Mechanical locking system for floating floor

Information

  • Patent Grant
  • 7051486
  • Patent Number
    7,051,486
  • Date Filed
    Tuesday, April 15, 2003
    21 years ago
  • Date Issued
    Tuesday, May 30, 2006
    18 years ago
Abstract
Floorboards with a mechanical locking system having a separately machined strip which is mechanically joined with the floorboard.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to floorboards provided with locking systems.


2. Background of the Invention


Mechanical locking systems for floorboards are disclosed in, for example, WO9426999, WO9966151, WO9966152, SE 0100100-7 and SE0100101-5, owned by Välinge Aluminium AB.


The present invention is particularly suitable for use in floating floors, which are formed of floorboards which are joined mechanically with a locking system integrated with the floorboard, i.e., mounted at the factory, and are made up of one or more upper layers of veneer, decorative laminate or decorative plastic material, an intermediate core of wood-fiber-based material or plastic material and, preferably, a lower balancing layer on the rear side of the core, and are manufactured by sawing large floor elements into floor panels. The following description of known techniques, problems of known systems and objects and features of the invention will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular laminate flooring formed as rectangular floorboards intended to be mechanically joined on both long sides and short sides. However, it should be emphasized that the invention can be used in optional floorboards with optional locking systems, where the floorboards can be joined using a mechanical locking system in the horizontal and vertical directions. The invention can thus also be applicable to, for instance, homogeneous wooden floors, parquet floors with a core of wood or wood-fiber-based material and the like which are made as separate floor panels, floors with a printed and preferably also varnished surface and the like. The invention can also be used for joining, for instance, of wall panels.


Laminate flooring usually has a 6–11 mm core of fiberboard, a 0.2–0.8 mm thick upper decorative surface layer of laminate, and a 0.1–0.6 mm thick lower balancing layer of laminate, plastic, paper, or like material. The surface layer provides appearance and durability to the floorboards. The core provides stability, and the balancing layer keeps the board plane when the relative humidity (RH) varies during the year. The floorboards are laid floating, i.e., without gluing, on an existing subfloor. Conventional hard floorboards in floating flooring of this type are usually joined by means of glued tongue-and-groove joints (i.e., joints involving a tongue on one floorboard and a tongue groove on an adjoining floorboard) on the long side and the short side. When laying the floor, the boards are brought together horizontally, whereby a projecting tongue along the joint edge of one board is introduced into a tongue groove along the joint edge of an adjoining board. The same method is used on the long side as well as on the short side.


In addition to conventional floors, which are joined by means of glued tongue-and-groove joints, floorboards have recently been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These mechanical locking systems lock the boards horizontally and vertically. The mechanical locking systems are usually formed by machining of the core of the board. Alternatively, parts of the locking system can be formed of a separate material, for instance aluminum, which is integrated with the floorboard, i.e., joined with the floorboard, in connection with the manufacture thereof, for example.


An advantage of floating floors with mechanical locking systems is that the floating floors can easily and quickly be laid by various combinations of inward angling and snapping-in. The floating floors can also easily be taken up again and used once more at a different location. A further advantage of the mechanical locking systems is that the edge portions of the floorboards can be made of materials which need not have good gluing properties. The most common core material is a fiberboard with high density and good stability, such as HDF—High Density Fiberboard. Sometimes also MDF—Medium Density Fiberboard—is used as core.


Laminate flooring and also many other floorings with a surface layer of plastic, wood, veneer, cork, and the like are made by the surface layer and the balancing layer being applied to a core material. This application may take place by gluing a previously manufactured decorative layer, for instance when the fiberboard is provided with a decorative high pressure laminate which is made in a separate operation where a plurality of impregnated sheets of paper are compressed under high pressure and at a high temperature. A conventional method when making laminate flooring, however, is direct laminating which is based on a more modern principle where both manufacture of the decorative laminate layer and the fastening to the fiberboard take place in one and the same manufacturing step. Impregnated sheets of paper are applied directly to the board and pressed together under pressure and heat without any gluing.


In addition to these two methods, a number of other methods are used to provide the core with a surface layer. A decorative pattern can be printed on the surface of the core, which is then, for example, coated with a wear layer. The core can also be provided with a surface layer of wood, veneer, decorative paper, or plastic sheeting, and these materials can then be coated with a wear layer.


The above methods result in a floor element in the form of a large board which is then sawn into, for instance, a plurality of floor panels, e.g.,some ten floor panels, which are then machined to floorboards. The above methods can, in some cases, result in completed floor panels. In that case, sawing is then not necessary before the machining to completed floorboards is carried out. Manufacture of individual floor panels usually takes place when the panels have a surface layer of wood or veneer.


The above floor panels are individually machined along their edges to floorboards. The machining of the edges is carried out in advanced milling machines where the floor panel is exactly positioned between one or more chains and bands mounted so that the floor panel can be moved at high speed and with great accuracy past a number of milling motors, which are provided with diamond cutting tools or metal cutting tools, which machine the edge of the floor panel. By using several milling motors operating at different angles, advanced joint geometries can be formed at speeds exceeding 100 m/min and with an accuracy of ±0.02 mm.


Definitions of Some Terms


In the following text, the top visible surface of the installed floorboard is called “front side”, while the opposite side of the floorboard, facing the subfloor, is called “rear side”. The sheet-shaped starting material that is used is called “core”. When the core is coated with a surface layer closest to the front side and preferably also a balancing layer closest to the rear side, it forms a semimanufacture which is called a “floor element”. In the case where the “floor element” in a subsequent operation is divided into a plurality of panels, each of the panels are called a “floor panel”. When the floor panels are machined along their edges so as to obtain their final shape with the locking system, they are called “floorboards”. By “surface layer” are meant all layers applied to the core closest to the front side and covering preferably the entire front side of the floorboard. By “decorative surface layer” is meant a layer which is mainly intended to give the floor its decorative appearance. “Wear layer” relates to a layer which is mainly adapted to improve the durability of the front side. In laminate flooring, this layer includes a transparent sheet of paper with an admixture of aluminum oxide which is impregnated with melamine resin. By “reinforcement layer” is meant a layer which is mainly intended to improve the capability of the surface layer of resisting impact and pressure and, in some cases, compensating for the irregularities of the core so that these will not be visible at the surface. In high pressure laminates, this reinforcement layer usually includes brown kraft paper which is impregnated with phenol resin. By “horizontal plane” is meant a plane which extends parallel with the outer part of the surface layer. Immediately juxtaposed upper parts of two neighboring joint edges of two joined floorboards together define a “vertical plane” perpendicular to the horizontal plane.


The outer parts of the floorboard at the edge of the floorboard between the front side and the rear side are called “joint edge”. The joint edge has several “joint surfaces” which can be vertical, horizontal, angled, rounded, beveled etc. These joint surfaces exist on different materials, for instance laminate, fiberboard, wood, plastic, metal (especially aluminum) or sealing material. By “joint edge portion” are meant the top joint edge of the floorboard and part of the floorboard portions closest to the joint edge.


By “joint” or “locking system” are meant coacting connecting means which connect the floorboards vertically and/or horizontally. By “mechanical locking system” is meant that joining can take place without glue. Mechanical locking systems can in many cases also be joined by gluing.


The above techniques can be used to manufacture laminate floorings which are highly natural copies of wooden flooring, stones, tiles, and the like, and which are very easy to install using mechanical locking systems. The length and width of the floorboards are about 1.2*0.2 m. Recently also laminate floorings in other formats are being marketed. The techniques used to manufacture such floorboards with mechanical locking systems, however, are still relatively expensive since the machining of the joint portions for the purpose of forming the mechanical locking system causes considerable amounts of wasted material, in particular when the width of the floorboards is reduced so that the length of the joint portions per square meter of floor surface increases. It should be possible to manufacture new formats and to increase the market for these types of flooring significantly if the mechanical locking systems could be made in a simpler and less expensive manner and with improved function.


