mechanism to allow the electric motor to rotate with the heat engine stopped.
The at least one gearbox can include a combining gear box connecting to the heat engine shaft and to the motor shaft to combine rotational input power from the heat engine and electric motor for providing rotational output power to an output shaft. The at least one gearbox can also include a turbine gear box. The turbine gear box can be connected between the heat engine shaft and a shaft for driving a turbine and a compressor to drive the turbine and compressor at a different rotational speed from the heat engine. The disconnect mechanism of the motor shaft can be located between the combining gear box and the electric motor. The disconnect mechanism of the heat engine shaft can be located between the combining gear box and the heat engine.
The heat engine shaft and motor shaft can be concentric. The at least one gear box can include a reduction gear box connected to each of the heat engine shaft and the motor shaft. The heat engine shaft can connect to a turbine shaft for driving a turbine and compressor. The disconnect mechanism of the motor shaft can be located between the electric motor and the reduction gear box. The disconnect mechanism of the heat engine shaft can be located between the heat engine and the electric motor. The heat engine shaft can run through the motor shaft and through the disconnect mechanism of the motor shaft. It is also contemplated that the heat engine shaft and the motor shaft can be combined as a single common shaft connected to the transmission system.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a hybrid propulsion system in accordance with the disclosure is shown in
The hybrid propulsion system 100 includes a heat engine (or motor) 102 configured to drive a heat engine shaft 104. An electric motor 106 is configured to drive an electric motor shaft 108. A transmission system 110 includes at least one gearbox. The transmission system 110 is configured to receive rotational input power from each of the heat engine shaft 104 and the motor shaft 108 and to convert the rotation input power to output power, as indicated by the circular arrow in
The at least one gearbox includes a combining gearbox 112 connecting to the heat engine shaft 104 and to the motor shaft 108 to combine rotational input power from the heat engine 102 and electric motor 106 for providing rotational output power to an output shaft 114, which can drive a reduction gearbox 116 for turning an aircraft propeller, fan, or any other suitable type of air mover for example. A turbine gearbox 118 is included, which is connected between the heat engine shaft 104 and a shaft 120 for driving a turbine 122 and a compressor 124 to drive the turbine 122 and compressor 124 at a different rotational speed from the heat engine 102. For example, through the turbine gearbox 118, the heat engine 102 can run at 8000 revolutions per minute (RPM), the heat engines exhaust can be recovered by the turbine 122 to drive the compressor 120 at 35,000 RPM. The turbine gearbox 118 can be a two speed transmission or constant velocity transmission (CVT) which can eliminate the need for a variable inlet guide vane (VIGV) controlling the compressor 124. It is also contemplated that the turbine 122 and compressor 124 can separately connect to the turbine gear box 118, e.g., using a concentric shaft for the compressor such as the shaft 1246 shown in
Those skilled in the art will readily appreciate that while described herein in the context of driving the turbine 122 and compressor 124, that the turbine 122 can actually add power to the shaft 120 and therefore cooperates with the heat engine 102 to drive the combining gearbox 112, however, in configurations herein where the turbine 122 and compressor 124 spin at a common speed the compressor 124 and turbine 122 are collectively referred to herein as driven.
The compressor 120 compresses air and supplies the compressed air to the heat engine 102 through the air line 126, which includes heat exchanger 128 for cooling the compressed air.
