The invention generally relates to the field of floor panels with mechanical locking systems with a flexible and displaceable tongue. The invention also relates to a partly bendable tongue for a building panel with such a mechanical locking system.
In particular, yet not restrictive manner, the invention concerns a tongue for a floor panel and a set of floor panels mechanically joined to preferably a floating floor. However, the invention is as well applicable to building panels in general. More particularly invention relates to the type of mechanically locking systems comprising a flexible or partly flexible tongue and/or displaceable tongue, in order to facilitate the installation of building panels.
A floor panel of this type is presented in WO 2006/043893, which discloses a floor panel with a locking system comprising a locking element cooperating with a locking groove, for horizontal locking, and a flexible tongue cooperating with a tongue groove, for locking in a vertical direction. The flexible tongue bends in the horizontal plane during connection of the floor panels and makes it possible to install the panels by vertical folding or solely by vertical movement. By “vertical folding” is meant a connection of three panels where a first and second panel are in a connected state and where a single angling action connects two perpendicular edges of a new third panel, at the same time, to the first and the second panel. Such a connection takes place for example when a long side of the first panel in a first row is already connected to a long side of a second panel in a second row. The third panel, which in this text is referred to as “folding panel” is then connected by angling to the long side of the first panel in the first row. This specific type of angling action, which also connects the short side of the new third panel and second panel in the second row, is referred to as “vertical folding”. It is also possible to connect two panels by lowering a whole panel solely by a substantially vertical movement against another panel where no substantial turning of the panel edge is involved. This connection of two panels is referred to as “vertical locking.”
Similar floor panels are further described in WO 2003/016654, which discloses locking system comprising a tongue with a flexible tab. The tongue is extending and bending essentially in a vertical direction and the tip of the tab cooperates with a tongue groove for vertical locking. The flexible tab is directed upwards and located on the folding panel. The major disadvantage of such an embodiment is that the flexible tab must be displaced inwards by a sharp panel edge as shown in
In the following text, the visible surface of the installed floor panel is called “front face”, while the opposite side of the floor panel, facing the sub floor, is called “rear face”. The edge between the front and rear face is called “joint edge”. By “horizontal plane” is meant a plane, which extends parallel to the outer part of the surface layer. Immediately juxtaposed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane.
By “joint” or “locking system” are meant co acting connecting means, which connect the floor panels vertically and/or horizontally. By “mechanical locking system” is meant that joining can take place without glue. Mechanical locking systems can in many cases also be combined with gluing. By “integrated with” means formed in one piece with the panel or factory connected to the panel.
By a “flexible tongue” is meant a separate tongue which has a length direction along the joint edges and which is forming a part of the vertical locking system and could be displaced horizontally during locking. The tongue could, for example, be bendable or have a flexible and resilient part in such a way that it can bend along its length and spring back to its initial position.
By “angling” is meant a connection that occurs by a turning motion, during which an angular change occurs between two parts that are being connected, or disconnected. When angling relates to connection of two floor panels, the angular motion takes place with the upper parts of joint edges at least partly being in contact with each other, during at least part of the motion.
Embodiments of the present invention relate to a set of floor panels or a floating flooring and tongue for a floor panel, which provides for new embodiments according to different aspects offering respective advantages. Useful areas for the invention are floor panels of any shape and material e.g. laminate, wood, HDF, veneer or stone.
According to a first object, an embodiment of the invention provides for a set of floor panels comprising a mechanically locking system at two adjacent edges of a first and a second panel, whereby the locking system is configured to connect a first panel to a second panel in the horizontal and vertical plane. The locking system is provided, in order to facilitate the installation, with a displaceable tongue for locking in the vertical plane. The tongue is displaceable in a displacement groove in the edge of one of the floor panels and is configured to cooperate with a tongue groove in the other of said floor panels. A first long edge of the tongue comprises at least two bendable protrusions extending essentially in the horizontal plane and bendable in the horizontal plane. A second long edge of the tongue, which in the connected state extends outside the displacement groove, has an essentially straight outer edge over substantially the whole length of the tongue.
As the floor panel according to embodiments of the first object of the invention is provided with a displaceable tongue with bendable protrusions and an essentially straight outer edge this offers several advantages. A first advantage consists in that the floor panels are locked in the vertical direction along substantially the whole length of the tongue. A second advantage is that it is possible to mould the tongues in one part in e.g. plastic material and if desired to cut them up in shorter tongues, which all have essentially the same properties. The same moulding tool could be used to produce flexible tongues for different panel widths. Especially the displacement resistance and the locking strength per length unit could be achieved. A third advantage is that the displacement resistance, due to the bending of the protrusions, is essentially the same along the whole tongue. A larger number of protrusions provides for a more constant displacement resistance along the edge of the tongue. If the panels are installed by vertical folding a constant displacement resistance over the length of the tongue is desired. Also a high angle between the fold panel and the second panel when the fold panel initially contact the tongue in the second panel is provided. The protrusions are designed to allow displacement but also to prevent tilting of the tongue.
A floor panel is known from WO 2006/043893, as mentioned above, and discloses a bow shaped flexible tongue bendable in the length direction. The drawback of this bow shaped tongue is that due to the shape, there is no locking at the end of the tongue. One embodiment is shown that provides locking along the whole length (
Advantageously, the protrusions of the tongue are bow shaped, providing an essentially constant moment arm during installation of the panels and bending of the protrusions.
Preferably, the tongue comprises a recess at each protrusion, resulting in avoiding of deformation and cracking of the protrusion if the tongue is displaced too far and too much force is applied.
Preferably, the length of the tongue is of more than 90% of the width WS of front face of the panel; in other preferred embodiments the length of the tongue is preferably in the range from 75% to substantially the same as the width WS of front face.
According to a second object, an embodiment of the invention provides for a tongue for a building panel, said tongue is of an elongated shape and made of moulded plastic. The tongue comprises at least two protrusions at a first long edge of the tongue. The protrusions are bendable in a plane parallel to the upper surface of the tongue and extending essentially in the parallel plane. Furthermore, the tongue has a second long edge, which is essentially straight over substantially the whole length of the tongue.
A first advantage consists in that the tongue provides for locking in the vertical direction along the whole length of the tongue. A second advantage is that it is possible to mould the tongue in one part in plastic and, if desired, cut the tongue into shorter tongues, which all have essentially the same properties. Especially the displacement resistance and the locking strength per length unit are essentially the same. A third advantage is that the displacement resistance, due to the bending of the protrusions, is essentially the same along the whole tongue. A larger number of protrusions provides for a more constant displacement resistance along the edge of the tongue. Even rather rigid materials such as reinforced plastic, metals, for example aluminum and wood may be made flexible with protrusions according to the principle of the invention. If the panels are installed by vertical folding, e.g., by the installation method explained below (see
According to a third object, an embodiment of the invention provides for a set of floor panels comprising a mechanically locking system at two adjacent edges of a first and a second panel, whereby the locking system is configured to connect a first panel to a second panel in the horizontal and vertical plane. The locking system is provided, in order to facilitate the installation, with a displaceable tongue for locking in the vertical plane. The tongue is displaceable in a displacement groove in the edge of one of the floor panels and is configured to cooperate with a tongue groove in the other of said floor panels. At least one long edge of the tongue, which in the connected state extends outside the displacement groove, comprises at least two bendable protrusions extending essentially in the horizontal plane and bendable in the horizontal plane. This embodiment with displaceable and bendable protrusions at the outer edge offers several advantages. The whole tongue may also be displaceable. A first advantage consists in that only a part of the tongue has to be pressed into the displacement groove during folding and this will decrease the friction force that has to be overcome during folding. The protrusions are in one embodiment slightly thinner than the body of the tongue. A small play of about 0.01 to about 0.10 mm may for example be provide between at least a part of the protrusion and the displacement groove and this play could substantially eliminate friction during displacement even in the case when the groove, due to production tolerances, is slightly smaller than the tongue body. A second advantage is that the protrusions could spring back independently of each other and a more reliable locking is obtained even in cases where the friction forces varies due to production tolerances of the displacement groove and/or the tongue groove.
According to a fourth object, an embodiment of the invention provides for a locking system for floor panels comprising a mechanically locking system at two adjacent edges of a first and a second panel, whereby the mechanically locking system comprising a first connector for locking in a horizontal direction (D2) perpendicular to the adjacent edges and a second connector comprising, in order to facilitate the installation, a separate tongue, preferably made of a separate material than the core of the panel, for locking in a vertical direction (D1). A part of the tongue is flexible and bendable in the horizontal and/or vertical plane. The locking system is configured to connect a first panel to a second panel by angling, snapping, vertical folding and vertical locking. Such a locking system offers the advantage that the panels could be locked in several ways and this facilitates installation.
