Claims
- 1. A method of enhancing the rate of consumption of a propellant as a result of having shrink tubing embedded in the propellant, said method comprising:
- (i) formulating and mixing a curable propellant composition selected from the group consisting of a difluoroamino containing propellant composition comprised of a predetermined weight percentages of an ethyl acrylate-acrylic acid copolymer binder plasticized with 1,2,3-tris[1,2bis(difluoroamino)ethoxy] propane, a 4,5-epoxycyclohexylmethyl 4',5'-epoxycyclohexylcarboxylate curing agent, ultrafine ammonium perchlorate oxidizer of about 1 micrometer particle size coated with tris[2-ethylaziridinyl]-1,3,5-benzene-1,3,5-tricarboxamide, carboranylmethyl propionate, graphite linters, aluminum powder, aluminum flake, fine ammonium perchlorate oxidizer of about 0.9 micrometer, and lecithin; and a double-base propellant composition comprised of predetermined weight percentages of a binder of nitrocellulose lacquer, methyl nadic anhydride, carbon black, lead peroxide, stamic oxide, organic oxidizer of cyclotetramethylenetetranitramine, hexamethylene diisocyanate curing agent, triphenylbismuthine curing catalyst, maleric anhydride, and magnesium oxide;
- (ii) adding a predetermined amount, from about 1 weight percent to about 2 weight percent of said uncured propellant composition, of a heat-shrinkable tubing comprised of material selected from a polyurethane or a polyolefin resin having a predetermined inside diameter from about 0.030 inch to about 0.125 inch and as outer diameter from about 0.070 inch to about 0.165 inch;
- (iii) curing said propellant composition to form a solid propellant grain containing said heat shrinkable tubing dispersed throughout; and,
- (iv) exposing said solid propellant grain to heat which causes said heat shrinkable tubing to shrink, and thereby increase the porosity of said solid propellant grain which provides a method of enhancing the rate of consumption of said solid propellant grain during the burning thereof.
- 2. The method of claim 1 wherein said curable propellant selected is a difluoroamino propellant composition comprised of said ingredient as follows:
- ethyl acrylate-acrylic acid copolymer containing about 95 parts ethyl acrylate and about 5 parts acrylic acid in an amount of about 3.00 weight percent; tris-1,2,3-[bis(1,2-difluoroamino) ethoxy] propane in an amount of about 29.99 weight percent; ammonium perchlorate oxidizer coated with about 0.3% weight percent of tris[2-ethylaziridinyl]-1,3,5-benzene-1,3,5-tri-carboxamide in an amount of about 52.00 weight percent; carboranylmethyl propionate in an amount of about 4.00 weight percent;
- aluminum powder in an amount of about 10.00 weight percent; aluminum flake in an amount of about 2.00 weight percent; lecithin in an amount of about 0.10 weight percent and a predetermined amount of about 1 weight percent of polyolefin white tubing of about 0.046 inch inside diameter about 0.085 outer diameter, and about 0.05 inch in length.
- 3. The method of claim 2 wherein said polyolefin white tubing has been prior stretched about 6 to 1 and cut to said length before adding to said difluoroamino propellant composition.
- 4. The method of claim 3 wherein said exposing to heat consists of preheating the tubing-containing solid propellant grain to achieve a temperature of about 250.degree. F. to preshrink said tubing to produce porosity and matrix/filler debonding in said solid propellant grain, said porosity and matrix/filler debonding providing a method of enhancing the rate of consumption of said solid propellant grain during the burning thereof.
- 5. The method of claim 1 wherein said curable propellant selected is a double-base propellant composition comprised of a predetermined weight percentages of said binder of nitrocellulose lacquer in an amount of about 39.43 weight percent; of said methyl nadic anhydride in an amount of about 1.00; of said carbon black in an amount of about 0.20 weight percent; of said lead peroxide in an amount of about 0.30 weight percent; of said stannic oxide in an amount of about 1.40 weight percent; of said organic oxidizer of said cyclotetramethylenetetranitramine in an amount of about 56.30 weight percent; of said hexamethylene diisocyanate in an amount of about 1.37 weight percent; of said triphenylbismuthine curing catalyst in an amount of about 0.03 weight percent; of said maleic anhydride in an amount of about 0.03 weight percent; of said magnesium oxide in an amount of about 0.03 weight percent; and a predetermined amount of about 1% of polyolefin white tubing of about 0.030 inch inside diameter, about 0.085 outer diameter, and of about 0.01 inch in length.
- 6. The method of claim 5 wherein said polyolefin white tubing has been prior stretched about 6 to 1 and cut to said length before adding to said double-base propellant composition.
- 7. The method of claim 6 wherein said exposing to heat consists of preheating the tubing-containing solid propellant grain to achieve a temperature of about 250.degree. F. to preshrink said tubing to produce porosity and matrix/filler debonding in said solid propellant grain, said porosity and matrix/filler debonding providing a method of enhancing the rate of consumption of said solid propellant grain during the burning thereof.
- 8. The method of claim 1 wherein prior to adding a predetermined amount of said heat-shrinkable tubing, said heat-shrinkable tubing is filled with a rapidly-combustible propellant which burns more rapidly than the uncured propellant when said propellant is cured to a solid propellant grain containing said propellant filled heat-shrinkable tubing dispersed throughout.
DEDICATORY CLAUSE
The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to me of any royalties thereon.
US Referenced Citations (8)