Conventional Techniques and Problems Thereof


The following facilitates the understanding and the description of the present invention as well as the knowledge of the problems behind the invention. Both the basic construction and the function of floorboards according to WO 9426999, as well as the manufacturing principles for manufacturing laminate flooring and mechanical locking systems in general, will now be described with reference to FIGS. 1–8 in the accompanying drawings. In applicable parts, the subsequent description also applies to the embodiments of the present invention that will be described below.



FIGS. 3
a and 3b show a floorboard 1 according to WO 9426999 from above and from below, respectively. The board 1 is rectangular and has an upper side 2, a lower side 3, two opposite long sides with joint edge portions 4a and 4b, respectively, and two opposite short sides with joint edge portions 5a and 5b, respectively.


Both the joint edge portions 4a, 4b of the long sides and the joint edge portions 5a, 5b of the short sides can be joined mechanically without glue in a direction D2 in FIG. 1c, so as to meet in a vertical plane VP (marked in FIG. 2c) and in such manner that, when installed, they have their upper sides in a common horizontal plane HP (marked in FIG. 2c).


In the embodiment shown in FIGS. 1–3, which is an example of floorboards according to WO 9426999, the board 1 has a factory-mounted flat strip 6, which extends along the entire long side 4a and which is made of a bendable, resilient aluminum sheet. The strip 6 extends outwards past the vertical plane VP at the joint edge portion 4a. The strip 6 can be mechanically attached according to the shown embodiment or by gluing or in some other way. It is possible to use as material for the strip, which is attached to the floorboard at the factory, other strip materials, such as a sheet of some other metal, aluminum or plastic sections. As is also stated in WO 9426999, the strip 6 can instead be formed integrally with the board 1, for instance by suitable machining of the core of the board 1.


Embodiments of the present invention are usable for floorboards where the strip or at least part thereof is formed in one piece with the core, and these embodiments address special problems that exist in such floorboards and the manufacture thereof. The core of the floorboard need not be, but is preferably, made of a uniform material. The strip 6, however, is integrated with the board 1, i.e., it should be formed on the board or be factory mounted.


A similar, although shorter strip 6′ is arranged along one short side 5a of the board 1. The part of the strip 6 projecting past the vertical plane VP is formed with a locking element 8 which extends along the entire strip 6. The locking element 8 has in the lower part an operative locking surface facing the vertical plane VP and having a height of, e.g., 0.5 mm. During laying, this locking surface 10 coacts with a locking groove 14 which is formed in the underside 3 of the joint edge portion 4b on the opposite long side of an adjoining board 1′. The strip 6′ along one short side is provided with a corresponding locking element 8′, and the joint edge portion 5b of the opposite short side has a corresponding locking groove 14′. The edge of the locking grooves 14, 14′ facing away from the vertical plane VP forms an operative locking surface 10′ for coaction with the operative locking surface 10 of the locking element.


For mechanical joining of long sides as well as short sides also in the vertical direction (direction D1 in FIG. 1c), the board 1 is also along one long side (joint edge portion 4a) and one short side (joint edge portion 5a) formed with a laterally open recess or groove 16. This is defined upwards by an upper lip at the joint edge portion 4a, 5a and downwards by the respective strips 6, 6′. At the opposite edge portions 4b and 5b there is an upper milled-out portion 18 which defines a locking tongue 20 coacting with the recess or groove 16 (see FIG. 2a).



FIGS. 1
a1c show how two long sides 4a, 4b of two such boards 1, 1′ on a base can be joined by downward angling by turning about a center close to the intersection between the horizontal plane HP and the vertical plane VP while the boards are held essentially in contact with each other.



FIGS. 2
a2c show how the short sides 5a, 5b of the boards 1, 1′ can be joined by snap action. The long sides 4a, 4b can be joined by means of both methods, while the joining of the short sides 5a, 5b—after laying the first row of floorboards—is normally carried out merely by snap action, after joining of the long sides 4a, 4b.


When a new board 1′ and a previously installed board 1 are to be joined along their long side edge portions 4a, 4b according to FIGS. 1a1c, the long side edge portion 4b of the new board 1′ is pressed against the long side edge portion 4a of the previously installed board 1 according to FIG. 1a, so that the locking tongue 20 is inserted into the recess or groove 16., The board 1′ is then angled down towards the subfloor according to FIG. 1b. The locking tongue 20 enters completely the recess or groove 16 while at the same time the locking element 8 of the strip 6 snaps into the locking groove 14. During this downward angling, the upper part 9 of the locking element 8 can be operative and perform guiding of the new board 1′ towards the previously installed board 1.


In the joined position according to FIG. 1c, the boards 1, 1′ are certainly locked in the D1 direction as well as the D2 direction along their long side edge portions 4a, 4b, but the boards 1, 1′ can be displaced relative to each other in the longitudinal direction of the joint along the long sides (i.e., direction D3).



FIGS. 2
a2c show how the short side edge portions 5a and 5b of the boards 1, 1′ can be mechanically joined in the D1 direction as well as the D2 direction by the new board 1′ being displaced essentially horizontally towards the previously installed board 1. In particular, this can be done after the long side of the new board 1′ by inward angling according to FIGS. 1a–c has been joined with a previously installed board 1 in a neighboring row. In the first step in FIG. 2a, beveled surfaces adjacent to the recess 16 and the locking tongue 20, respectively, coact so that the strip 6′ is forced downwards as a direct consequence of the joining of the short side edge portions 5a, 5b. During the final joining, the strip 6′ snaps upwards when the locking element 8′ enters the locking groove 14′, so that the operative locking surfaces 10, 10′ of the locking element 8′ and the locking groove 14′, respectively, come into engagement with each other.


By repeating the operations illustrated in FIGS. 1a, 1c and 2a–c, the entire installation can be made without gluing and along all joint edges. Thus, floorboards of the above-mentioned type can be joined mechanically by first being angled down on the long side and once the long side is locked, by snapping together the short sides by horizontal displacement of the new board 1′ along the long side of the previously installed board 1 (direction D3). The boards 1, 1′ can, without the joint being damaged, be taken up again in reverse order of installation and then be laid once more. Parts of these laying principles are applicable also in connection with embodiments of the present invention.


The locking system enables displacement along the joint edge in the locked position after an optional side has been joined. Therefore laying can take place in many different ways which are all variants of the three basic methods: Angling of long side and snapping-in of short side; snapping-in of long side-snapping-in of short side; and angling of short side, upward angling of two boards, displacement of the new board along the short side edge of the previous board and finally downward angling of two boards.


One laying method is that the long side is first angled downwards and locked against another floorboard. Subsequently, a displacement in the locked position takes place towards the short side of a third floorboard so that the snapping-in of the short side can take place. Laying can also be made by one side, e.g., a long side or a short side, being snapped together with another board. Then a displacement in the locked position takes place until the other side snaps together with a third board. These two methods snap-in at least one side. However, laying can also take place without snap action. The third alternative is that the short side of a first board is angled inwards first towards the short side of a second board, which is already joined on its long side with a third board. After this joining-together, the first and the second board are slightly angled upwards. The first board is displaced in the upwardly angled position along its short side until the upper joint edges of the first and the third board are in contact with each other, after which the two boards are jointly angled downwards.


The above-described floorboard and its locking system have become very successful on the market. A number of variants of this locking system are available on the market, in connection with laminate floors and also thin wooden floors with a surface of veneer and parquet floors.



FIGS. 5
a5e show manufacture of a laminate floor. FIG. 5a shows manufacture of high pressure laminate. A wear layer 34 of a transparent material with great wearing strength is impregnated with melamine with aluminum oxide added. A decorative layer 35 of paper impregnated with melamine is placed under this layer 34. One or more reinforcing layers 36a, 36b of core paper impregnated with phenol are placed under the decorative layer 35 and the entire packet is placed in a press where it cures under pressure and heat to an about 0.5–0.8 mm thick surface layer 31 of high pressure laminate. FIG. 5c shows how this surface layer 31 can then be glued together with a balancing layer 32 to a core 30 to constitute a floor element 3.