According to a fifth object, an embodiment of the invention comprises an installation method to connect panels preferably floor panels. The panels comprise short sides with a mechanical locking system for locking the adjacent short edges vertically with a separate tongue comprising a flexible part and horizontally with a locking strip comprising a locking element and long sides with a mechanical locking system comprising a tongue, a groove a locking strip and a locking groove that allows vertical and horizontal locking by angling. The method comprising the steps of:
a) Installing a second row of panels by connecting the short sides of the panels with vertical locking or horizontal snapping whereby the flexible part of the tongue is displaced
b) Connecting the second row to an adjacent and already installed first row by angling.
All references to “a/an/the [element, device, component, means, step, etc.]” are to be interpreted openly as referring to at least one instance of said element, device, component, means, step, etc., unless explicitly stated otherwise.
As represented in
A known art floor panel 1, 1′ provided with a mechanical locking system and a displaceable tongue is described with reference to
The front faces of the panels are essentially positioned in a common horizontal plane HP, and the upper parts 21, 41 of the joint edges 4a, 4b abut against each other in a vertical plane VP. The mechanical locking system provides locking of the panels relative to each other in the vertical direction D1 as well as the horizontal direction D2.
To provide joining of the two joint edges in the D1 and D2 directions, the edges of the floor panel have in a manner known per se a locking strip 6 with a locking element 8 in one joint edge, hereafter referred to as the “strip panel” which cooperates with a locking groove 14 in the other joint edge, hereafter referred to as the “fold panel”, and provides the horizontal locking.
The known art mechanical locking system comprises a separate flexible tongue 30 fixed into a displacement groove 40 formed in one of the joint edges. The flexible tongue 30 has a groove portion P1, which is located in the displacement groove 40 and a projecting portion P2 projecting outside the displacement groove 40. The projecting portion P2 of the flexible tongue 30 in one of the joint edges cooperates with a tongue groove 20 formed in the other joint edge.
The flexible tongue 30 has a protruding part P2 with a rounded outer part 31 and a sliding surface 32, which in this embodiment if formed like a bevel. It has upper 33 and lower 35 tongue displacement surfaces and an inner part 34.
The displacement groove 40 has an upper 42 and a lower 46 opening, which in this embodiment are rounded, a bottom 44 and upper 43 and lower 45 groove displacement surfaces, which preferably are essentially parallel with the horizontal plane HP.
The tongue groove 20 has a tongue-locking surface 22, which cooperates with the flexible tongue 30 and locks the joint edges in a vertical direction D1. The fold panel 1′ has a vertical locking surface 24, which is closer to the rear face 62 than the tongue groove 20. The vertical locking surface 24 cooperates with the strip 6 and locks the joint edges in another vertical direction. The fold panel has in this embodiment a sliding surface 23 which cooperated during locking with the sliding surface 32 of the tongue.
The fold panel could be disconnected with a needle shaped tool, which could be inserted from the corner section 9b into the tongue grove 20 and press the flexible tongue back into the displacement groove 40. The fold panel could then be angled up while the strip panel is still on the sub floor. Of course the panels could also be disconnected in the traditional way.
A preferred production method according to the invention is injection moulding. With this production method a wide variety of complex three-dimensional shapes could be produced at low cost and the flexible tongues 15 may easily be connected to each other to form tongue blanks 50. A tongue could also be made of an extruded or machined plastic or metal section, which could be further shaped with for example punching to form a flexible tongue according to the invention. The drawback with extrusion, besides the additional productions steps, is that it is hard to reinforce the tongue, e.g. by fibres.
As can be seen when comparing
Any type of polymer materials could be used such as PA (nylon), POM, PC, PP, PET or PE or similar having the properties described above in the different embodiments. These plastic materials could be when injection moulding is used be reinforced with for instance glass fibre, Kevlar fibre, carbon fibre or talk or chalk. A preferred material is glass fibre, preferably extra-long, reinforced PP or POM.
The protrusions are preferably provided with a friction connection 63, most preferably close to or at the tip of the protrusion, which could be shaped for instance as a local small vertical protrusion. This friction connection keeps the flexible tongue in the displacement groove 40 during installation, or during production, packaging and transport, if the displaceable tongue is integrated with the floor panel at the factory.
In embodiments according to
To facilitate the installation it is advantageous if the spring constant of the protruding part is as linear as possible. A linear spring constant results in a nice and smooth connection movement without suddenly or heavily increased displacement resistant. According to one embodiment, this is achieved by a bow shaped protrusion.
The preferred recess at the protrusion has the advantage that the protrusion is not destroyed if too much force is applied or the tongue is displaced too far. The protrusion is pushed into the recess and a cracking of the protrusion is avoided.
It is preferred that the length of the protrusion PL is larger than the total width TW of the tongue. The total width is the width of the tongue W plus the distance from the tongue body to the tip of the protrusion perpendicular to the length direction of the tongue. In the most preferred embodiment, PL is larger than 2*TW. It is also preferred that the recess is wider near the tip of the protrusion than near the bottom of the recess; as shown in
Preferably, the force to displace the tongue 1 mm is per 100 mm length of the tongue in the range of about 20 to about 30 N.
Preferably the length of the protrusion PL is in the range of about 10 mm to about 20 mm, the width W of the tongue is in the range of about 3 mm to about 6 mm and the total width TW of the tongue is in the range of about 5 mm to about 11 mm. The length of the body part BP between two protrusions, i.e. the distance from the root of one protrusion to the tip of an adjacent protrusion, is in the range of about 3 mm to about 10 mm. As a non-limiting example, for a width of a floor panel of about 200 mm, including the width of the locking system at adjacent edges, with a tongue length of about 180 mm, having 9 protrusions the protrusion length is about 15 mm, the length of the body part BP is about 5 mm, the width of the tongue W is about 5 mm and the total width TW is about 8 mm.
The tongues according to the embodiments of the invention are all possible to mould in one piece. It is further possible to cut the moulded tongue in shorter pieces which all have the same properties per length unit, provided that the number of protrusions is not too few. Another production method is extrusion combined with punching or cutting of the recess and the protrusions of the tongue.
A locking system, which could be locked with vertical folding, vertical locking, angling and snapping, could have many different types of tongues, which are made of a separate material than the core of the panel, which tongues are connected to a panel edge and which tongues have at least one part that is flexible. Examples of embodiments of locking systems and separate tongues that allow such locking are shown in
Vertical folding is in most cases the most convenient installation method. However,
The method comprises installation of floor panels comprising short edges with a mechanical locking system for locking the adjacent short edges vertically with a separate tongue comprising a flexible part and horizontally with a locking strip comprising a locking element and long sides with a mechanical locking system comprising a tongue, a groove a locking strip and a locking groove that allows vertical and horizontal locking by angling
a) Installing a second row R2 of panels by connecting the short sides of the panels with vertical locking or horizontal snapping whereby the flexible part of the tongue is displaced
b) Connecting the second row R2 to an installed and adjacent row R2 by angling.
A locking surface of a locking element 8 at a locking strip 6 could be made with different angles, bevels and radius. The locking surface of the locking element 8 may e.g. extend inwardly towards the upper edge of the panel, as shown in
A flexible tongue with protrusion could be used to lock very thin floor panels for example about 6 mm and even thinner. Even with a vertical thickness of a flexible tongue of about 1 mm a strong vertical locking could be obtained. Protrusions could be made extremely small. They could for example extent only about 1 mm or even less into the tongue groove and there could be more than 1 protrusion per 10 mm of the tongue length.