After combustion in the heat engine 102, the combustion products are supplied through a combustion products line 130 to the turbine 122, which extracts power from the compressed combustion products before exhausting them. The configurations shown in
With reference now to
With reference now to
With reference now to
With reference now to
Referring now to
With reference now to
Referring now to
With respect to
With reference now to
Referring now to
With reference now to
Referring now to
The turbine 1322 can optionally be decoupled from the compressor 1324 to drive a generator as described above with reference to
Even if modules are represented schematically herein vertically on top of each other, those skilled in the art having the benefit of this discourse will readily appreciate that they can be located side by side, one above the other or in any geometrical arrangement and in any order in physical implementations. Similarly, those skilled in the art having had the benefit of this disclosure will readily appreciate that modules represented on one side (right or left) of the respective gearbox herein can also potentially be installed on the other side or even trapped between a respecting reduction gearbox and combining gear box. Module disclosed herein can be installed directly on the respective combining gear box or reduction gear box with a proper speed ratio. Although modules are represented herein with an axial orientation, those skilled in the art having the benefit of this disclosure will readily appreciate that the use of bevel gears (or other mechanical or electrical devices) allows the installation of modules in any suitable orientation. Those skilled in the art having the benefit of this disclosure will readily appreciate that accessories not explicitly represented herein can be included and can potentially be connected mechanically to any module or driven electrically similar to the modules and components disclosed herein. Those skilled in the art having had the benefit of this disclosure will readily appreciate that combining gearboxes and reduction gearboxes disclosed above can be combined into a single respective gearbox.
With reference now to
The at least one gearbox includes a combining gear box 112 connecting to the heat engine shaft 104 and to the motor shaft 108 to combine rotational input power from the heat engine 102 and electric motor 106 for providing rotational output power to an output shaft 114, which can drive a reduction gear box 116 for turning an aircraft propeller, fan, or any other suitable type of air mover for example. A turbine gear box 118 is included, which is connected between the heat engine shaft 104 and a shaft 120 for driving a turbine 122 and a compressor 124 to drive the turbine 122 and compressor 124 at a different rotational speed from the heat engine 102. For example, through the turbine gear box 118, the heat engine 102 can run at 8000 revolutions per minute (RPM) to drive the turbine 122 and compressor 124 at 35,000 RPM. Those skilled in the art will readily appreciate that while described herein using the phrase “to drive the turbine 122 and compressor 124” that the turbine 122 can actually add power to the shaft 120 and therefore cooperates with the heat engine 102 to drive the compressor 124, however, in configurations herein where the turbine 122 and compressor 124 spin at a common speed the compressor 124 and turbine 122 are collectively referred to herein as driven.
The compressor 124 compresses air and supplies the compressed air to the heat engine 102 through the air line 126, which includes heat exchanger 128 for cooling the compressed air. After combustion in the heat engine 102, the combustion products are supplied through a combustion products line 130 to the turbine 122, which extracts power from the compressed combustion products before exhausting them. The configuration shown in
The motor shaft 108 includes a disconnect mechanism 144, such as a clutch or the like, to allow the heat engine 102 to rotate with the electric motor 106 stopped. The heat engine shaft 104 includes a disconnect mechanism 146, e.g., a clutch or the like, to allow the electric motor 106 to rotate with the heat engine 102 stopped. The disconnect mechanism 144 of the motor shaft 108 is located between the combining gear box 112 and the electric motor 106, or may be combined into the combining gear box 112. The disconnect mechanism 146 of the heat engine shaft 104 is located between the combining gear box 112 and the heat engine 102, or may be combined into the combining gear box 112. For example, in the event that the electric motor needs to stop rotating, the disconnect mechanism 144 can be disengaged. This mechanically disconnects the electric motor 106 from the transmission system 110, allowing the heat engine 102, compressor 124, and turbine 122 to continue to rotate, which can provide at least some guaranteed power even with the electric motor 106 disabled. Similarly, in the event that the heat engine 102, compressor 124, turbine 122, or turbine gear box need to stop rotating, the disconnect mechanism 146 can disengage to mechanically disconnect the heat engine 102 from the transmission system 110 so that at least some power can still be provided through the electric motor 106.