FIGS. 5
d and 5e illustrate direct lamination. A wear layer 34 in the form of an overlay and a decorative layer 35 of decoration paper is placed directly on a core 30, after which all three parts and, as a rule, also a rear balancing layer 32 are placed in a press where they cure under heat and pressure to a floor element 3 with a decorative surface layer 31 having a thickness of about 0.2 mm.


After lamination, the floor element is sawn into floor panels. When the mechanical locking system is made in one piece with the core of the floorboard, the joint edges are formed in the subsequent machining to mechanical locking systems of different kinds which all lock the floorboards in the horizontal D2 and vertical D1 directions.



FIGS. 4
a–d show in four steps manufacture of a floorboard. FIG. 4a shows the three basic components surface layer 31, core 30 and balancing layer 32. FIG. 4b shows a floor element 3 where the surface layer and the balancing layer have been applied to the core. FIG. 4c shows how floor panels 2 are made by dividing the floor element. FIG. 4d shows how the floor panel 2 after machining of its edges obtains its final shape and becomes a complete floorboard 1 with a locking system 7, 7′, which in this case is mechanical, on the long sides 4a, 4b.



FIGS. 6
a8b show variants of mechanical locking systems which are formed by machining the core of the floorboard. FIGS. 6a, b illustrate a system which can be angled and snapped. FIGS. 7a, b show a snap joint. FIGS. 8a, b show a joint which can be angled and snapped but which has less strength and a poorer function than the locking system according to FIG. 6. As shown in these figures, the mechanical locking systems have parts which project past the upper joint edges and this causes expensive waste (w), owing to the removing of material performed by the sawblade SB when dividing the floor element and when surface material is removed and the core is machined in connection with the forming of the parts of the locking system.


These systems and the manufacturing methods suffer from a number of drawbacks which are above all related to cost and function.


For example, the aluminum oxide and also the reinforcing layers which give the laminate floor its high wearing strength and impact resistance causes great wear on the tools, such as the diamond teeth. Frequent and expensive regrinding is made particularly of the tool parts that remove the surface layer.


Also, machining of the joint edges causes expensive waste when core material and surface material are removed to form the parts of the locking system.


Further, to be able to form a mechanical locking system with projecting parts, the width of the floorboard is increased and the decoration paper is in many cases adjusted as to width. This may result in production problems and considerable investments especially when manufacturing parquet flooring.


In addition, a mechanical locking system has a more complicated geometry than a locking system which is joined by gluing. The number of milling motors is usually increased, which requires that new and more advanced milling machines be provided.


To satisfy the requirements as to strength, flexibility in connection with snapping-in, and low friction in connection with displacement in the locked position, the core is of high quality. Such quality requirements, which are used for the locking system, are not always used for the other properties of the floor, such as stability and impact strength. Owing to the locking system, the core of the entire floorboard is of unnecessarily high quality, which increases the manufacturing cost.


To counteract these problems, different methods have been used. One method is to limit the extent of the projecting parts past the upper joint edge. This usually causes poorer strength and difficulties in laying or detaching the floorboards. Another method is to manufacture parts of the locking system of another material, such as aluminum sheet or aluminum sections. These methods may result in great strength and good function but are generally more expensive. In some cases, these methods may result in a somewhat lower cost than a machined embodiment, but this implies that floorboards are expensive to manufacture and that the waste is very costly, as may be the case when the floorboards are made of, for example, high quality high pressure laminate. In less expensive floorboards of low pressure laminate, the cost of these locking systems of metal is higher than in the case where the locking system is machined from the core of the board. The investment in special equipment to form and attach the aluminum strip to the joint edge of the floorboard may be considerable.


It is also known that separate materials can be glued as an edge portion and formed by machining in connection with further machining of the joint edges. Gluing is difficult and machining is not simple.


Floorboards can also be joined by means of separate loose clamps of metal which, in connection with laying, are joined with the floorboard. This results in laborious laying and the manufacturing costs is high. Clamps are usually placed under the floorboard and fixed to the rear side of the floorboard. They are not convenient for use in thin flooring. Examples of such clamps are described in DE 42 15 273 and U.S. Pat. No. 4,819,932. Fixing devices of metal are disclosed in U.S. Pat. No. 4,169,688, U.S. Pat. No. 5,295,341, DE 33 43 601 and JP 614,553. All these alternatives have a poor function and are more expensive to manufacture and use than known machined locking systems. WO 96/27721 discloses separate joint parts which are fixed to the floorboard by gluing. This is an expensive and complicated method.


OBJECTS AND SUMMARY

An object of the present invention is to eliminate or significantly reduce one or more of the problems occurring in connection with manufacture of floorboards with mechanical locking systems. This is applicable in particular to such floorboards with mechanical locking systems as are made in one piece with the core of the floorboard. A further object of the invention is to provide a rational and cost-efficient manufacturing method for manufacturing elements which are later to constitute parts of the mechanical locking system of the floorboards. A third object is to provide a rational method for joining of these elements with the joint portion of the floorboard to form an integrated mechanical locking system which locks vertically and horizontally.


According to one embodiment of the invention, parts of the mechanical locking system should be made of a separate strip which may have other properties than the floorboard core, which does not contain expensive surface layers that are difficult to machine, and that can be made of a board material thinner than the core of the floorboard. This makes it possible to reduce the amount of wasted material and the locking system can be given better properties specially adjusted to function and strength requirements on the long side and the short side.


According to another embodiment of the invention, the separate strip is preferably made of a sheet-shaped material which by machining can be given its final shape in a cost-efficient manner and with great accuracy.


According to a further embodiment of the invention, the strip can be integrated with the joint edge portion of the floorboard in a rational manner with great accuracy and strength, preferably by mechanical joining where a preferred alternative may involve snapping-in the core of the floorboard essentially parallel to the horizontal plane of the floorboard. The mechanical joining between the floorboard and the separate strip should preferably enable a relative movement between the floorboard and the separate strip along the joint edge. In this way, it may be possible to eliminate tensions in the cases where the floorboard and the strip move differently owing to the moisture and heat movements of different materials. The mechanical joining gives great degrees of freedom when selecting materials since there does not exist any gluing problem.


According to still further embodiment of the invention, machining of the edges of the floorboards can be made in a simpler and quicker manner with fewer and simpler tools which are both less expensive to buy and less expensive to grind, and that more advanced joint geometries can be provided if the manufacture of the locking system is made by machining a separate strip which can be formed of a sheet-shaped material with good machining properties. This separate strip can, after machining, be integrated with the floorboard in a rational manner.


According to still another embodiment of the invention, the flexibility of the strip in connection with snapping-in of the floorboards against each other can be improved by the strip being made of a material which has better flexibility than the core of the floorboard and by the separate strip being able to move in the snap joint.


According to yet another embodiment of the invention, several strips are made in the same milling operation and are made in such manner that they are joined with each other to form a strip blank. In this way, the strips can be made, handled, separated and integrated with the floorboard in a rational and cost-efficient manner and with great accuracy.


The different embodiments are particularly suited for use in floorboards whose locking system comprises a separate strip which is machined from a sheet-shaped material, preferably containing wood fibers, for instance particle board, MDF, HDF, compact laminate, plywood, and the like. Such board materials can be machined efficiently and with great accuracy and dimensional stability. They can also be, for instance, impregnated with suitable chemicals in connection with the manufacture of the board material or, alternatively, impregnated before or after machining, when they have been formed to strip blanks or strips. In addition, they can be given improved properties, for instance regarding strength, flexibility, moisture resistance, friction, and the like. The strips can also be colored for decoration. Different colors can be used for different types of floors. The board material may also include different plastic materials which by machining are formed to strips. Special board materials can be made by gluing or lamination of, for instance, different layers of wood fiberboards and plastic material. Such composite materials can be adjusted so as to give, in connection with the machining of the strips, improved properties in, for instance, joint surfaces which are subjected to great loads or which should have good flexibility or low friction. It is also possible to form strips as sections by extrusion of plastic or metal, for instance aluminum, but this may be more expensive than machining. The rate of production is only a fraction of the rates that can be achieved in modern working machines.