Number | Date | Country | Kind |
---|---|---|---|
0601550 | Jul 2006 | SE | national |
The present application is a continuation of U.S. application Ser. No. 14/463,972, filed on Aug. 20, 2014, which is a continuation of U.S. application Ser. No. 13/728,121, filed on Dec. 27, 2012, now U.S. Pat. No. 8,844,236, which is a continuation of U.S. application Ser. No. 13/195,297, filed on Aug. 1, 2011, now U.S. Pat. No. 8,359,805, which is a continuation of application Ser. No. 12/788,384, filed on May 27, 2010, now U.S. Pat. No. 8,033,074, which is a continuation of application Ser. No. 11/775,885, filed on Jul. 11, 2007, now U.S. Pat. No. 7,908,815, which is a continuation-in-part of International Application No. PCT/SE2006/001218, filed on Oct. 27, 2006, and which claims the benefit of U.S. Provisional Application No. 60/806,975, filed on Jul. 11, 2006, and of Swedish Application No. SE 0601550-7, filed in Sweden on Jul. 11, 2006. The entire contents of each of U.S. application Ser. No. 14/463,972, U.S. application Ser. No. 13/728,121, U.S. Pat. No. 8,844,236, U.S. application Ser. No. 13/195,297, U.S. Pat. No. 8,359,805, U.S. application Ser. No. 12/788,384, U.S. Pat. No. 8,033,074, U.S. application Ser. No. 11/775,885, U.S. Pat. No. 7,908,815, International Application No. PCT/SE2006/001218, U.S. Provisional Application No. 60/806,975 and Swedish Application No. SE 0601550-7 are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
87853 | Kappes | Mar 1869 | A |
108068 | Utley | Oct 1870 | A |
124228 | Stuart | Mar 1872 | A |
213740 | Conner | Apr 1879 | A |
274354 | McCarthy et al. | Mar 1883 | A |
316176 | Ransom | Apr 1885 | A |
634581 | Miller | Oct 1899 | A |
861911 | Stewart | Jul 1907 | A |
1194636 | Joy | Aug 1916 | A |
1723306 | Sipe | Aug 1929 | A |
1743492 | Sipe | Jan 1930 | A |
1809393 | Rockwell | Jun 1931 | A |
1902716 | Newton | Mar 1933 | A |
2026511 | Storm | Dec 1935 | A |
2027292 | Rockwell | Jan 1936 | A |
2110728 | Hoggatt | Mar 1938 | A |
2142305 | Davis | Jan 1939 | A |
2204675 | Grunert | Jun 1940 | A |
2266464 | Kraft | Dec 1941 | A |
2277758 | Hawkins | Mar 1942 | A |
2430200 | Wilson | Nov 1947 | A |
2596280 | Nystrom | May 1952 | A |
2732706 | Friedman | Jan 1956 | A |
2740167 | Rowley | Apr 1956 | A |
2858584 | Gaines | Nov 1958 | A |
2863185 | Riedi | Dec 1958 | A |
2865058 | Andersson | Dec 1958 | A |
2889016 | Warren | Jun 1959 | A |
3023681 | Worson | Mar 1962 | A |
3077703 | Bergstrom | Feb 1963 | A |
3099110 | Spaight | Jul 1963 | A |
3147522 | Schumm | Sep 1964 | A |
3172237 | Bradley | Mar 1965 | A |
3187612 | Hervey | Jun 1965 | A |
3271787 | Clary | Sep 1966 | A |
3276797 | Humes, Jr. | Oct 1966 | A |
3308588 | Von Wedel | Mar 1967 | A |
3325585 | Brenneman | Jun 1967 | A |
3331180 | Vissing et al. | Jul 1967 | A |
3378958 | Parks et al. | Apr 1968 | A |
3396640 | Fujihara | Aug 1968 | A |
3512324 | Reed | May 1970 | A |
3517927 | Kennel | Jun 1970 | A |
3526071 | Watanabe | Sep 1970 | A |
3535884 | Glaros | Oct 1970 | A |
3572224 | Perry | Mar 1971 | A |
3579941 | Tibbals | May 1971 | A |
3626822 | Koster | Dec 1971 | A |
3640191 | Hendrich | Feb 1972 | A |
3694983 | Couquet | Oct 1972 | A |
3720027 | Christensen | Mar 1973 | A |
3722379 | Koester | Mar 1973 | A |
3731445 | Hoffmann et al. | May 1973 | A |
3742669 | Mansfeld | Jul 1973 | A |
3760547 | Brenneman | Sep 1973 | A |
3760548 | Sauer et al. | Sep 1973 | A |
3764767 | Randolph | Oct 1973 | A |
3778954 | Meserole | Dec 1973 | A |
3849235 | Gwynne | Nov 1974 | A |
3919820 | Green | Nov 1975 | A |
3950915 | Cole | Apr 1976 | A |
3994609 | Puccio | Nov 1976 | A |
4007767 | Colledge | Feb 1977 | A |
4007994 | Brown | Feb 1977 | A |
4030852 | Hein | Jun 1977 | A |
4037377 | Howell et al. | Jul 1977 | A |
4041665 | de Munck | Aug 1977 | A |
4064571 | Phipps | Dec 1977 | A |
4080086 | Watson | Mar 1978 | A |
4082129 | Morelock | Apr 1978 | A |
4100710 | Kowallik | Jul 1978 | A |
4104840 | Heintz et al. | Aug 1978 | A |
4107892 | Bellem | Aug 1978 | A |
4113399 | Hansen, Sr. et al. | Sep 1978 | A |
4154041 | Namy | May 1979 | A |
4169688 | Toshio | Oct 1979 | A |
RE30154 | Jarvis | Nov 1979 | E |
4196554 | Anderson | Apr 1980 | A |
4227430 | Jansson et al. | Oct 1980 | A |
4299070 | Oltmanns | Nov 1981 | A |
4304083 | Anderson | Dec 1981 | A |
4426820 | Terbrack | Jan 1984 | A |
4447172 | Galbreath | May 1984 | A |
4512131 | Laramore | Apr 1985 | A |
4599841 | Haid | Jul 1986 | A |
4622784 | Black | Nov 1986 | A |
4648165 | Whitehorne | Mar 1987 | A |
4819932 | Trotter, Jr. | Apr 1989 | A |
4948716 | Mihayashi et al. | Aug 1990 | A |
4998395 | Bezner | Mar 1991 | A |
5007222 | Raymond | Apr 1991 | A |
5026112 | Rice | Jun 1991 | A |
5071282 | Brown | Dec 1991 | A |
5135597 | Barker | Aug 1992 | A |
5148850 | Urbanick | Sep 1992 | A |
5173012 | Ortwein et al. | Dec 1992 | A |
5182892 | Chase | Feb 1993 | A |
5247773 | Weir | Sep 1993 | A |
5272850 | Mysliwiec et al. | Dec 1993 | A |
5274979 | Tsai | Jan 1994 | A |
5281055 | Neitzke et al. | Jan 1994 | A |
5295341 | Kajiwara | Mar 1994 | A |
5344700 | McGath et al. | Sep 1994 | A |
5348778 | Knipp et al. | Sep 1994 | A |
5373674 | Winter, IV | Dec 1994 | A |
5465546 | Buse | Nov 1995 | A |
5485702 | Sholton | Jan 1996 | A |
5502939 | Zadok et al. | Apr 1996 | A |
5548937 | Shimonohara | Aug 1996 | A |
5577357 | Civelli | Nov 1996 | A |
5587218 | Betz | Dec 1996 | A |
5598682 | Haughian | Feb 1997 | A |
5616389 | Blatz | Apr 1997 | A |
5618602 | Nelson | Apr 1997 | A |
5634309 | Polen | Jun 1997 | A |
5658086 | Brokaw et al. | Aug 1997 | A |
5694730 | Del Rincon et al. | Dec 1997 | A |
5755068 | Ormiston | May 1998 | A |
5860267 | Pervan | Jan 1999 | A |
5899038 | Stroppiana | May 1999 | A |
5910084 | Koike | Jun 1999 | A |
5950389 | Porter | Sep 1999 | A |
5970675 | Schray | Oct 1999 | A |
6006486 | Moriau | Dec 1999 | A |
6029416 | Andersson | Feb 2000 | A |
6052960 | Yonemura | Apr 2000 | A |
6065262 | Motta | May 2000 | A |
