This invention relates to utility vehicles and other off road machines having a mechanical front wheel drive (MFWD). More specifically, the invention relates to an MFWD control system to prevent wedging of rollers in roller clutches.
Utility vehicles and other off road machines may have an MFWD to provide power to the front wheels if the rear wheels slip and lose traction. With the operator controlled 4WD switch in the on position, roller clutches in the front axle gear case will engage and provide drive to the front wheels if rear wheel speed is faster than front wheel speed. With no speed differential between the front and rear wheels, the front drive does not engage and the vehicle is driven by the rear wheels only.
With the 4WD switch in the on position and the transmission in either forward or reverse, voltage may be supplied to a roller cage drag mechanism such as a solenoid. The voltage is stopped when the machine is shifted into neutral. For example, if a solenoid is energized, a plunger may be extended into the path of the rotating tabs of an actuating washer, stopping the outer washer. Wave washers between the inner and outer washers place a drag between the outer (stopped) washer and the inner washer. The inner washer is keyed to a roller brake assembly which is connected to a roller cage by tabs.
The roller cage lies inside a ring gear hub. Each side of the roller cage contains cylindrical rollers that roll around the output hub to each axle. The rollers may be generally cylindrical or may have other geometries.
The drag imposed on the roller cage through the wave washers and tabs forces the rollers slightly off center in the openings of the roller cage. When the rear tires slip and spin more than about 15% faster than the front tires, the rollers move against ramps in the rotating ring gear hub and are forced inward. The inward movement presses the rollers against the left and right output hubs. At this point, all components begin rotating together.
Alternatively, the roller cage drag mechanism may be an electromagnet instead of a solenoid. The 4WD switch may energize an electromagnet that imposes drag on an armature plate, and through direct contact with the plate, to the roller cage.
When the vehicle stops and the operator shifts the transmission from forward to reverse, the voltage to the roller cage drag mechanism is momentarily stopped (neutral switch opened). This allows the springs on each roller to rotate the roller cage and rollers back into a neutral position.
However, certain driving maneuvers may allow the rollers to become wedged tightly between the ramps in the ring gear and output hub, and not move back to the neutral position. For example, in a reverse panic stop, an operator may drive the vehicle in reverse and then apply the brake suddenly to lock the front wheels and tires. High forces tend to push the rollers further up the ramps where they may become wedged against the output hub. Rollers also may become wedged by driving the vehicle up a sloped surface in forward or reverse, then allowing it to roll back down without applying the brakes or shifting the transmission out of forward or reverse.
If a vehicle is driven with wedged rollers, the vehicle drive train may be damaged by high sustained torque transferred through the driveshaft. For example, driveshaft components including the CV joint may be damaged. A mechanical front wheel drive roller wedging control system is needed to prevent wedging of rollers between the ramps in the ring gear and the output hub.
A mechanical front wheel drive roller wedging control system includes a roller cage drag mechanism activated by a 4WD switch to drive at least one front wheel if rear wheel slip occurs, and a throttle pedal switch to deactivate the roller cage drag mechanism when the throttle pedal is released. The system prevents wedging of rollers between the ramps in the ring gear and the output hub.
In a first embodiment shown in
In one embodiment, the MFWD system 107 may include a roller cage 116 with a plurality of cylindrical rollers 118, or rollers having other geometries. Each side of the roller cage contains rollers 118 that roll around an output hub 122 to each axle. The roller cage lies inside a ring gear hub 120, which may be mounted inside a housing 108 and enclosed by a cover plate 113. Extension 109 may be connected to the front driveshaft.
In one embodiment, the operator may use 4WD switch 106 to electrically activate roller cage drag mechanism 101. The drag mechanism imposes drag on the roller cage 116 to force the rollers 118 slightly off center in the openings of the roller cage. When the rear tires slip and spin more than about 15% faster than the front tires, the rollers move against ramps 123 in the rotating ring gear hub 120 and are forced inward. The inward movement presses the rollers against the left and right output hubs 122.
In one embodiment, the roller cage drag mechanism may be a solenoid 102. The solenoid may include plunger 114 that may be extended to engage rotating tabs of the outer or actuating washer 119 when the solenoid is powered. When the extended plunger engages the tabs of outer or actuating washer 119, wave washers 121 place a drag between the outer (stopped) washer 119 and the inner washer 124. The inner washer may be keyed to a roller brake assembly 125 which is connected to roller cage 116 by tabs.