The strips may include the same material as the core of the floorboard, or include the same type of material as the core, but of a different quality, or of a material quite different from that of the core.


The strips can also be formed so that part thereof is visible from the surface and constitutes a decorative portion.


The strips can also have a sealant or sealer preventing penetration of moisture into the core of the floorboard or through the locking system.


The strips can be positioned on a long side and a short side or only on one side. The other side may have some other traditional or mechanical locking system.


The strips on the long side and the short side can be made of the same material and have the same geometry, but they may also include different materials and have different geometries. They can be particularly adjusted to different requirements as to function, strength and cost that are placed on the locking systems on the different sides. The long side contains, for example, more joint material than the short side and is usually laid by laying. At the short side the strength requirements are greater and joining often takes place by snapping-in which requires flexible and strong joint materials.


The shape of the floorboard can be rectangular or square. Embodiments of the invention are particularly suited for narrow floorboards or floorboards having the shape of, e.g., parquet blocks. Floors with such floorboards contain many joints and separate joint parts and can therefore yield great savings. Embodiments of the invention are also particularly suited for thick laminate flooring, for instance 10–12 mm, where the cost of waste is high and for parquet flooring, such as 15 mm parquet flooring, with a core of wooden slats, where it is difficult to form a locking system by machining wood material along and transversely of the direction of the fibers. A separate strip can give considerable advantages as to cost and a better function.


It is also not necessary for the strip to be located along the entire joint edge. The long side or the short side can, for instance, have joint portions that do not contain separate joint parts. In this manner, additional cost savings can be achieved, especially in the cases where the separate strip is of high quality, for instance compact laminate.


The separate strip may constitute part of the horizontal and vertical joint, but it may also constitute merely part of the horizontal or the vertical joint.


Thus, a number of combinations of different locking systems, materials and formats can be provided. It should be particularly pointed out that the mechanical joining between the floorboard and the separate strip may also include a glue joint which improves joining. The mechanical joining can then, for instance, be used to position the joint part and/or to hold it in the correct position until the glue cures.


According to a first aspect of the invention, a locking system for mechanical joining of floorboards is thus provided, where immediately juxtaposed upper parts of two neighboring joint edges of two joined floorboards together define a vertical plane which is perpendicular to the principal plane of the floorboards. To perform joining of the two joint edges in the horizontal direction perpendicular to the vertical plane and parallel to the principal plane, the locking system comprises a locking groove formed in the joint edge portion and extended parallel to the first joint edge, and a separate strip which is integrated with the second joint edge and which has a projecting portion which at a distance from the vertical plane supports a locking element coacting with the locking groove, said projecting portion thus being located completely outside the vertical plane seen from the side of the second joint edge. The separate strip is formed by machining a sheet-shaped material. The separate strip with its projecting portion is joined with the core of the floorboard using a mechanical snap joint which joins the separate strip with the floorboard in the horizontal and vertical direction, that snapping-in can take place by relative displacement of the strip and the joint edge of the floorboard towards each other.


According to a second aspect of the invention, a strip blank is provided, which is intended as a semimanufacture for making floorboards with a mechanical locking system which locks the floorboards vertically and horizontally. The strip blank includes a sheet-shaped blank intended for machining. The strip blank includes at least two strips which constitute the horizontal joint in the locking system.


According to a third aspect of the invention, there is provided a method of providing rectangular floorboards, which have machined joint portions, with a mechanical locking system which locks the floorboards horizontally and vertically on at least two opposite sides, said locking system including at least one separate strip.


The strip is made by machining of a sheet-shaped material and is joined with the joint portion mechanically in the horizontal direction and in the vertical direction perpendicular to the principal plane. The mechanical joining takes place by snapping-in relative to the joint edge.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1
a–c illustrate different steps of mechanical joining of conventional floorboards.



FIGS. 2
a–c illustrate different steps of mechanical joining of conventional floorboards.



FIGS. 3
a–b show floorboards with a conventional mechanical locking system.



FIGS. 4
a–d show conventional manufacture of laminate flooring.



FIGS. 5
a–e show manufacture of conventional laminate flooring.



FIGS. 6
a–b show a conventional mechanical locking system.



FIGS. 7
a–b show another conventional mechanical locking system.



FIGS. 8
a–b show a third conventional mechanical locking system.



FIGS. 9
a–d illustrate schematically an embodiment of the invention.



FIGS. 10
a–c show schematically joining of a separate strip with a floorboard according to an embodiment of the invention.



FIGS. 11
a–c illustrate machining of strip blanks according to an embodiment of the invention.



FIGS. 12
a–c show how a strip blank is made in a number of manufacturing steps according to an embodiment of the invention.



FIG. 13 shows how a plurality of strip blanks can be handled according to an embodiment of the invention.



FIGS. 14
a–d show how the separate strip is joined with the floorboard and separated from the strip blank according to an embodiment of the invention.



FIGS. 15
a–d show an embodiment of a production-adjusted floorboard and joining of floorboards by inward angling and snapping-in.



FIGS. 16
a–d show joining of a production-adjusted separate strip blank with the floorboard by snap action according to the invention.



FIG. 17 illustrates a preferred alternative of how the separate strip is made by machining according to an embodiment of the invention.



FIGS. 18
a–d illustrate a preferred embodiment according to an embodiment of the invention with a separate strip and tongue.



FIGS. 19
a–d illustrate a preferred embodiment according to the invention.



FIGS. 20
a–e illustrate a preferred embodiment according to the invention with a separate strip having symmetric edge portions.



FIGS. 21–26 show examples of different embodiments according to the invention.



FIGS. 27
a–b show examples of how the separate strip according to an embodiment of the invention can be separated from the strip blank.



FIGS. 28
a–b show how sawing of floor elements into floor panels can take place according to an embodiment of the invention so as to minimize the amount of wasted material.



FIGS. 29
a–e show machining of joint edge portions according to an embodiment of the invention.



FIG. 30 shows a format corresponding to a normal laminate floorboard with a separate strip on long side and short side according to an embodiment of the invention.



FIG. 31 shows a long and narrow floorboard with a separate strip on a long side and a short side according to an embodiment of the invention.



FIGS. 32
a–b show formats corresponding to a parquet block in two mirror-inverted embodiments with a separate strip on a long side and a short side according to an embodiment of the invention.



FIG. 33 shows a format which is suitable for imitating stones and tiles with a separate strip on a long side and a short side according to an embodiment of the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

A first preferred embodiment of a floorboard 1, 1′ provided with a mechanical locking system according to the invention will now be described with reference to the embodiments shown in FIGS. 9a–d. To facilitate understanding, the locking system is shown schematically. It should be emphasized that an improved function can be achieved using other preferred embodiments that will be described below.



FIG. 9
a illustrates schematically a cross-section through a joint between a long side edge portion 4a of a board 1 and an opposite long side edge portion 4b of a second board 1′.


The upper sides of the boards are essentially positioned in a common horizontal plane HP, and the upper parts of the joint edge portions 4a, 4b abut against each other in a vertical plane VP. The mechanical locking system provides locking of the boards relative to each other in the vertical direction D1 as well as the horizontal direction D2.


To provide joining of the two joint edge portions in the D1 and D2 directions, the edges of the floorboard include a tongue groove 23 in one edge portion 4a of the floorboard and a tongue 22 formed in the other joint edge portion 4b and projecting past the vertical plane VP.


In this embodiment, the board 1 has a body or core 30 of wood-fiber-based material.