6098354 | Skandis | Aug 2000 | A |
6134854 | Stanchfield | Oct 2000 | A |
6145261 | Godfrey et al. | Nov 2000 | A |
6164618 | Yonemura | Dec 2000 | A |
6173548 | Hamar et al. | Jan 2001 | B1 |
6182410 | Pervan | Feb 2001 | B1 |
6203653 | Seidner | Mar 2001 | B1 |
6210512 | Jones | Apr 2001 | B1 |
6254301 | Hatch | Jul 2001 | B1 |
6295779 | Canfield | Oct 2001 | B1 |
6314701 | Meyerson | Nov 2001 | B1 |
6324809 | Nelson | Dec 2001 | B1 |
6332733 | Hamberger | Dec 2001 | B1 |
6339908 | Chuang | Jan 2002 | B1 |
6345481 | Nelson | Feb 2002 | B1 |
6358352 | Schmidt | Mar 2002 | B1 |
6363677 | Chen et al. | Apr 2002 | B1 |
6385936 | Schneider | May 2002 | B1 |
6418683 | Martensson et al. | Jul 2002 | B1 |
6446413 | Gruber | Sep 2002 | B1 |
6449918 | Nelson | Sep 2002 | B1 |
6450235 | Lee | Sep 2002 | B1 |
6490836 | Moriau et al. | Dec 2002 | B1 |
6505452 | Hannig | Jan 2003 | B1 |
6546691 | Leopolder | Apr 2003 | B2 |
6553724 | Bigler | Apr 2003 | B1 |
6576079 | Kai | Jun 2003 | B1 |
6584747 | Kettler et al. | Jul 2003 | B2 |
6588166 | Martensson | Jul 2003 | B2 |
6591568 | Pålsson | Jul 2003 | B1 |
6601359 | Olofsson | Aug 2003 | B2 |
6617009 | Chen et al. | Sep 2003 | B1 |
6647689 | Pletzer et al. | Nov 2003 | B2 |
6647690 | Martensson | Nov 2003 | B1 |
6651400 | Murphy | Nov 2003 | B1 |
6670019 | Andersson | Dec 2003 | B2 |
6672030 | Schulte | Jan 2004 | B2 |
6681820 | Olofsson | Jan 2004 | B2 |
6682254 | Olofsson et al. | Jan 2004 | B1 |
6684592 | Martin | Feb 2004 | B2 |
6685391 | Gideon | Feb 2004 | B1 |
6729091 | Martensson | May 2004 | B1 |
6763643 | Martensson | Jul 2004 | B1 |
6766622 | Thiers | Jul 2004 | B1 |
6769219 | Schwitte et al. | Aug 2004 | B2 |
6769835 | Stridsman | Aug 2004 | B2 |
6802166 | Durnberger | Oct 2004 | B1 |
6804926 | Eisermann | Oct 2004 | B1 |
6808777 | Andersson | Oct 2004 | B2 |
6854235 | Martensson | Feb 2005 | B2 |
6862857 | Tychsen | Mar 2005 | B2 |
6865855 | Knauseder | Mar 2005 | B2 |
6874291 | Weber | Apr 2005 | B1 |
6880307 | Schwitte | Apr 2005 | B2 |
6948716 | Drouin | Sep 2005 | B2 |
7021019 | Knauseder | Apr 2006 | B2 |
7040068 | Moriau et al. | May 2006 | B2 |
7051486 | Pervan | May 2006 | B2 |
7108031 | Secrest | Sep 2006 | B1 |
7121058 | Pålsson | Oct 2006 | B2 |
7152383 | Wilkinson et al. | Dec 2006 | B1 |
7156383 | Jacobs | Jan 2007 | B1 |
7188456 | Knauseder | Mar 2007 | B2 |
7219392 | Mullet et al. | May 2007 | B2 |
7251916 | Konzelmann et al. | Aug 2007 | B2 |
7257926 | Kirby | Aug 2007 | B1 |
7337588 | Moebus | Mar 2008 | B1 |
7377081 | Ruhdorfer | May 2008 | B2 |
7380383 | Olofsson et al. | Jun 2008 | B2 |
7441384 | Miller et al. | Oct 2008 | B2 |
7451578 | Hannig | Nov 2008 | B2 |
7454875 | Pervan et al. | Nov 2008 | B2 |
7516588 | Pervan | Apr 2009 | B2 |
7517427 | Sjoberg et al. | Apr 2009 | B2 |
7520092 | Showers et al. | Apr 2009 | B2 |
7533500 | Morton et al. | May 2009 | B2 |
7556849 | Thompson et al. | Jul 2009 | B2 |
7568322 | Pervan | Aug 2009 | B2 |
7584583 | Bergelin et al. | Sep 2009 | B2 |
7591116 | Thiers et al. | Sep 2009 | B2 |
7614197 | Nelson | Nov 2009 | B2 |
7617651 | Grafenauer | Nov 2009 | B2 |
7621092 | Groeke et al. | Nov 2009 | B2 |
7621094 | Moriau et al. | Nov 2009 | B2 |
7634884 | Pervan | Dec 2009 | B2 |
7637068 | Pervan | Dec 2009 | B2 |
7644553 | Knauseder | Jan 2010 | B2 |
7654055 | Ricker | Feb 2010 | B2 |
7677005 | Pervan | Mar 2010 | B2 |
7716889 | Pervan | May 2010 | B2 |
7721503 | Pervan et al. | May 2010 | B2 |
7748176 | Harding et al. | Jul 2010 | B2 |
7757452 | Pervan | Jul 2010 | B2 |
7802411 | Pervan | Sep 2010 | B2 |
7806624 | McLean et al. | Oct 2010 | B2 |
7827749 | Groeke et al. | Nov 2010 | B2 |
7841144 | Pervan et al. | Nov 2010 | B2 |
7841145 | Pervan et al. | Nov 2010 | B2 |
7841150 | Pervan | Nov 2010 | B2 |
7849642 | Forster et al. | Dec 2010 | B2 |
7856789 | Eisermann | Dec 2010 | B2 |
7861482 | Pervan et al. | Jan 2011 | B2 |
7866110 | Pervan | Jan 2011 | B2 |
7900416 | Yokubison et al. | Mar 2011 | B1 |
7908815 | Pervan et al. | Mar 2011 | B2 |
7908816 | Grafenauer | Mar 2011 | B2 |
7913471 | Pervan | Mar 2011 | B2 |
7930862 | Bergelin et al. | Apr 2011 | B2 |
7954295 | Pervan | Jun 2011 | B2 |
7964133 | Cappelle | Jun 2011 | B2 |
7980039 | Groeke | Jul 2011 | B2 |
7980041 | Pervan | Jul 2011 | B2 |
8001741 | Duernberger | Aug 2011 | B2 |
8006458 | Olofsson et al. | Aug 2011 | B1 |
8033074 | Pervan | Oct 2011 | B2 |
8042311 | Pervan | Oct 2011 | B2 |
8061104 | Pervan | Nov 2011 | B2 |
8079196 | Pervan | Dec 2011 | B2 |
8112967 | Pervan et al. | Feb 2012 | B2 |
8171692 | Pervan | May 2012 | B2 |
8181416 | Pervan et al. | May 2012 | B2 |
8234830 | Pervan et al. | Aug 2012 | B2 |
8245478 | Bergelin | Aug 2012 | B2 |
8302367 | Schulte | Nov 2012 | B2 |
8341914 | Pervan et al. | Jan 2013 | B2 |
8341915 | Pervan et al. | Jan 2013 | B2 |
8353140 | Pervan et al. | Jan 2013 | B2 |
8359805 | Pervan et al. | Jan 2013 | B2 |
8375673 | Evjen | Feb 2013 | B2 |
8381477 | Pervan et al. | Feb 2013 | B2 |
8387327 | Pervan | Mar 2013 | B2 |
8448402 | Pervan et al. | May 2013 | B2 |
8499521 | Pervan et al. | Aug 2013 | B2 |
8505257 | Boo et al. | Aug 2013 | B2 |
8511031 | Bergelin et al. | Aug 2013 | B2 |
8528289 | Pervan et al. | Sep 2013 | B2 |
8544230 | Pervan | Oct 2013 | B2 |
8544233 | Pålsson | Oct 2013 | B2 |
8544234 | Pervan et al. | Oct 2013 | B2 |
8572922 | Pervan | Nov 2013 | B2 |
8578675 | Palsson et al. | Nov 2013 | B2 |
8596013 | Boo | Dec 2013 | B2 |
8627862 | Pervan et al. | Jan 2014 | B2 |
8640424 | Pervan et al. | Feb 2014 | B2 |
8650826 | Pervan et al. | Feb 2014 | B2 |
8677714 | Pervan | Mar 2014 | B2 |
8689512 | Pervan | Apr 2014 | B2 |
8707650 | Pervan | Apr 2014 | B2 |
8713886 | Boo et al. | May 2014 | B2 |
8733065 | Pervan | May 2014 | B2 |
8733410 | Pervan | May 2014 | B2 |
8763341 | Pervan | Jul 2014 | B2 |
8769905 | Pervan | Jul 2014 | B2 |
8776473 | Pervan et al. | Jul 2014 | B2 |
8806832 | Kell | Aug 2014 | B2 |
8844236 | Pervan et al. | Sep 2014 | B2 |
8857126 | Pervan et al. | Oct 2014 | B2 |
