The field of the disclosure relates generally to gearboxes, and more specifically, to gearboxes for use in a vehicle and including multiple shafts and multiple gear sets.
At least some known vehicles include various mounting brackets and frame members that limit the available space for the motor assembly. Such motor assemblies may include components mounted at different angles with respect to other components. The use of right angle gear drives and universal joints have been known to couple various rotating components of the motor assembly. However, at least some motor assemblies include not only components that are mounted at different angles, but also components mounted at different vertical heights. While known right angle gear drives and universal joints may be used to solve one of these problems, the available space for the motor assembly limits the usefulness of these solutions.
In one aspect, a gearbox for use in a vehicle having a motor assembly includes a housing and an input shaft coupled to the housing. The input shaft is configured to be coupled to a first component of the motor assembly. The gearbox also includes a first gear set positioned within the housing and coupled to the input shaft. An intermediate shaft is positioned within the housing and is coupled to the first gear set. The gearbox further includes a second gear set positioned within the housing and coupled to the intermediate shaft and an output shaft coupled to the second gear set and to the housing. The output shaft is configured to be coupled to a second component of the motor assembly.
In another aspect, a vehicle is provided. The vehicle includes a first rotating component configured to rotate about a first axis and a second rotating component configured to rotate about a second axis that is perpendicular to the first axis. The vehicle also includes a gearbox coupled to both the first component and the second component. The gearbox includes a housing and an input shaft coupled to the housing. The gearbox also includes a first gear set positioned within the housing and coupled to the input shaft. An intermediate shaft is positioned within the housing and is coupled to the first gear set. The gearbox further includes a second gear set positioned within the housing and coupled to the intermediate shaft and an output shaft coupled to the second gear set and to the housing.
In yet another aspect, a method of assembling a gearbox for use in a vehicle is provided. The method includes coupling an input shaft to a housing and coupling a first gear set to the input shaft within the housing. An intermediate shaft is coupled to the first gear set within the housing. The method also includes coupling a second gear set to the intermediate shaft within the housing, and coupling an output shaft to the second gear set and to the housing.
Although specific features of various embodiments may be shown in some drawings and not in others, this is for convenience only. Any feature of any drawing may be referenced and/or claimed in combination with any feature of any other drawing.
The apparatus, methods, and systems described herein provide a gearbox that fits within the limited available space for the motor assembly and that also connects rotating components oriented at different angles and positioned at different heights within the motor assembly. More specifically, the gearbox includes a housing and an input shaft coupled to the housing. The gearbox also includes a right angle (i.e. bevel, hypoid) gear set positioned within the housing and coupled to the input shaft. An intermediate shaft is positioned within the housing and is coupled to the right angle gear set. The gearbox further includes a parallel shaft (i.e. helical, spur) gear set positioned within the housing and coupled to the intermediate shaft and an output shaft coupled to the parallel shaft gear set and to the housing. In such a configuration, the housing surrounds two different types of gear sets and an intermediate shaft. The internal components facilitate transferring the rotational motion of the input shaft substantially 90 degrees to the output shaft while also accounting for a vertical change in height between the input shaft and the output shaft. Specifically, the gearbox couples a drive pulley with a fan even though the drive pulley and the fan are at differing elevations and mounting angles within the motor assembly. Such a configuration enables simpler installation and maintenance of the motor assembly.
Furthermore, gearbox 108 includes an input shaft 130, a first gear set 132, an intermediate shaft 134, a second gear set 136, and an output shaft 138. In the exemplary embodiment, input shaft 130 includes a first end 140 coupled to drive wheel 106 (shown in
In the exemplary embodiment, first gear set 132 is positioned within cavity 128 of housing 118 and is coupled to input shaft 130. More specifically, first gear set 132 includes a right angle gear set, such as, but not limited to a bevel gear set or a hypoid gear set, including a first right angle gear 148 coupled to second end 142 of input shaft 130 and positioned adjacent first endwall 120 of housing 118. Furthermore, first gear set 132 also includes a second right angle gear 150 coupled to a first end 152 of intermediate shaft 134 and positioned adjacent first sidewall 124 of housing 118. As shown in
In the exemplary embodiment, intermediate shaft 134 is positioned entirely with cavity 128 of housing 118 such that intermediate shaft 134 is coupled to and extends between opposing first and second sidewalls 124 and 126. In such a configuration, intermediate shaft 134 extends in a direction parallel to rotational axis 116 and is oriented perpendicular to input shaft 130 and rotational axis 112. Furthermore, as best shown in