With reference now to
The disconnect mechanism 344 of the motor shaft 308 is located between the electric motor 306 and the reduction gear box 316. The disconnect mechanism 346 of the heat engine shaft 308 is located between the heat engine 302 and the electric motor 306. Those skilled in the art having the benefit of this disclosure will readily appreciate that the disconnect mechanism 346 can also be located in any suitable location along the shaft 304. Disconnect mechanisms 344 and 346 can be clutches or any other suitable type of disconnect mechanisms. The heat engine shaft 304 runs through the motor shaft 308 and through the disconnect mechanism 344 of the motor shaft 308. The disconnect mechanisms 344 and 346 can disconnect as needed to allow for stoppages of one of the heat engine 302 or electric motor 306 with at least some guaranteed power output to the reduction gearbox 316 of from the working one of the heat engine 302 or electric motor 306 much as described above with respect to
It is also contemplated that the heat engine shaft 304 and the motor shaft 308 can be combined as a single common shaft, e.g., by mounting the rotor of the electric motor 306 to the heat engine shaft 304, which is connected to the reduction gearbox 316. The electric motor could be independently disconnected by a clutch 347 between the rotor 349 and the heat engine shaft 304, as indicated by broken lines in
The clutches and disconnect mechanisms disclosed herein can be configured for repeated, at will connection and disconnection. It is also contemplated that the clutches and disconnect mechanisms disclosed herein can be configured for one disconnect only. Those skilled in the art will readily appreciate that while disconnect mechanism are described above for systems 100 and 300, the disconnect mechanisms disclosed herein can readily be applied to any of the systems disclosed herein without departing from the scope of this disclosure.
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for propulsion systems with superior properties including use of hybrid heat engine and electric motor power. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/820,064 filed Mar. 18, 2019 and U.S. Provisional Patent Application Ser. No. 62/812,474 filed Mar. 1, 2019, the disclosures of each are herein incorporated by reference in their entirety
Number | Name | Date | Kind |
---|---|---|---|
6179072 | Hou | Jan 2001 | B1 |
6198183 | Baeumel et al. | Mar 2001 | B1 |
6335581 | Warnke | Jan 2002 | B1 |
6427441 | Wustefeld et al. | Aug 2002 | B2 |
6537047 | Walker | Mar 2003 | B2 |
6692395 | Rodeghiero et al. | Feb 2004 | B2 |
7022042 | Fleytman | Apr 2006 | B2 |
7098569 | Ong et al. | Aug 2006 | B2 |
7247967 | Ionel et al. | Jul 2007 | B2 |
7303497 | Wige | Dec 2007 | B1 |
7316629 | Nakagawa et al. | Jan 2008 | B2 |
7345398 | Purvines et al. | Mar 2008 | B2 |
7398946 | Marshall | Jul 2008 | B1 |