The mechanical locking system according to the embodiment of the invention comprises a separate strip 6 which has a projecting portion P2 projecting past the vertical plane and having a locking element 8. The separate strip 6 also has an inner part P1 which is positioned inside the vertical plane VP and is mechanically joined with the floorboard 1. The locking element 8 coacts with a locking groove 14 in the other joint edge portion 4b and locks the floorboards relative to each other in the horizontal direction D2.


The floorboard 1 further includes a strip groove 36 in one joint edge portion 4a of the floorboard and a strip tongue 38 in the inner part P1 of the separate strip 6.


The strip groove 36 is defined by upper and lower lips 20, 21 and has the form of an undercut groove 43 with an opening between the two lips 20, 21.


The different parts of the strip groove 36 are seen in FIG. 9c. The strip groove is formed in the body or core 30 and extends from the edge of the floorboard. Above the strip groove there is an upper edge portion or joint edge surface 40 which extends all the way up to the horizontal plane HP. Inside the opening of the strip groove there is an upper engaging or supporting surface 41, which in this embodiment is parallel to the horizontal plane HP. The engaging or supporting surface 41 transitions into a locking surface 42. Inside the locking surface there is a surface portion 49 forming the upper boundary of the undercut portion 33 of the strip groove and a surface 44 forming the bottom of the undercut groove. The strip groove further has a lower lip 21. On the upper side of this lip there is an engaging or supporting surface 46. The outer end of the lower lip has a lower joint edge surface 47 and a positioning surface 48. In this embodiment, the lower lip 21 does not extend all the way to the vertical plane VP.


The shape of the strip tongue is also seen in FIG. 9d. In this preferred embodiment, the strip tongue is made of a wood-based board material, for instance HDF.


The strip tongue 38 of the separate strip 6 includes a strip locking element 39 which coacts with the undercut groove 43 and locks the strip to the joint edge portion 4a of the floorboard 1 in the horizontal direction D2. The strip tongue 38 is joined with the strip groove 36 by means of a mechanical snap joint. The strip locking element 39 has a strip locking surface 60 facing the vertical plane VP, an upper strip surface 61 and an inner upper guiding part 62, which in this embodiment is inclined. The strip tongue also has an upper engaging or supporting surface 63, which in this case extends all the way to an inclined upper strip tongue part 64 at the tip of the tongue. The strip tongue further has a lower guiding part 65, which in this embodiment passes into a lower engaging or supporting surface 66. The supporting surface passes into a lower positioning surface 67 facing the vertical plane VP. The upper and lower engaging surfaces 45, 63 and 46, 66 lock the strip in the vertical direction D1. The strip 6 is, in this embodiment, made of a board material containing wood fibers, for instance HDF.



FIGS. 10
a–c illustrate an embodiment of how the separate strip 6 is integrated with the floorboard 1 by snap action. When the floorboard 1 and the strip 6 are moved towards each other according to FIG. 10a, the lower guiding part 65 of the strip tongue will coact with the joint edge surface 47 of the lower lip 21. According to FIG. 10b, the strip groove 36 opens by the upper lip 20 being bent upwards and the lower lip 21 downwards. The strip 6 is moved until its positioning surface 67 abuts against the positioning surface 48 of the lower lip. The upper and the lower lips 20, 21 snap backwards and the locking surfaces 42, 60 lock the strip 6 into the floorboard 1 in the horizontal direction. The strip tongue 38 and the strip groove 36 lock in the vertical direction D1. The locking element 8 and its locking surface 10, by snap motion, are exactly positioned relative to the upper joint edge of the floorboard and the vertical plane VP. Thus, by this snap motion the floorboard has been integrated with a machined strip which, in this embodiment, is made of a separate sheet-shaped and wood-fiber-based material.



FIGS. 11
a–c show an embodiment of how a strip blank 15 comprising a plurality of strips 6 is made by machining. T1–T4 indicate machining tools, preferably of diamond type, operating from above and from below. Only two tools T1 and T2 are used to produce a strip 6. In the first manufacturing step according to FIG. 11a, a strip 6 is made. However, this strip is not separated from the strip blank. In the next machining, the strip blank 15 is moved sideways a distance corresponding to the width of two strips. In the third manufacturing step, this step is repeated and now two more strips are manufactured. The strip blank thus grows by two strips in each run through the machine.



FIGS. 12
a–c show an embodiment of how the strip blank 15 with a plurality of strips 6 can be manufactured in a double-sided milling machine with four tools on each side. In the first manufacturing step according to FIG. 12a, two strips are manufactured. In the next manufacturing step, FIG. 12b, four more strips are manufactured. FIG. 12c shows that the strip blank includes 10 strips after three steps. With a double-sided machine, which has, for instance, 8 milling motors and 8 tools on each side, 8 strips can be made in each run through the milling machine. Since machining can take place in, e.g., HDF which does not have a surface layer, machining speeds of up to 200 m/min can be achieved with 8 strips in each run. Since normal flooring lines machine the joint edges by about 100 m/min, such a line can provide 16 flooring lines with strip blanks. The strips are made of a board material which can be considerably thinner than the floorboard. The cost of a separate strip with a width of 15–20 mm, made of an HDF board having a thickness of, for instance, 5 mm, is less than 30% of the waste cost in machining an 8 mm laminate floorboard with an integrated strip which has an extent outside the joint edge corresponding to about 8–10 mm.


A feature according to an embodiment of the present invention is that the separate strip is made by machining a sheet-shaped material.



FIG. 13 shows an embodiment of a plurality of strip blanks which can be stacked and handled efficiently.



FIGS. 14
a–d show an embodiment of a manufacturing method for integrating the strip with the floorboard. The strip blank 15 is fed between upper and lower supports 17, 18 towards a stop member 16 so that the strip 6 will be correctly positioned. The floorboard 1 is moved towards the strip according to FIG. 14b so that snapping-in takes place. Then the strip 6 is separated from the strip blank 15, for instance, by the strip being broken off. Subsequently this manufacturing step is repeated according to FIG. 14b. The equipment required for this snapping-in is relatively simple, and manufacturing speeds corresponding to normal flooring lines can be obtained. The strip 6 can in this manner be joined by snapping both to a long side and to a short side. It is obvious that a number of variants of this manufacturing method are feasible. The strip 6 can be moved towards the floorboard. The strip can be separated in a number of other ways, for instance, by cutting off, sawing, etc., and this can also take place before fastening.



FIGS. 15
a–d show an embodiment of a production-adjusted variant of the invention. In this embodiment, the upper and lower lips 20, 21 of the strip groove 36 as well as the upper and lower engaging surfaces 63, 66 of the strip tongue are inclined relative to the horizontal plane HP and they follow lines L1 and L2. Such an embodiment can significantly facilitate snapping the strip into the floorboard 1. The lower lip 21 has been made longer and the locking groove of the strip and the locking surface of the undercut groove are inclined. This facilitates manufacture and snapping-in. In this embodiment, the positioning of the strip in connection with snapping-in takes place by part of the upper guiding part 62 coacting with the bottom 44 of the undercut groove. The locking element 8 has a locking surface 10 which has the same inclination as the tangent TC to the circular arc with its center in the upper joint edge. Such an embodiment can facilitate inward angling but preferably the projecting portion P2 should have an extent which is the same size as the thickness T of the floorboard for the locking surface of the locking element to have a sufficiently high angle relative to the underside of the board. A high locking angle increases the locking capability of the locking system. The separate strip allows joint geometries with an extended projecting portion P2 without this causing greater costs in manufacture. An extended inner part P1 facilitates integration by snap action and results in high fastening capability. The following ratios have been found particularly favorable: P2≧T and P1≧0.5T.



FIG. 15
b shows an embodiment of inward angling with a play between the locking element 8 and the locking groove 14 during the initial phase of the inward angling when the upper joint edges touch each other and when parts of the lower part of the locking groove 14 are lower than the upper part of the locking element 8.