8869485 | Pervan | Oct 2014 | B2 |
8898988 | Pervan | Dec 2014 | B2 |
8925274 | Pervan et al. | Jan 2015 | B2 |
8959866 | Pervan | Feb 2015 | B2 |
8973331 | Boo | Mar 2015 | B2 |
8991055 | Cappelle | Mar 2015 | B2 |
9027306 | Pervan | May 2015 | B2 |
9051738 | Pervan et al. | Jun 2015 | B2 |
9068360 | Pervan | Jun 2015 | B2 |
9091077 | Boo | Jul 2015 | B2 |
9103126 | Kell | Aug 2015 | B2 |
9151062 | Cappelle et al. | Oct 2015 | B2 |
9194134 | Nygren et al. | Nov 2015 | B2 |
9212492 | Pervan et al. | Dec 2015 | B2 |
9216541 | Boo et al. | Dec 2015 | B2 |
9238917 | Pervan et al. | Jan 2016 | B2 |
9284737 | Pervan et al. | Mar 2016 | B2 |
9309679 | Pervan et al. | Apr 2016 | B2 |
9316002 | Boo | Apr 2016 | B2 |
9340974 | Pervan et al. | May 2016 | B2 |
9347469 | Pervan | May 2016 | B2 |
9359774 | Pervan | Jun 2016 | B2 |
9366036 | Pervan | Jun 2016 | B2 |
9376821 | Pervan et al. | Jun 2016 | B2 |
9382716 | Pervan et al. | Jul 2016 | B2 |
9388584 | Pervan et al. | Jul 2016 | B2 |
9428919 | Pervan et al. | Aug 2016 | B2 |
9453347 | Pervan et al. | Sep 2016 | B2 |
9458634 | Derelov | Oct 2016 | B2 |
9482012 | Nygren et al. | Nov 2016 | B2 |
9540826 | Pervan et al. | Jan 2017 | B2 |
9663940 | Boo | May 2017 | B2 |
9725912 | Pervan | Aug 2017 | B2 |
9771723 | Pervan | Sep 2017 | B2 |
9777487 | Pervan et al. | Oct 2017 | B2 |
9803374 | Pervan | Oct 2017 | B2 |
9803375 | Pervan | Oct 2017 | B2 |
9856656 | Pervan | Jan 2018 | B2 |
9874027 | Pervan | Jan 2018 | B2 |
9945130 | Nygren et al. | Apr 2018 | B2 |
9951526 | Boo et al. | Apr 2018 | B2 |
10000935 | Kell | Jun 2018 | B2 |
10006210 | Pervan et al. | Jun 2018 | B2 |
10017948 | Boo | Jul 2018 | B2 |
10113319 | Pervan | Oct 2018 | B2 |
10125488 | Boo | Nov 2018 | B2 |
10138636 | Pervan | Nov 2018 | B2 |
10161139 | Pervan | Dec 2018 | B2 |
10180005 | Pervan et al. | Jan 2019 | B2 |
10214915 | Pervan et al. | Feb 2019 | B2 |
10214917 | Pervan et al. | Feb 2019 | B2 |
10240348 | Pervan et al. | Mar 2019 | B2 |
10240349 | Pervan et al. | Mar 2019 | B2 |
10246883 | Derelöv | Apr 2019 | B2 |
10352049 | Boo | Jul 2019 | B2 |
10358830 | Pervan | Jul 2019 | B2 |
10378217 | Pervan | Aug 2019 | B2 |
10458125 | Pervan | Oct 2019 | B2 |
10480196 | Boo | Nov 2019 | B2 |
10519676 | Pervan | Dec 2019 | B2 |
10526792 | Pervan et al. | Jan 2020 | B2 |
10538922 | Pervan | Jan 2020 | B2 |
10570625 | Pervan | Feb 2020 | B2 |
20010024707 | Andersson et al. | Sep 2001 | A1 |
20010034991 | Martensson | Nov 2001 | A1 |
20010045150 | Owens | Nov 2001 | A1 |
20020014047 | Thiers | Feb 2002 | A1 |
20020031646 | Chen et al. | Mar 2002 | A1 |
20020069611 | Leopolder | Jun 2002 | A1 |
20020092263 | Schulte | Jul 2002 | A1 |
20020095894 | Pervan | Jul 2002 | A1 |
20020108343 | Knauseder | Aug 2002 | A1 |
20020170258 | Schwitte et al. | Nov 2002 | A1 |
20020170259 | Ferris | Nov 2002 | A1 |
20020178674 | Pervan | Dec 2002 | A1 |
20020178680 | Martensson | Dec 2002 | A1 |
20020189190 | Charmat et al. | Dec 2002 | A1 |
20020189747 | Steinwender | Dec 2002 | A1 |
20020194807 | Nelson et al. | Dec 2002 | A1 |
20030009971 | Palmberg | Jan 2003 | A1 |
20030024199 | Pervan et al. | Feb 2003 | A1 |
20030037504 | Schwitte et al. | Feb 2003 | A1 |
20030066588 | Pålsson | Apr 2003 | A1 |
20030084636 | Pervan | May 2003 | A1 |
20030094230 | Sjoberg | May 2003 | A1 |
20030101674 | Pervan | Jun 2003 | A1 |
20030101681 | Tychsen | Jun 2003 | A1 |
20030145549 | Palsson et al. | Aug 2003 | A1 |
20030180091 | Stridsman | Sep 2003 | A1 |
20030188504 | Ralf | Oct 2003 | A1 |
20030196405 | Pervan | Oct 2003 | A1 |
20040016196 | Pervan | Jan 2004 | A1 |
20040031225 | Fowler | Feb 2004 | A1 |
20040031227 | Knauseder | Feb 2004 | A1 |
20040049999 | Krieger | Mar 2004 | A1 |
20040060255 | Knauseder | Apr 2004 | A1 |
20040068954 | Martensson | Apr 2004 | A1 |
20040123548 | Gimpel et al. | Jul 2004 | A1 |
20040128934 | Hecht | Jul 2004 | A1 |
20040137180 | Sjoberg et al. | Jul 2004 | A1 |
20040139676 | Knauseder | Jul 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040159066 | Thiers et al. | Aug 2004 | A1 |
20040168392 | Konzelmann et al. | Sep 2004 | A1 |
20040177584 | Pervan | Sep 2004 | A1 |
20040182033 | Wernersson | Sep 2004 | A1 |
20040182036 | Sjoberg et al. | Sep 2004 | A1 |
20040200175 | Weber | Oct 2004 | A1 |
20040211143 | Hanning | Oct 2004 | A1 |
20040238001 | Risden | Dec 2004 | A1 |
20040244325 | Nelson | Dec 2004 | A1 |
20040250492 | Becker | Dec 2004 | A1 |
20040261348 | Vulin | Dec 2004 | A1 |
20050003132 | Blix et al. | Jan 2005 | A1 |
20050028474 | Kim | Feb 2005 | A1 |
20050050827 | Schitter | Mar 2005 | A1 |
20050160694 | Pervan | Jul 2005 | A1 |
20050166514 | Pervan | Aug 2005 | A1 |
20050205161 | Lewark | Sep 2005 | A1 |
20050210810 | Pervan | Sep 2005 | A1 |
20050235593 | Hecht | Oct 2005 | A1 |
20050252130 | Martensson | Nov 2005 | A1 |
20050252167 | Van Horne, Jr. | Nov 2005 | A1 |
20050268570 | Pervan | Dec 2005 | A2 |
20060053724 | Braun et al. | Mar 2006 | A1 |
20060070333 | Pervan | Apr 2006 | A1 |
20060101769 | Pervan | May 2006 | A1 |
20060156670 | Knauseder | Jul 2006 | A1 |
20060174577 | O'Neil | Aug 2006 | A1 |
20060179754 | Yang | Aug 2006 | A1 |
20060185287 | Glazer et al. | Aug 2006 | A1 |
20060236642 | Pervan | Oct 2006 | A1 |
20060260254 | Pervan et al. | Nov 2006 | A1 |
20060272262 | Pomberger | Dec 2006 | A1 |
20070003366 | Wedberg | Jan 2007 | A1 |
20070006543 | Engström | Jan 2007 | A1 |
20070011981 | Eisermann | Jan 2007 | A1 |
20070028547 | Grafenauer | Feb 2007 | A1 |
20070065293 | Hannig | Mar 2007 | A1 |
20070094969 | McIntosh et al. | May 2007 | A1 |
20070094985 | Grafenauer | May 2007 | A1 |
20070108679 | Grothaus | May 2007 | A1 |
20070113509 | Zhang | May 2007 | A1 |
20070151189 | Yang et al. | Jul 2007 | A1 |
20070175156 | Pervan et al. | Aug 2007 | A1 |
20070193178 | Groeke et al. | Aug 2007 | A1 |
20070209736 | Deringor et al. | Sep 2007 | A1 |
20070214741 | Llorens Miravet | Sep 2007 | A1 |
20080000182 | Pervan | Jan 2008 | A1 |