7418820 | Harvey et al. | Sep 2008 | B2 |
7471026 | Bender | Dec 2008 | B2 |
7503173 | Dong et al. | Mar 2009 | B2 |
7726426 | Beck et al. | Jun 2010 | B2 |
7827787 | Cherney et al. | Nov 2010 | B2 |
7867122 | Jones | Jan 2011 | B2 |
7958725 | Elliott | Jun 2011 | B2 |
8217544 | Osada et al. | Jul 2012 | B2 |
8342995 | Grant | Jan 2013 | B2 |
8382635 | Tampieri | Feb 2013 | B2 |
8435156 | Christ | May 2013 | B2 |
8446121 | Parsa et al. | May 2013 | B1 |
8471429 | Kaiser et al. | Jun 2013 | B2 |
8495870 | Sumiyoshi et al. | Jul 2013 | B2 |
8531076 | Stabenow et al. | Sep 2013 | B2 |
8535197 | Scekic | Sep 2013 | B2 |
8584452 | Lloyd | Nov 2013 | B2 |
8596054 | Law et al. | Dec 2013 | B2 |
8621860 | Hennemann et al. | Jan 2014 | B2 |
8622859 | Babbitt et al. | Jan 2014 | B2 |
8660761 | Anderson et al. | Feb 2014 | B2 |
8663047 | Schroth et al. | Mar 2014 | B2 |
8710786 | Parsa et al. | Apr 2014 | B1 |
8747267 | Sutherland | Jun 2014 | B2 |
8915812 | Haglsperger et al. | Dec 2014 | B2 |
8943820 | Carlton et al. | Feb 2015 | B2 |
8967532 | Vialle | Mar 2015 | B2 |
9039566 | Rudy | May 2015 | B2 |
9051996 | During et al. | Jun 2015 | B2 |
9096230 | Ries et al. | Aug 2015 | B2 |
9102223 | Greenwood | Aug 2015 | B2 |
9109682 | Lee et al. | Aug 2015 | B2 |
9206885 | Rekow et al. | Dec 2015 | B2 |
9261182 | Kato et al. | Feb 2016 | B2 |
9303727 | Reimann et al. | Apr 2016 | B2 |
9343939 | Schutten et al. | May 2016 | B2 |
9401631 | Wu et al. | Jul 2016 | B2 |
9447858 | Weeramantry et al. | Sep 2016 | B2 |
9458864 | Hyon et al. | Oct 2016 | B2 |
9546468 | Bang | Jan 2017 | B2 |
9551400 | Hiasa et al. | Jan 2017 | B2 |
9677466 | Smaoui et al. | Jun 2017 | B2 |
9683585 | Akiyama et al. | Jun 2017 | B2 |
9735638 | Herz et al. | Aug 2017 | B2 |
9963855 | Jagoda | May 2018 | B2 |
9976437 | McCune et al. | May 2018 | B2 |
10000275 | Tendola et al. | Jun 2018 | B2 |
10024341 | Zhang et al. | Jul 2018 | B2 |
10086946 | Zywiak et al. | Oct 2018 | B1 |
10122227 | Long | Nov 2018 | B1 |
10183744 | Gamble | Jan 2019 | B2 |
10287917 | Schwarz et al. | May 2019 | B2 |
10374477 | Niergarth et al. | Aug 2019 | B2 |
20050178893 | Miller et al. | Aug 2005 | A1 |
20050258306 | Barocela et al. | Nov 2005 | A1 |
20060016196 | Epstein | Jan 2006 | A1 |
20060016197 | Epstein | Jan 2006 | A1 |
20060056971 | D'Anna | Mar 2006 | A1 |
20060237583 | Fucke et al. | Oct 2006 | A1 |
20070170307 | de la Cierva Hoces | Jul 2007 | A1 |
20070264124 | Mueller et al. | Nov 2007 | A1 |
20080141921 | Hinderks | Jun 2008 | A1 |
20080145221 | Sun et al. | Jun 2008 | A1 |
20090050103 | Heaton | Feb 2009 | A1 |
20090229897 | Yutani et al. | Sep 2009 | A1 |
20100219779 | Bradbrook | Sep 2010 | A1 |
20100264724 | Nelson et al. | Oct 2010 | A1 |
20100285747 | Bauer et al. | Nov 2010 | A1 |
20110108663 | Westenberger | May 2011 | A1 |
20110215584 | Prokopich | Sep 2011 | A1 |
20110236218 | Russ et al. | Sep 2011 | A1 |