As described above, first end 152 of intermediate shaft 134 is coupled to first sidewall 124 of housing 118 and to second right angle gear 150 of first gear set 132. Additionally, a second end 154 of intermediate shaft 134 is coupled to second sidewall 126 of housing 118 and to second gear set 136. Intermediate shaft 134 defines a second length L2 between opposing ends 152 and 154 that is shorter than first length L1 of input shaft 130. Specifically, second end 154 of intermediate shaft 134 is coupled to cover portion 125 of second sidewall 126. Second gear set 136 is positioned within cavity 128 of housing 118 and is coupled to intermediate shaft 134 and to output shaft 138. More specifically, second gear set 136 includes a parallel shaft gear set, such as, but not limited to a helical gear set or a spur gear set, including a first parallel gear 156 coupled to second end 154 of intermediate shaft 134 and positioned adjacent second sidewall 126 of housing 118. Furthermore, second gear set 136 also includes a second parallel gear 158 coupled to a first end 160 of output shaft 138 and also positioned adjacent second sidewall 126 of housing 118. As shown in
In the exemplary embodiment, output shaft 138 extends across cavity 128 and through a cover portion 125 of first sidewall 124. More specifically, first end 160 of output shaft 138 is coupled to second parallel gear 158 of second gear set 136 and to second sidewall 126 of housing 118. As shown in
In the exemplary embodiment, gearbox 108 also includes a plurality of bearings 164 to facilitate rotation of shafts 130, 134, and 138. Specifically, bearings 164 are coupled between housing 118 and each of shafts 130, 134, and 138. More specifically, a bearing 164 is coupled at each opposing end 140 and 142 of input shaft 130 to facilitate rotation of input shaft 130 about axis 112 within shaft housing 144. Furthermore, a bearing 164 is coupled at each opposing end 152 and 154 of intermediate shaft 134 and to the corresponding sidewall 124 and 126 to facilitate rotation of intermediate shaft 134 within housing 118. Additionally, a bearing 164 is coupled between second sidewall 126 of housing 118 and first end 160 of output shaft 138 and also between first sidewall 124 of housing 118 and output shaft 138 at a location along output shaft 138 where output shaft 138 exits housing 118.
As best shown in
In operation, internal combustion engine 104 drives drive belt 114 to rotate drive wheel 106 about rotational axis 112. Rotation of drive wheel 106 causes rotation of input shaft 130 and of first right angle gear 148 coupled at second end 142 of input shaft 130. First right angle gear 148 engages second right angle gear 150 to facilitate rotation thereof, which causes intermediate shaft 134 to rotate within housing 118. Rotation of intermediate shaft 134 causes rotation of first parallel gear 156, which then engages second parallel gear 158. Output shaft 138 is driven by rotation of second parallel gear 158 to rotate about rotational axis 116. Rotation of output shaft 138 causes rotation of fan 110, which generates a cooling airflow directed to a component of motor assembly 102 that requires cooling, such as, but not limited to, a radiator.
The apparatus, methods, and systems described herein provide a gearbox that fits within the limited available space for the motor assembly and that also connects rotating components oriented at different angles and positioned at different heights within the motor assembly. More specifically, the gearbox includes a housing and an input shaft coupled to the housing. The gearbox also includes a right angle gear set positioned within the housing and coupled to the input shaft. An intermediate shaft is positioned within the housing and is coupled to the right angle gear set. The gearbox further includes a parallel shaft gear set positioned within the housing and coupled to the intermediate shaft and an output shaft coupled to the parallel shaft gear set and to the housing. In such a configuration, the housing surrounds two different types of gear sets and an intermediate shaft. The internal components facilitate transferring the rotational motion of the input shaft substantially 90 degrees to the output shaft while also accounting for a vertical change in height between the input shaft and the output shaft. Specifically, the gearbox couples a drive pulley with a fan even though the drive pulley and the fan are at differing elevations and mounting angles within the motor assembly. Such a configuration enables simpler installation and maintenance of the motor assembly.
Exemplary embodiments of a gearbox are described above in detail. The gearbox and its components are not limited to the specific embodiments described herein, but rather, components of the systems may be utilized independently and separately from other components described herein. For example, the components may also be used in combination with other machine systems, methods, and apparatuses, and are not limited to practice with only the systems and apparatus as described herein. Rather, the exemplary embodiments can be implemented and utilized in connection with many other applications.
Although specific features of various embodiments of the disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the invention, including the best mode, and to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5505101 | Curtis | Apr 1996 | A |
5542309 | Wenger et al. | Aug 1996 | A |
5596911 | Panttila | Jan 1997 | A |
5842377 | Hutchings | Dec 1998 | A |
5947218 | Ishimaru | Sep 1999 | A |
6178851 | Aumueller et al. | Jan 2001 | B1 |
6223848 | Young | May 2001 | B1 |
7213488 | Daniel | May 2007 | B2 |
7810412 | Yamasaki et al. | Oct 2010 | B2 |
7878304 | Reis et al. | Feb 2011 | B2 |
7944079 | Signore et al. | May 2011 | B1 |
20050016304 | Ishii | Jan 2005 | A1 |
20050119084 | Ishii | Jun 2005 | A1 |
20070213171 | Pizzichil | Sep 2007 | A1 |
20110162472 | Adler | Jul 2011 | A1 |
20150068824 | Matsuura | Mar 2015 | A1 |
20160281834 | Campbell | Sep 2016 | A1 |
20180222484 | Shively | Aug 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180283498 A1 | Oct 2018 | US |