In one embodiment, if the operator releases the throttle pedal 112, the throttle pedal switch 104 cuts power to the roller cage drag mechanism. If the roller cage drag mechanism is a solenoid, plunger 114 may be retracted out of engagement with the outer or actuating washer 119. As a result, wave washers 121 stop imposing a drag on the roller cage 116, and the rollers 118 move back to the neutral position before they become wedged between the ramps 123 in ring gear 120 and the output hubs 122. The plunger 114 may remain in the retracted position and the rollers cannot reengage the output hub 122 until the operator depresses the throttle pedal again to actuate the throttle pedal switch while the 4WD switch 106 remains on.
In a second or alternative embodiment, the roller cage drag mechanism may include an electromagnet. When the 4WD switch is in the on position and the throttle pedal switch is actuated by depressing the throttle pedal 112, electrical power may be provided through a circuit to the electromagnet. The electromagnet may impose drag on an armature plate, and through direct contact with the plate, to the roller cage. If the operator releases the throttle pedal 112, the throttle pedal switch 104 cuts power to the electromagnet. The electromagnet releases the armature plate, which stops imposing a drag on the roller cage 116, and the rollers 118 move back to the neutral position before they become wedged between ramps 123 in the ring gear 120 and the output hub 122. The armature plate stays released and the rollers cannot move back up the ramps 123 to engage the output hubs 122 until the operator depresses the throttle pedal again to actuate the throttle pedal switch again while the 4WD switch 106 is on.
The MFWD roller wedging control system may reduce or eliminate the roller wedging problem by employing a throttle pedal switch to cut power to a roller cage drag mechanism such as a solenoid or electromagnet before the rollers become wedged between the ring gear and output hubs. The throttle pedal switch cuts power immediately, and before an operator can apply vehicle brakes and before high forces urge the rollers into a wedged position.
In an alternative embodiment shown in
In an alternative embodiment, if throttle position sensor 302 detects throttle pedal 314 is pressed less than about 1% (which may be less than a minimum that indicates an operator is pressing the throttle pedal), or engine speed detector 304 shows engine speed is below about 2000 RPM (which may be less than a minimum engine speed that will move the vehicle forward up a slope), controller 312 may cut power to roller cage drag mechanism 316. For example, if the roller cage drag mechanism includes solenoid 318, the engine control unit may provide a signal to retract plunger 320 out of engagement with the outer or actuating washer. As a result, wave washers then may stop imposing a drag on the roller cage, and rollers may move back to the neutral position before they become wedged between the ramps in the ring gear and the output hubs. The plunger may remain in the retracted position and the rollers cannot reengage the output hub until the throttle position sensor detects the throttle pedal is depressed at least about 1%, and the engine speed detector indicates an engine speed of at least about 2300 RPM, while the 4WD switch remains on. When these conditions are satisfied, the engine control unit may enable electric power to the roller cage drag mechanism again.
In another alternative embodiment, the MFWD roller wedging control system may include a throttle switch as shown in
In another alternative embodiment, the MFWD roller wedging control system may include control logic for utility vehicles or other off road machines having either a gasoline or diesel engine. For example, in the logic diagram of
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
4559846 | Cochran et al. | Dec 1985 | A |
4747462 | Herrmann et al. | May 1988 | A |
5025902 | Imai et al. | Jun 1991 | A |
5036939 | Johnson et al. | Aug 1991 | A |
5971123 | Ochab et al. | Oct 1999 | A |
RE38012 | Ochab et al. | Mar 2003 | E |
6622837 | Ochab et al. | Sep 2003 | B2 |
6629590 | Ochab et al. | Oct 2003 | B2 |
6659256 | Seki et al. | Dec 2003 | B2 |
7234553 | Shimizu | Jun 2007 | B2 |
7350632 | Houtman et al. | Apr 2008 | B2 |
7938041 | Shiigi et al. | May 2011 | B1 |
8312792 | Kochidomari et al. | Nov 2012 | B1 |
8840514 | Knickerbocker et al. | Sep 2014 | B1 |
9719567 | Lawrence et al. | Aug 2017 | B2 |
20040040759 | Shimizu | Mar 2004 | A1 |
20120152686 | Brewer et al. | Jun 2012 | A1 |
20130112520 | Heath et al. | May 2013 | A1 |
20130199886 | Heath et al. | Aug 2013 | A1 |
20140038763 | Knickerbocker et al. | Feb 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20190242444 A1 | Aug 2019 | US |