20110243566 | Truong | Oct 2011 | A1 |
20110256973 | Werner et al. | Oct 2011 | A1 |
20110266995 | Winfield et al. | Nov 2011 | A1 |
20120025032 | Hopdjanian et al. | Feb 2012 | A1 |
20120137684 | Yogev et al. | Jun 2012 | A1 |
20120168557 | Edelson et al. | Jul 2012 | A1 |
20120227389 | Hinderks | Sep 2012 | A1 |
20120239228 | Vos | Sep 2012 | A1 |
20120327921 | Schirrmacher et al. | Dec 2012 | A1 |
20130026304 | Wang | Jan 2013 | A1 |
20130082135 | Moret | Apr 2013 | A1 |
20130119841 | Graf et al. | May 2013 | A1 |
20130168489 | McIntee | Jul 2013 | A1 |
20130181088 | Casado Montero et al. | Jul 2013 | A1 |
20130227950 | Anderson | Sep 2013 | A1 |
20130287574 | Ebbesen et al. | Oct 2013 | A1 |
20130300120 | Podrog | Nov 2013 | A1 |
20130341934 | Kawanishi | Dec 2013 | A1 |
20140010652 | Suntharalingam et al. | Jan 2014 | A1 |
20140027568 | Fleddermann et al. | Jan 2014 | A1 |
20140054411 | Connaulte et al. | Feb 2014 | A1 |
20140117148 | Dyrla et al. | May 2014 | A1 |
20140203739 | Chantriaux et al. | Jul 2014 | A1 |
20140248168 | Chantriaux et al. | Sep 2014 | A1 |
20140283519 | Mariotto et al. | Sep 2014 | A1 |
20140318132 | Podrog | Oct 2014 | A1 |
20150028594 | Mariotto | Jan 2015 | A1 |
20150076949 | Alim | Mar 2015 | A1 |
20150083852 | Moser et al. | Mar 2015 | A1 |
20150151844 | Anton et al. | Jun 2015 | A1 |
20150274306 | Sheridan | Oct 2015 | A1 |
20150285165 | Steinwandel | Oct 2015 | A1 |
20150311755 | Hiebl et al. | Oct 2015 | A1 |
20160010589 | Rolt | Jan 2016 | A1 |
20160016670 | Sautreuil et al. | Jan 2016 | A1 |
20160076446 | Bailey Noval et al. | Mar 2016 | A1 |
20160218930 | Toillon et al. | Jul 2016 | A1 |
20160305470 | Remer et al. | Oct 2016 | A1 |
20170016398 | Thiriet et al. | Jan 2017 | A1 |
20170016399 | Bedrine et al. | Jan 2017 | A1 |
20170072755 | Zhou et al. | Mar 2017 | A1 |
20170096233 | Mercier-Calvairac et al. | Apr 2017 | A1 |
20170152055 | Mercier-Calvairac et al. | Jun 2017 | A1 |
20170203839 | Giannini et al. | Jul 2017 | A1 |
20170225794 | Waltner | Aug 2017 | A1 |
20170240273 | Yuen | Aug 2017 | A1 |
20170241347 | Marconi et al. | Aug 2017 | A1 |
20170284408 | Ricordeau et al. | Oct 2017 | A1 |
20170305541 | Vallart et al. | Oct 2017 | A1 |
20170320584 | Menheere | Nov 2017 | A1 |
20170320585 | Armstrong et al. | Nov 2017 | A1 |
20170321601 | Lafargue | Nov 2017 | A1 |
20170328282 | Jensen et al. | Nov 2017 | A1 |
20170370344 | Kassianoff | Dec 2017 | A1 |
20180002025 | Lents et al. | Jan 2018 | A1 |
20180003071 | Lents et al. | Jan 2018 | A1 |
20180003072 | Lents et al. | Jan 2018 | A1 |
20180003109 | Lents et al. | Jan 2018 | A1 |
20180118335 | Gamble et al. | May 2018 | A1 |
20180127103 | Cantemir | May 2018 | A1 |
20180163558 | Vondrell et al. | Jun 2018 | A1 |
20180194483 | Schwoller | Jul 2018 | A1 |
20180251226 | Fenny et al. | Sep 2018 | A1 |
20180252115 | Himmelmann et al. | Sep 2018 | A1 |