FIG. 15
d shows an embodiment of snapping-in of the floorboard 1′ into the floorboard 1. A separate strip 6, which is mechanically integrated with the floorboard 1, facilitates snapping-in by the strip 6 being able to move in a rotary motion in the strip groove 36. The strip can then turn as indicated by line L3. The remaining displacement downwards of the locking element 8 to the position L4 can be effected by downward bending of the strip 6. This makes it possible to provide locking systems which are capable of snapping and angling on a long side as well as on a short side and which have a relatively high locking element 8. In this way, great strength and good capability of inward angling can be combined with the snap function and a low cost. The following ratio has been found favorable: HL≧0.15 T. This can also be combined with the above ratios.



FIGS. 16
a–d show an embodiment of snapping-in of the strip 6 in four steps. As shown in the figures, the inclined surfaces allow the snapping-in of the strip 6 into the floorboard 1 to be made with a relatively small bending of the upper and lower lips 20 and 21.



FIG. 17 shows an embodiment of manufacturing of a strip blank where all three locking and positioning surfaces are made using a divided tool which contains two adjustable tool parts T1A and T1B. These tool parts are fixed in the same tool holder and driven by the same milling motor. This divided tool can be ground and set with great accuracy and allows manufacture of the locking surfaces 10 and 60 as well as the positioning surface 62 with a tolerance of a few hundredths of a millimeter. The movement of the board between different milling motors and between different manufacturing steps thus does not result in extra tolerances.



FIGS. 18
a–d show an embodiment of the invention where also the tongue 22 is made of a separate material. This embodiment can reduce the waste still more. Since the tongue locks only vertically, no horizontal locking system other than friction fastens the tongue in the floorboard 1′.



FIGS. 19
a–d show another embodiment of the invention in which the projecting portion P2 has a locking element which locks in an undercut groove in the board 1′. Such a locking system can be locked by angling and snapping and it can be unlocked by upward angling about the upper joint edge. Since the floorboard 1′ has no tongue, the amount of wasted material can be minimized.



FIGS. 20
a–e show an embodiment of the invention which is characterized in that the separate strip 6 includes two symmetric parts, and that the joint portions of the floorboards 1, 1′ are symmetrically identical. This embodiment allows simple manufacture of, for instance, boards which may include A and B boards which have mirror-inverted locking systems. The locking system of the preferred geometry is not openable. An openable geometry can be achieved, for instance, by rounding of the lower and outer parts of the strip 6.



FIGS. 21–26 illustrate embodiments of variants of the invention. FIG. 21 shows an embodiment with lower lips 21 which extend essentially to the vertical plane.



FIG. 22 shows an embodiment with locking elements on the upper and lower sides of the strip 6.



FIG. 23 shows an embodiment with a separate strip which is visible from the surface and which may constitute a decorative joint portion.



FIG. 24 shows an embodiment with a separate strip with a tapering projecting portion which improves the flexibility of the strip.



FIG. 25 shows an embodiment where the inner portion P1 of the strip 6 has a tongue groove 36a. This may facilitate snapping-in of the strip since also the tongue groove 36a is resilient by its lip 21a also being resilient. The tongue groove can be made by means of an inclined tool according to conventional techniques. In this embodiment, the inner portion P1 has two locking elements.



FIG. 26 shows an embodiment where the inner portion P1 has no locking element. The strip 6 is inserted into the strip groove 36 until it abuts against the lower positioning surface and is retained in this position by frictional forces. Such an embodiment can be combined with gluing which is activated in a suitable manner by heating, ultrasound, etc. The strip 6 can be preglued before being inserted.



FIGS. 27
a and b show two embodiments of variants which facilitate separation by the strip 6 being separated from the strip 6′ by being broken off. In FIG. 27a, the strip 6 is designed so that the outer part of the strip tongue 33 is positioned on the same level as the rear part of the locking element 8. Breaking-off takes place along line S. FIG. 27b shows another variant which is convenient, especially in HDF material and other similar materials where the fibers are oriented essentially horizontally and where the fracture surface is essentially parallel to the horizontal plane HP. Breaking-off takes place along line S with an essentially horizontal fracture surface.



FIGS. 28
a and b show embodiments of the invention where the amount of wasted material can be minimized by the joint edge formed with a tongue. Sawing can take place with an upper sawblade SB1 and a lower sawblade SB2 which are laterally offset. The floor elements 2 and 2′ will only have an oversize as required for efficient machining of the joint edges without taking the shape of the tongue into consideration. By such an embodiment, the amount of wasted material can be reduced to a minimum.



FIGS. 29
a–e show embodiments of machining of joint edge portions using diamond cutting tools. A tool TP1 with engaging direction WD machines the laminate surface in a conventional manner and performs premilling. A minimum part of the laminate surface is removed. According to FIG. 29b, the strip groove is made and the tool TP2 operates merely in the core material and the rear side. FIG. 29c shows how the undercut groove with the locking surface and an upper and a lower positioning surface are formed with a tool TP3. All surfaces for the horizontal positioning and locking of the strip can thus be formed with great accuracy using one and the same tool. FIG. 29e shows how the corresponding machining can be carried out using an inclined tool TP5. Finally the upper joint edge is machined by means of the tool TP4. The joint geometry and the manufacturing methods according to the invention thus make it possible to manufacture floorboards with advanced locking systems. At the same time machining of the joint edges can be carried out using fewer tools than normal, with great accuracy and with a minimum amount of wasted material. Wooden flooring does not require a premilling tool TP1 and machining may therefore take place using three tools only.



FIG. 30 illustrates a laminate floorboard with strips 6b and 6a according to an embodiment of the invention on a long side 4 and a short side 3. The strips can be of the same material and have the same geometry but they may also be different. Embodiments of the invention give great possibilities of optimizing the locking systems on the long side and the short side as regards function, cost, and strength. On the short sides, where the strength requirements are high and where snapping-in is important, advanced, strong, and resilient materials such as compact laminate can be used. In long and narrow formats, the long side contains essentially more joint material, and therefore it has been useful in conventional locking systems to reduce the extent of the strip outside the joint edge as much as possible. This has made snapping-in difficult or impossible, which is an advantage in certain laying steps where inward angling cannot take place. These limitations are largely eliminated by the present invention. FIG. 31 shows a long and narrow floorboard which necessitates a strong locking system on the short side. The saving in material that can be made using the present invention in such a floorboard is considerable.



FIGS. 32
a–b show formats resembling parquet blocks. A mechanical locking system of a traditional type can in such a format, for instance 70*400 mm, cause an amount of wasted material of more than 15%. Such formats are not available on the market as laminates. According to an embodiment of the present invention, these formats can be manufactured efficiently with a mechanical locking system which is less expensive than also traditional systems using tongue, groove and glue. They can also, as shown in these two figures, be manufactured with a mirror-inverted system where the strip on the short side is alternately snapped into the upper and lower short sides.



FIG. 33 shows a format with a wide short side. Such a format is difficult to snap in since downward bending of the long strip 6a on the short side means that a great bending resistance is overcome. According to an embodiment of the present invention, this problem is solved by the possibility of using flexible materials in the separate strip which also according to the description above can be made partially turnable in the inner portion.


It is obvious that a large number of variants of preferred embodiments are conceivable. First, the different embodiments and descriptions can be combined wholly or partly. The inventor has also tested a number of alternatives where geometries and surfaces with different angles, radii, vertical and horizontal extents and the like have been manufactured. Beveling and rounding-off can result in a relatively similar function. A plurality of other joint surfaces can be used as positioning surfaces. The thickness of the strip may be varied and it is possible to machine materials and make strips of board materials that are thinner than 2 mm. A large number of known board materials, which can be machined and are normally used in the floor, building and furniture industries, have been tested and found usable in various applications of the invention. Since the strip is integrated mechanically, there are no limitations as may be the case when materials are joined with each other by means of gluing.


The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such variations, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.