20080000185 | Duernberger | Jan 2008 | A1 |
20080000186 | Pervan et al. | Jan 2008 | A1 |
20080000187 | Pervan et al. | Jan 2008 | A1 |
20080005998 | Pervan | Jan 2008 | A1 |
20080010931 | Pervan et al. | Jan 2008 | A1 |
20080010937 | Pervan et al. | Jan 2008 | A1 |
20080028707 | Pervan | Feb 2008 | A1 |
20080034708 | Pervan | Feb 2008 | A1 |
20080041008 | Pervan | Feb 2008 | A1 |
20080053029 | Ricker | Mar 2008 | A1 |
20080066415 | Pervan | Mar 2008 | A1 |
20080104921 | Pervan et al. | May 2008 | A1 |
20080110125 | Pervan | May 2008 | A1 |
20080134607 | Pervan | Jun 2008 | A1 |
20080134613 | Pervan | Jun 2008 | A1 |
20080134614 | Pervan | Jun 2008 | A1 |
20080155930 | Pervan et al. | Jul 2008 | A1 |
20080184646 | Alford | Aug 2008 | A1 |
20080199676 | Bathelier et al. | Aug 2008 | A1 |
20080216434 | Pervan | Sep 2008 | A1 |
20080216920 | Pervan | Sep 2008 | A1 |
20080236088 | Hannig et al. | Oct 2008 | A1 |
20080295432 | Pervan et al. | Dec 2008 | A1 |
20080295438 | Knauseder | Dec 2008 | A1 |
20090049787 | Hannig | Feb 2009 | A1 |
20090100782 | Groeke et al. | Apr 2009 | A1 |
20090133353 | Pervan et al. | May 2009 | A1 |
20090193741 | Capelle | Aug 2009 | A1 |
20090193748 | Boo et al. | Aug 2009 | A1 |
20090193753 | Schitter | Aug 2009 | A1 |
20090217615 | Engstrom | Sep 2009 | A1 |
20090308014 | Muehlebach | Dec 2009 | A1 |
20100170189 | Schulte | Jul 2010 | A1 |
20100293879 | Pervan et al. | Nov 2010 | A1 |
20100300031 | Pervan et al. | Dec 2010 | A1 |
20100313510 | Tang | Dec 2010 | A1 |
20100319290 | Pervan | Dec 2010 | A1 |
20100319291 | Pervan et al. | Dec 2010 | A1 |
20110030303 | Pervan et al. | Feb 2011 | A1 |
20110041996 | Pervan | Feb 2011 | A1 |
20110088344 | Pervan et al. | Apr 2011 | A1 |
20110088345 | Pervan | Apr 2011 | A1 |
20110088346 | Hannig | Apr 2011 | A1 |
20110154763 | Bergelin et al. | Jun 2011 | A1 |
20110167750 | Pervan | Jul 2011 | A1 |
20110167751 | Engström | Jul 2011 | A1 |
20110225922 | Pervan et al. | Sep 2011 | A1 |
20110252733 | Pervan | Oct 2011 | A1 |
20110283650 | Pervan et al. | Nov 2011 | A1 |
20120017533 | Pervan et al. | Jan 2012 | A1 |
20120031029 | Pervan et al. | Feb 2012 | A1 |
20120036804 | Pervan | Feb 2012 | A1 |
20120151865 | Pervan et al. | Jun 2012 | A1 |
20120174515 | Pervan | Jul 2012 | A1 |
20120174520 | Pervan | Jul 2012 | A1 |
20120279161 | Håkansson et al. | Nov 2012 | A1 |
20130008117 | Pervan | Jan 2013 | A1 |
20130014463 | Pervan | Jan 2013 | A1 |
20130019555 | Pervan | Jan 2013 | A1 |
20130042562 | Pervan | Feb 2013 | A1 |
20130042563 | Pervan | Feb 2013 | A1 |
20130042564 | Pervan et al. | Feb 2013 | A1 |
20130042565 | Pervan | Feb 2013 | A1 |
20130047536 | Pervan | Feb 2013 | A1 |
20130081349 | Pervan et al. | Apr 2013 | A1 |
20130111845 | Pervan | May 2013 | A1 |
20130145708 | Pervan | Jun 2013 | A1 |
20130160391 | Pervan et al. | Jun 2013 | A1 |
20130232905 | Pervan | Sep 2013 | A2 |
20130239508 | Pervan et al. | Sep 2013 | A1 |
20130263454 | Boo et al. | Oct 2013 | A1 |
20130263547 | Boo | Oct 2013 | A1 |
20130318906 | Pervan et al. | Dec 2013 | A1 |
20140007539 | Pervan et al. | Jan 2014 | A1 |
20140020324 | Pervan | Jan 2014 | A1 |
20140033633 | Kell | Feb 2014 | A1 |
20140033634 | Pervan | Feb 2014 | A1 |
20140053497 | Pervan et al. | Feb 2014 | A1 |
20140059966 | Boo | Mar 2014 | A1 |
20140069043 | Pervan | Mar 2014 | A1 |
20140090335 | Pervan et al. | Apr 2014 | A1 |
20140109501 | Pervan | Apr 2014 | A1 |
20140109506 | Pervan et al. | Apr 2014 | A1 |
20140123586 | Pervan et al. | May 2014 | A1 |
20140150369 | Hannig | Jun 2014 | A1 |
20140190112 | Pervan | Jul 2014 | A1 |
20140208677 | Pervan et al. | Jul 2014 | A1 |
20140223852 | Pervan | Aug 2014 | A1 |
20140237931 | Pervan | Aug 2014 | A1 |
20140250813 | Nygren et al. | Sep 2014 | A1 |
20140260060 | Pervan et al. | Sep 2014 | A1 |
20140283466 | Boo | Sep 2014 | A1 |
20140305065 | Pervan | Oct 2014 | A1 |
20140366476 | Pervan | Dec 2014 | A1 |
20140366477 | Kell | Dec 2014 | A1 |
20140373478 | Pervan et al. | Dec 2014 | A2 |
20140373480 | Pervan et al. | Dec 2014 | A1 |
20150000221 | Boo | Jan 2015 | A1 |
20150013260 | Pervan | Jan 2015 | A1 |
20150059281 | Pervan | Mar 2015 | A1 |
20150089896 | Pervan et al. | Apr 2015 | A2 |
20150121796 | Pervan | May 2015 | A1 |
20150152644 | Boo | Jun 2015 | A1 |
20150167318 | Pervan | Jun 2015 | A1 |
20150211239 | Pervan | Jul 2015 | A1 |
20150233125 | Pervan et al. | Aug 2015 | A1 |
20150267419 | Pervan | Sep 2015 | A1 |
20150300029 | Pervan | Oct 2015 | A1 |
20150330088 | Derelov | Nov 2015 | A1 |
20150337537 | Boo | Nov 2015 | A1 |
20150368910 | Kell | Dec 2015 | A1 |
20160032596 | Nygren et al. | Feb 2016 | A1 |
20160060879 | Pervan | Mar 2016 | A1 |
20160069088 | Boo et al. | Mar 2016 | A1 |
20160076260 | Pervan et al. | Mar 2016 | A1 |
20160090744 | Pervan et al. | Mar 2016 | A1 |
20160153200 | Pervan | Jun 2016 | A1 |
20160168866 | Pervan et al. | Jun 2016 | A1 |
20160186426 | Boo | Jun 2016 | A1 |
20160194884 | Pervan et al. | Jul 2016 | A1 |
20160201336 | Pervan | Jul 2016 | A1 |
20160251859 | Pervan et al. | Sep 2016 | A1 |
20160251860 | Pervan | Sep 2016 | A1 |
20160281368 | Pervan et al. | Sep 2016 | A1 |
20160281370 | Pervan et al. | Sep 2016 | A1 |
20160326751 | Pervan | Nov 2016 | A1 |
20160340913 | Derelöv | Nov 2016 | A1 |
20170037641 | Nygren et al. | Feb 2017 | A1 |
20170081860 | Boo | Mar 2017 | A1 |
20170254096 | Pervan | Sep 2017 | A1 |
20170321433 | Pervan et al. | Nov 2017 | A1 |
20170362834 | Pervan et al. | Dec 2017 | A1 |
20180001509 | Myllykangas et al. | Jan 2018 | A1 |
20180001510 | Fransson | Jan 2018 | A1 |
20180001573 | Blomgren et al. | Jan 2018 | A1 |
20180002933 | Pervan | Jan 2018 | A1 |
20180016783 | Boo | Jan 2018 | A1 |
20180030737 | Pervan | Feb 2018 | A1 |
20180030738 | Pervan | Feb 2018 | A1 |
20180119431 | Pervan et al. | May 2018 | A1 |
20180178406 | Fransson et al. | Jun 2018 | A1 |
20190024387 | Pervan et al. | Jan 2019 | A1 |
20190048592 | Boo | Feb 2019 | A1 |