20180265206 | Himmelmann | Sep 2018 | A1 |
20180266329 | Mackin | Sep 2018 | A1 |
20180273197 | Chang et al. | Sep 2018 | A1 |
20180319483 | Mayer et al. | Nov 2018 | A1 |
20180339786 | Thomassin et al. | Nov 2018 | A1 |
20180346111 | Karem et al. | Dec 2018 | A1 |
20200158213 | Leque | May 2020 | A1 |
20210179286 | Harvey | Jun 2021 | A1 |
20220033097 | Botti | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
MU8701724 | Jun 2009 | BR |
PI0702882 | Mar 2011 | BR |
PI0622106 | Dec 2011 | BR |
PI1104839 | Nov 2012 | BR |
102013209538 | Nov 2014 | DE |
2226487 | Sep 2010 | EP |
2332235 | Jun 2011 | EP |
2478608 | Jul 2012 | EP |
2238362 | Mar 2015 | EP |
3292041 | Mar 2018 | EP |
3327526 | May 2018 | EP |
3327527 | May 2018 | EP |
3350895 | Jul 2018 | EP |
3405654 | Nov 2018 | EP |
3423354 | Jan 2019 | EP |
3556659 | Oct 2019 | EP |
2006231974 | Sep 2006 | JP |
2006270778 | Oct 2006 | JP |
2006290187 | Oct 2006 | JP |
2007137423 | Jun 2007 | JP |
4215012 | Jan 2009 | JP |
2009534928 | Sep 2009 | JP |
2011516334 | May 2011 | JP |
4973256 | Jul 2012 | JP |
2013193533 | Sep 2013 | JP |
5415400 | Feb 2014 | JP |
2014076771 | May 2014 | JP |
2014159255 | Sep 2014 | JP |
2015077089 | Apr 2015 | JP |
2015077091 | Apr 2015 | JP |
2015137092 | Jul 2015 | JP |
5867219 | Feb 2016 | JP |
2017074804 | Apr 2017 | JP |
2017150665 | Aug 2017 | JP |
6199496 | Sep 2017 | JP |
2017165131 | Sep 2017 | JP |
6213494 | Oct 2017 | JP |
2017534514 | Nov 2017 | JP |
6376042 | Aug 2018 | JP |
6397447 | Sep 2018 | JP |
6430885 | Nov 2018 | JP |
6433492 | Dec 2018 | JP |
20070039699 | Apr 2007 | KR |
20080086714 | Sep 2008 | KR |
20080005377 | Nov 2008 | KR |
20090110373 | Oct 2009 | KR |
20110032973 | Mar 2011 | KR |
20110087661 | Aug 2011 | KR |
20120140229 | Dec 2012 | KR |
20130006379 | Jan 2013 | KR |
101277645 | Jun 2013 | KR |
20130142491 | Dec 2013 | KR |
101438289 | Sep 2014 | KR |
101572184 | Nov 2015 | KR |
101659783 | Sep 2016 | KR |
20160143599 | Dec 2016 | KR |
20170004299 | Jan 2017 | KR |
101713800 | Mar 2017 | KR |
101797011 | Nov 2017 | KR |
2007086213 | Aug 2007 | WO |
2011005066 | Jan 2011 | WO |
2011107718 | Sep 2011 | WO |
2011144188 | Nov 2011 | WO |
2014108125 | Jul 2014 | WO |
2014134506 | Sep 2014 | WO |
2015107368 | Jul 2015 | WO |
2015145036 | Oct 2015 | WO |
2016074600 | May 2016 | WO |
2017114643 | Jul 2017 | WO |
2018044757 | Mar 2018 | WO |
2018106137 | Jun 2018 | WO |
2018191769 | Oct 2018 | WO |
2018211227 | Nov 2018 | WO |
Entry |
---|
PCT International Search Report and Written Opinion dated Apr. 3, 2020, issued during the prosecution of PCT International Patent Application No. PCT/US2019/065449. |
Extended European Search Report for European Patent Application No. EP19917818.7, dated Oct. 17, 2022. |
Number | Date | Country | |
---|---|---|---|
20220324582 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
62820064 | Mar 2019 | US | |
62812474 | Mar 2019 | US |