Claims
  • 1. A locking system for a floorboard comprising: connectors integrated with the floorboard and adapted to connect the floorboard with an essentially identical floorboard, wherein upper joint edges of said floorboard and said essentially identical floorboard in a connected state define a vertical plane,said connectors designed to connect said floorboard with said essentially identical floorboard in at least a horizontal direction perpendicular to said vertical plane,said connectors comprising a locking strip which projects from said vertical plane and carries a locking element which is designed to cooperate, in said connected state, with a downward open locking groove of said essentially identical floorboard,said locking strip is a separate part which is mechanically fixed to the floorboard in said horizontal direction and a vertical direction,said locking strip designed for connecting the floorboard with the essentially identical floorboard by at least inward angling of the floorboard relative to the essentially identical floorboard,wherein the locking strip substantially consists of a machined sheet-shaped material and is made essentially of a wood-based material.
  • 2. The locking system for a floorboard as claimed in claim 1, wherein said wood-based material is selected from the group consisting of pure wood, particle board, plywood, HDF, MDF and compact laminate.
  • 3. The locking system for a floorboard as claimed in claim 2, comprising a strip groove in the floorboard to receive said locking strip and a tongue groove in the floorboard to receive a tongue arranged on said essentially identical floorboard, wherein said tongue groove and tongue form a connection in a vertical direction perpendicular to a principal plane of the floorboard and wherein at least one surface of said tongue groove consists of said locking strip.
  • 4. The locking system for a floorboard as claimed in claim 3, wherein the locking strip is inserted into said strip groove arranged in the edge portion of said floorboard, the locking strip held in place in said horizontal direction by frictional forces and optionally glue.
  • 5. The locking system for a floorboard as claimed in claim 4, wherein said connectors connect the floorboard with the essentially identical floorboard by snapping-in in an essentially horizontal direction.
  • 6. The locking system for a floorboard as claimed in claim 4, wherein the floorboard is quadrilateral and, along at least two mutually perpendicular edge portions, has a first set of connectors and a second set of connectors.
  • 7. The locking system for a floorboard as claimed in claim 6, wherein said first set of connectors are arranged on a short side of the floorboard and said second set of connectors are arranged on a long side of the floorboard, said first set of connectors differing from said second set of connectors in terms of material property or material composition.
  • 8. The locking system for a floorboard as claimed in claim 7, a locking strip included in said first set of connectors differs in terms of material property or material composition from a locking strip included in said second set of connectors.
  • 9. The locking system for a floorboard as claimed in claim 8, wherein the locking strip included in said first set of connectors has higher strength than the locking strip included in said second set of connecting means.
  • 10. The locking system for a floorboard as claimed in claim 3, comprising a first locking surface arranged in said strip groove and adapted to cooperate with a second locking surface arranged on said locking strip.
  • 11. The locking system for a floorboard as claimed in claim 10, wherein the floorboard is quadrilateral and, along at least two mutually perpendicular edge portions, has a first set of connectors and a second set of connectors.
  • 12. The locking system for a floorboard as claimed in claim 10, wherein said first locking surface is arranged on a lower lip which defines said strip groove, and that said second locking surface is arranged on a lower surface of said locking strip.
  • 13. The locking system for a floorboard as claimed in claim 12, wherein the locking strip is detachable from said floorboard by an angular motion in a direction opposite to said inward angling.
  • 14. The locking system for a floorboard as claimed in claim 1, wherein said wood-based material is impregnated and/or coated with a property-improving agent.
  • 15. The locking system for a floorboard as claimed in claim 1, comprising a strip groove in the floorboard to receive a strip locking element of said locking strip and a tongue groove in the floorboard to receive a strip tongue of said locking strip, wherein said tongue groove and said strip tongue form a connection in a vertical direction perpendicular to a principal plane of the floorboard.
  • 16. The locking system for a floorboard as claimed in claim 15, wherein the locking strip is inserted into said strip groove arranged in the edge portion of said floorboard, the locking strip held in place in said horizontal direction by frictional forces and optionally glue.
  • 17. The locking system for a floorboard as claimed in claim 16, wherein said connectors connect the floorboard with the essentially identical floorboard by snapping-in in an essentially horizontal direction.
  • 18. The locking system for a floorboard as claimed in claim 16, wherein the floorboard is quadrilateral and, along at least two mutually perpendicular edge portions, has a first set of connectors and a second set of connectors.
  • 19. The locking system for a floorboard as claimed in claim 18, wherein said first set of connectors are arranged on a short side of the floorboard and said second set of connectors are arranged on a long side of the floorboard, said first set of connectors differing from said second set of connectors in terms of material property or material composition.
  • 20. The locking system for a floorboard as claimed in claim 19, a locking strip included in said first set of connectors differs in terms of material property or material composition from a locking strip included in said second set of connectors.
  • 21. The locking system for a floorboard as claimed in claim 20, wherein the locking strip included in said first set of connectors has higher strength than the locking strip included in said second set of connecting means.
  • 22. The locking system for a floorboard as claimed in claim 15, comprising a first locking surface arranged in said strip groove and adapted to cooperate with a second locking surface arranged on said locking strip.
  • 23. The locking system for a floorboard as claimed in claim 22, wherein the floorboard is quadrilateral and, along at least two mutually perpendicular edge portions, has a first set of connectors and a second set of connectors.
  • 24. The locking system for a floorboard as claimed in claim 22, wherein said first locking surface is arranged on a lower lip which defines said strip groove, and that said second locking surface is arranged on a lower surface of said locking strip.
  • 25. The locking system for a floorboard as claimed in claim 24, wherein the locking strip is detachable from said floorboard by an angular motion in a direction opposite to said inward angling.
  • 26. The locking system for a floorboard as claimed in claim 1, wherein the locking strip and the downward open locking groove are designed for connecting the floorboard with the essentially identical floorboard by at least inward angling.
  • 27. The locking system for a floorboard as claimed in claim 1, wherein the locking strip and the downward open locking groove are designed so that the locking element enters the downward open locking groove from an underside of the essentially identical floorboard.
  • 28. The locking system for a floorboard as claimed in claim 1, wherein lower lips of said floorboard and said essentially identical floorboard in a connected state terminate in spaced-apart relation from each other.
  • 29. The locking system for a floorboard as claimed in claim 1, wherein lower lips of said floorboard and said essentially identical floorboard in a connected state terminate inward from the vertical joint plane in the horizontal direction.
  • 30. The locking system for a floorboard as claimed in claim 1, wherein said locking strip projects past the vertical plane and, in a connected state, projects below a lower lip of said essentially identical floorboard.
  • 31. The locking system for a floorboard as claimed in claim 1, wherein at least one surface of the tongue groove includes said locking strip.
  • 32. The locking system for a floorboard as claimed in claim 31, wherein the at least one surface is a surface of the tongue groove closest to an underside of the floorboard.
  • 33. The locking system for a floorboard as claimed in claim 31, wherein the at least one surface is a surface of the tongue groove that, in a connected state, contacts a lower surface of a tongue arranged on said essentially identical floorboard.
  • 34. The locking system for a floorboard as claimed in claim 31, wherein at least one surface of the tongue groove consists of said locking strip.
  • 35. A method for manufacturing a locking strip and assembling the locking strip with a floorboard, the floorboard including connectors integrated with the floorboard and adapted to connect the floorboard with an essentially identical floorboard, so that upper joint edges of said floorboard and said essentially identical floorboard in a connected state define a vertical plane, said connectors designed to connect said floorboard with said essentially identical floorboard in at least a horizontal direction perpendicular to said vertical plane, said connectors having a locking strip which projects from said vertical plane and carries a locking element which cooperates, in said connected state, with a locking groove which is open at an underside of said essentially identical floorboard, the method comprising: forming the locking strip as a separate part by machining a sheet-shaped material, the locking strip formed for connecting the floorboard with the essentially identical floorboard by at least inward angling of the floorboard relative to the essentially identical floorboard, andmechanically fixing the locking strip to the floorboard in both a horizontal direction and the vertical direction.
  • 36. The method as claimed in claim 35, comprising fixing the locking strip to the floorboard by snapping-in in an essentially horizontal direction.
  • 37. The method as claimed in claim 35, comprising fixing the locking strip to the floorboard by inward angling.
  • 38. The method as claimed in claim 35, comprising inserting the locking strip into a strip groove arranged in an edge portion of said floorboard, such that the locking strip is held in place in said horizontal direction by frictional forces and optionally glue.
  • 39. The method as claimed in claim 35, wherein said locking strip is included in a strip blank comprising at least two essentially identical locking strips, the locking strip being engaged with the floorboard, and said locking strip being separated from said strip blank.
  • 40. A method for manufacturing a locking strip and assembling the locking strip with a floorboard, the floorboard including connectors integrated with the floorboard and adapted to connect the floorboard with an essentially identical floorboard, so that upper joint edges of said floorboard and said essentially identical floorboard in a connected state define a vertical plane, said connectors designed to connect said floorboard with said essentially identical floorboard in at least a horizontal direction perpendicular to said vertical plane, said connectors having a locking strip which projects from said vertical plane and carries a locking element which cooperates, in said connected state, with a downward open locking groove of said essentially identical floorboard, the method comprising the steps of forming the locking strip as a separate part which is arranged on the floorboard,mechanically fixing the locking strip to the floorboard in both a horizontal direction and the vertical direction, andforming the locking strip by machining of a sheet-shaped material, the locking strip formed for connecting the floorboard with the essentially identical floorboard by at least inward angling of the floorboard relative to the essentially identical floorboard,wherein said locking strip is included in a strip blank comprising at least two essentially identical locking strips, the locking strip being engaged with the floorboard, and said locking strip being separated from said strip blank.
  • 41. The method as claimed in claim 40, comprising fixing the locking strip to the floorboard by snapping-in in an essentially horizontal direction.
  • 42. The method as claimed in claim 40, comprising fixing the locking strip to the floorboard by inward angling.
  • 43. The method as claimed in claim 40, comprising inserting the locking strip into a strip groove arranged in an edge portion of said floorboard, such that the locking strip is held in place in said horizontal direction by frictional forces and optionally glue.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of U.S. Provisional Application No. 60/372,092, filed in the U.S. on Apr. 15, 2002, the entire contents of which is herein incorporated by reference.