20190048596 | Pervan | Feb 2019 | A1 |
20190063076 | Boo et al. | Feb 2019 | A1 |
20190093370 | Pervan et al. | Mar 2019 | A1 |
20190093371 | Pervan | Mar 2019 | A1 |
20190119928 | Pervan et al. | Apr 2019 | A1 |
20190127989 | Kell | May 2019 | A1 |
20190127990 | Pervan et al. | May 2019 | A1 |
20190169859 | Pervan et al. | Jun 2019 | A1 |
20190232473 | Fransson et al. | Aug 2019 | A1 |
20190271165 | Boo | Sep 2019 | A1 |
20190376298 | Pervan et al. | Dec 2019 | A1 |
20190394314 | Pervan et al. | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
2456513 | Feb 2003 | CA |
138 992 | Jul 1901 | DE |
142 293 | Jul 1902 | DE |
2 159 042 | Jun 1973 | DE |
25 05 489 | Aug 1976 | DE |
33 43 601 | Jun 1985 | DE |
33 43 601 | Jun 1985 | DE |
39 32 980 | Nov 1991 | DE |
42 15 273 | Nov 1993 | DE |
42 42 530 | Jun 1994 | DE |
196 01 322 | May 1997 | DE |
299 22 649 | Apr 2000 | DE |
200 01 788 | Jun 2000 | DE |
200 02 744 | Aug 2000 | DE |
199 40 837 | Nov 2000 | DE |
199 58 225 | Jun 2001 | DE |
202 05 774 | Aug 2002 | DE |
203 20 799 | Apr 2005 | DE |
10 2004 055 951 | Jul 2005 | DE |
10 2004 001 363 | Aug 2005 | DE |
10 2004 002 297 | Aug 2005 | DE |
10 2004 054 368 | May 2006 | DE |
10 2005 024 366 | Nov 2006 | DE |
0 013 852 | Aug 1980 | EP |
0 871 156 | Oct 1998 | EP |
0 974 713 | Jan 2000 | EP |
1 120 515 | Aug 2001 | EP |
1 146 182 | Oct 2001 | EP |
1 251 219 | Oct 2002 | EP |
1 279 778 | Jan 2003 | EP |
1 350 904 | Oct 2003 | EP |
1 350 904 | Oct 2003 | EP |
1 396 593 | Mar 2004 | EP |
1 420 125 | May 2004 | EP |
1 437 457 | Jul 2004 | EP |
1 640 530 | Mar 2006 | EP |
1 650 375 | Apr 2006 | EP |
1 650 375 | Sep 2006 | EP |
1.138.595 | Jun 1957 | FR |
2 256 807 | Aug 1975 | FR |
2 810 060 | Dec 2001 | FR |
240629 | Oct 1925 | GB |
376352 | Jul 1932 | GB |
1171337 | Nov 1969 | GB |
2 051 916 | Jan 1981 | GB |
03-110258 | May 1991 | JP |
05-018028 | Jan 1993 | JP |
6-146553 | May 1994 | JP |
6-288017 | Oct 1994 | JP |
6-306961 | Nov 1994 | JP |
6-322848 | Nov 1994 | JP |
7-300979 | Nov 1995 | JP |
2900115 | Jun 1999 | JP |
2002-047782 | Feb 2002 | JP |
526 688 | May 2005 | SE |
529 076 | Apr 2007 | SE |
WO 9426999 | Nov 1994 | WO |
WO 9623942 | Aug 1996 | WO |
WO 9627721 | Sep 1996 | WO |
WO 9747834 | Dec 1997 | WO |
WO 9821428 | May 1998 | WO |
WO 9822677 | May 1998 | WO |
WO 9858142 | Dec 1998 | WO |
WO 9966151 | Dec 1999 | WO |
WO 9966152 | Dec 1999 | WO |
WO 0020705 | Apr 2000 | WO |
WO 0020706 | Apr 2000 | WO |
WO 0043281 | Jul 2000 | WO |
WO 0047841 | Aug 2000 | WO |
WO 0055067 | Sep 2000 | WO |
WO 0102669 | Jan 2001 | WO |
WO 0102670 | Jan 2001 | WO |
WO 0102671 | Jan 2001 | WO |
WO 0102672 | Jan 2001 | WO |
WO 0107729 | Feb 2001 | WO |
WO 0138657 | May 2001 | WO |
WO 0144669 | Jun 2001 | WO |
WO 0144669 | Jun 2001 | WO |
WO 0148331 | Jul 2001 | WO |
WO 0148332 | Jul 2001 | WO |
WO 0151732 | Jul 2001 | WO |
WO 0151733 | Jul 2001 | WO |
WO 0166877 | Sep 2001 | WO |
WO 0175247 | Oct 2001 | WO |
WO 0177461 | Oct 2001 | WO |
WO 0194721 | Dec 2001 | WO |
WO 0194721 | Dec 2001 | WO |
WO 0198604 | Dec 2001 | WO |
WO 0248127 | Jun 2002 | WO |
WO 02055809 | Jul 2002 | WO |
WO 02055810 | Jul 2002 | WO |
WO 02081843 | Oct 2002 | WO |
WO 02103135 | Dec 2002 | WO |
WO 03012224 | Feb 2003 | WO |
WO 03016654 | Feb 2003 | WO |
WO 03025307 | Mar 2003 | WO |
WO 03038210 | May 2003 | WO |
WO 03044303 | May 2003 | WO |
WO 03069094 | Aug 2003 | WO |
WO 03074814 | Sep 2003 | WO |
WO 03083234 | Oct 2003 | WO |
WO 03087497 | Oct 2003 | WO |
WO 03089736 | Oct 2003 | WO |
WO 2004003314 | Jan 2004 | WO |
WO 2004016877 | Feb 2004 | WO |
WO 2004020764 | Mar 2004 | WO |
WO 2004048716 | Jun 2004 | WO |
WO 2004050780 | Jun 2004 | WO |
WO 2004079128 | Sep 2004 | WO |
WO 2004079130 | Sep 2004 | WO |
WO 2004083557 | Sep 2004 | WO |
WO 2004085765 | Oct 2004 | WO |
WO 2005003488 | Jan 2005 | WO |
WO 2005003489 | Jan 2005 | WO |
WO 2005054599 | Jun 2005 | WO |
WO 2006043893 | Apr 2006 | WO |
WO 2006050928 | May 2006 | WO |
WO 2006104436 | Oct 2006 | WO |
WO 2006123988 | Nov 2006 | WO |
WO 2006125646 | Nov 2006 | WO |
WO 2007015669 | Feb 2007 | WO |
WO 2007015669 | Feb 2007 | WO |
WO 2007019957 | Feb 2007 | WO |
WO 2007079845 | Jul 2007 | WO |
WO 2007089185 | Aug 2007 | WO |
WO 2007141605 | Dec 2007 | WO |
WO 2007142589 | Dec 2007 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2008017281 | Feb 2008 | WO |
WO 2008017301 | Feb 2008 | WO |
WO 2008017301 | Feb 2008 | WO |
WO 2008060232 | May 2008 | WO |
Entry |
---|
U.S. Appl. No. 15/603,913, Darko Pervan, filed May 24, 2017 (Cited herein as US Patent Application Publication No. 2017/0254096 A1 of Sep. 7, 2017). |
U.S. Appl. No. 15/726,853, Darko Pervan, filed Oct. 6, 2017. |
Extended European Search Report issued in EP 06799800.5, dated May 6, 2016, European Patent Office, Munich, Germany, 10 pages. |
Pervan, Darko, U.S. Appl. No. 15/726,853 entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed in the U.S. Patent and Trademark Office dated Oct. 6, 2017. |
U.S. Appl. No. 13/670,039, Darko Pervan, filed Nov. 6, 2012 (Cited herein as US Patent Application Publication No, 2013/0081349 A1 of Apr. 4, 2013). |
U.S. Appl. No. 13/544,281, Darko Pervan, filed Jul. 9, 2012 (Cited herein as US Patent Application No. 2013/0014463 A1 of Jan. 17, 2013 and as US Patent Application Publication No. 2013/0232905 A2 of Sep. 12, 2013). |
U.S. Appl. No. 14/046,235, Darko Pervan, filed Oct. 4, 2013 (Cited herein as US Patent Application Publication No. 2014/0053497 A1 of Feb. 27, 2014). |
U.S. Appl. No. 14/258,742, Darko Pervan, filed Apr. 22, 2014 (Cited herein as US Patent Application Publication NO. 2014/0223852 A1 of Aug. 14, 2014). |
U.S. Appl. No. 14/315,879, Christian Boo, filed Jun. 26, 2014 (Cited herein as US Patent Application Publication No. 2015/0000221 A1 of Jan. 1, 2015). |
U.S. Appl. No. 14/503,780, Darko Pervan, filed Oct. 1, 2014 (Cited herein as US Patent Application Publication No. 2015/0013260 A1 of Jan. 15, 2015). |
U.S. Appl. No. 14/538,223, Darko Pervan, filed Nov. 11, 2014, (Cited herein as US Patent Application Publication No. 2015/0059281 A1 of Mar. 5, 2015). |
U.S. Appl. No. 14/597,578, Darko Pervan, filed Jan. 15, 2015 (Cited herein as US Patent Application Publication No. 2015/0121796 A1 of May 7, 2015). |
U.S. Appl. No. 14/633,480, Darko Pervan, filed Feb. 27, 2015 (Cited herein as US Patent Application Publication No. 2015/0167318 A1 of Jun. 18, 2015). |
U.S. Appl. No. 14/709,913, Peter Derelöv, filed May 12, 2015, (Cited herein as US Patent Application Publication No. 2015/0330088 A1 of Nov. 19, 2015). |
U.S. Appl. No. 14/938,612, Darko Pervan, filed Nov. 11, 2015 (Cited herein as US Patent Application Publication No. 2016/0060879 A1 of Mar. 3, 2016). |
U.S. Appl. No. 14/951,976, Darko Pervan, filed Nov. 25, 2015 (Cited herein as US Patent Application Publication No. 2016/0153200 A1 of Jun. 2, 2016). |
U.S. Appl. No. 15/048,252, Darko Pervan, filed Feb. 19, 2016 (Cited herein as US Patent Applicaiton Publication No. 2016/0168866 A1 of Jun. 16, 2016). |
U.S. Appl. No. 15/148,820, Darko Pervan, filed May 6, 2016 (Cited herein as US Patent Application Publication No. 2016/0251860 A1 of Sep. 1, 2016). |
U.S. Appl. No. 15/160,311, Darko Pervan, filed May 20, 2016. |
U.S. Appl. No. 15/175,768, Darko Pervan, filed Jun. 7, 2016. |
U.S. Appl. No. 15/217,023, Darko Pervan, filed Jul. 22, 2016. |
U.S. Appl. No. 15/229,575, Peter Derelöv, filed Aug. 5, 2016. |
U.S. Appl. No. 15/261,071, Darko Pervan, filed Sep. 9, 2016. |
International Search Report dated Apr. 25, 2007 in PCT/SE2006/001218, Swedish Patent Office; Stockholm, SE, 9 pgs. |
LifeTips, “Laminate Flooring Tips,” available at (http://flooring.lifetips.com/cat/61734/laminate-flooring-tips/index.html), 2000, 12 pages. |
Välinge Innovation AB, Technical Disclosure entitled “Mechanical locking for floor panels with a flexible bristle tongue,” IP.com number: IPCOM000145262D, Jan. 12, 2007, IP.com PriorArtDatabase, 57 pages. |
Pervan, Darko, U.S. Appl. No. 15/160,311, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office May 20, 2016. |
Pervan, Darko, et al., U.S. Appl. No. 15/175,768, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Jun. 7, 2016. |
Pervan, Darko, et al., U.S. Appl. No. 15/217,023, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Jul. 22, 2016. |
Derelov, Peter, U.S. Appl. No. 15/229,575, entitled “Building Panel With a Mechanical Locking System,” filed in the U.S. Patent and Trademark Office on Aug. 5, 2016. |
Pervan, Darko, U.S. Appl. No. 15/261,071, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Sep. 9, 2016. |
U.S. Appl. No. 15/365,546, Christian Boo, filed Nov. 30, 2016 (Cited herein as US Patent Application Publication No. 2017/0081860 A1 of Mar. 23, 2017). |
Pervan, Darko, U.S. Appl. No. 15/813,855 entitled “Mechanical Locking of Floor Panels with a Glued Tongue,” filed in the U.S. Patent and Trademark Office Nov. 15, 2017. |
Pervan, Darko, et al., U.S. Appl. No. 15/855,389 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Dec. 27, 2017. |
Pervan, Darko, et al., U.S. Appl. No. 15/896,571 entitled “Mechanical Locking of Floor Panels with a Flexible Tongue,” filed in the U.S. Patent and Trademark Office on Feb. 14, 2018. |
U.S. Appl. No. 15/813,855, Darko Pervan, filed Nov. 15, 2017. |
U.S. Appl. No. 15/855,389, Darko Pervan and Tony Pervan, filed Dec. 27, 2017. |
U.S. Appl. No. 15/896,571, Darko Pervan, Niclas Håkansson and Per Nygren, filed Feb. 14, 2018. |
U.S. Appl. No. 16/143,610, Darko Pervan, filed Sep. 27, 2018. |
U.S. Appl. No. 16/163,088, Darko Pervan, filed Oct. 17, 2018. |
Pervan, Darko, U.S. Appl. No. 16/143,610 entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed in the U.S. Patent and Trademark Office on Sep. 27, 2018. |
Pervan, Darko, U.S. Appl. No. 16/163,088 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Oct. 17, 2018. |
U.S. Appl. No. 16/224,951, Darko Pervan and Tony Pervan, filed Dec. 19, 2018. |
Pervan, Darko, et al., U.S. Appl. No. 16/224,951 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Dec. 19, 2018. |
U.S. Appl. No. 16/269,806, Darko Pervan and Tony Pervan, filed Feb. 7, 2019. |
Pervan, Darko, et al., U.S. Appl. No. 16/269,806 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Feb. 7, 2019. |
U.S. Appl. No. 16/581,990, Darko Pervan, filed Sep. 25, 2019. |
U.S. Appl. No. 16/692,104, Darko Pervan, filed Nov. 22, 2019. |
Pervan, Darko, U.S. Appl. No. 16/581,990 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Sep. 25, 2019. |
Pervan, Darko, U.S. Appl. No. 16/692,104 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Nov. 22, 2019. |
Boo, Christian, U.S. Appl. No. 16/419,660 entitled “Building Panel With a Mechanical Locking System,” filed in the U.S. Patent and Trademark Office on May 22, 2019. |
Pervan, Darko, U.S. Appl. No. 16/439,827 entitled “Mechanical Locking of Floor Panels With Vertical Folding,” filed in the U.S. Patent and Trademark Office on Jun. 13, 2019. |
Extended European Search Report issued in EP 17180642.5, dated Nov. 10, 2017, European Patent Office, Munich, Germany, 10 pages. |
**Ylikangas, Roger, et al., U.S. Appl. No. 16/713,373 entitled “Unlocking System for Panels,” filed in the U.S. Patent and Trademark Office dated Dec. 13, 2019. |
**Pervan, Darko, U.S. Appl. No. 16/781,301 entitled “Mechanical Locking of Floor Panels,” filed in the U.S. Patent and Trademark Office dated Feb. 4, 2020. |
Number | Date | Country | |
---|---|---|---|
20160281368 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
60806975 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14463972 | Aug 2014 | US |
Child | 15172926 | US | |
Parent | 13728121 | Dec 2012 | US |
Child | 14463972 | US | |
Parent | 13195297 | Aug 2011 | US |
Child | 13728121 | US | |
Parent | 12788384 | May 2010 | US |
Child | 13195297 | US | |
Parent | 11775885 | Jul 2007 | US |
Child | 12788384 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/SE2006/001218 | Oct 2006 | US |
Child | 11775885 | US |