US Referenced Citations (206)
Number Name Date Kind
213740 Conner Apr 1879 A
714987 Wolfe Dec 1902 A
753791 Fuighum Mar 1904 A
1124228 Houston Jan 1915 A
1194636 Joy Aug 1916 A
1371856 Cade Mar 1921 A
1407679 Ruthrauff Feb 1922 A
1454250 Parsons May 1923 A
1468288 Een Sep 1923 A
1477813 Daniels et al. Dec 1923 A
1510924 Daniels et al. Oct 1924 A
1540128 Houston Jun 1925 A
1575821 Daniels Mar 1926 A
1602256 Sellin Oct 1926 A
1602267 Karwisch Oct 1926 A
1615096 Meyers Jan 1927 A
1622103 Fulton Mar 1927 A
1622104 Fulton Mar 1927 A
1637634 Carter Aug 1927 A
1644710 Crooks Oct 1927 A
1660480 Daniels Feb 1928 A
1714738 Smith May 1929 A
1718702 Pfiester Jun 1929 A
1734826 Pick Nov 1929 A
1764331 Moratz Jun 1930 A
1778069 Fetz Oct 1930 A
1787027 Wasleff Dec 1930 A
1790178 Sutherland, Jr. Jan 1931 A
1823039 Gruner Sep 1931 A
1859667 Gruner May 1932 A
1898364 Gynn Feb 1933 A
1906411 Potvin May 1933 A
1929871 Jones Oct 1933 A
1940377 Storm Dec 1933 A
1953306 Moratz Apr 1934 A
1986739 Mitte Jan 1935 A
1988201 Hall Jan 1935 A
2044216 Klages Jun 1936 A
2266464 Kraft Dec 1941 A
2276071 Scull Mar 1942 A
2324628 Kahr Jul 1943 A
2398632 Frost et al. Apr 1946 A
2430200 Wilson Nov 1947 A
2740167 Rowley Apr 1956 A
2780253 Joa Feb 1957 A
2894292 Gramelspacher Jul 1959 A
2947040 Schultz Aug 1960 A
3045294 Livezey, Jr. Jul 1962 A
3100556 De Ridder Aug 1963 A
3125138 Bolenbach Mar 1964 A
3182769 De Ridder May 1965 A
3200553 Frashour et al. Aug 1965 A
3203149 Soddy Aug 1965 A
3267630 Omholt Aug 1966 A
3282010 King, Jr. Nov 1966 A
3310919 Bue et al. Mar 1967 A
3347048 Brown et al. Oct 1967 A
3387422 Wanzer Jun 1968 A
3460304 Braeuninger et al. Aug 1969 A
3481810 Waite Dec 1969 A
3526420 Brancalcone Sep 1970 A
3538665 Gohner Nov 1970 A
3548559 Levine Dec 1970 A
3553919 Omholt Jan 1971 A
3555762 Costanzo, Jr. Jan 1971 A
3694983 Couquet Oct 1972 A
3714747 Curran Feb 1973 A
3731445 Hoffmann et al. May 1973 A
3759007 Thiele Sep 1973 A
3768846 Hensley et al. Oct 1973 A
3786608 Boettcher Jan 1974 A
3859000 Webster Jan 1975 A
3902293 Witt et al. Sep 1975 A
3908053 Hettich Sep 1975 A
3936551 Elmendorf et al. Feb 1976 A
3988187 Witt et al. Oct 1976 A
4037377 Howell et al. Jul 1977 A
4084996 Wheeler Apr 1978 A
4090338 Bourgade May 1978 A
4099358 Compaan Jul 1978 A
4100710 Kowallik Jul 1978 A
4169688 Toshio Oct 1979 A
4242390 Nemeth Dec 1980 A
4299070 Oltmanns et al. Nov 1981 A
4304083 Anderson Dec 1981 A
4426820 Terbrack et al. Jan 1984 A
4471012 Maxwell Sep 1984 A
4489115 Layman et al. Dec 1984 A
4501102 Knowles Feb 1985 A
4561233 Harter et al. Dec 1985 A
4612074 Smith et al. Sep 1986 A
4612745 Hovde Sep 1986 A
4641469 Wood Feb 1987 A
4643237 Rosa Feb 1987 A
4646494 Saarinen et al. Mar 1987 A
4653242 Ezard Mar 1987 A
4703597 Eggemar Nov 1987 A
4715162 Brightwell Dec 1987 A
4716700 Hagemeyer Jan 1988 A
4738071 Ezard Apr 1988 A
4769963 Meyerson Sep 1988 A
4819932 Trotter, Jr. Apr 1989 A
4831806 Niese et al. May 1989 A
4845907 Meek Jul 1989 A
4905442 Daniels Mar 1990 A
5029425 Bogataj Jul 1991 A
5113632 Hanson May 1992 A
5117603 Weintraub Jun 1992 A
5148850 Urbanick Sep 1992 A
5165816 Parasin Nov 1992 A
5179812 Hill Jan 1993 A
5216861 Meyerson Jun 1993 A
5253464 Nilsen Oct 1993 A
5271564 Smith Dec 1993 A
5295341 Kajiwara Mar 1994 A
5349796 Meyerson Sep 1994 A
5390457 Sjolander Feb 1995 A
5433806 Pasquali et al. Jul 1995 A
5474831 Nystrom Dec 1995 A
5497589 Porter Mar 1996 A
5502939 Zadok et al. Apr 1996 A
5540025 Takehara et al. Jul 1996 A
5567497 Zegler et al. Oct 1996 A
5570554 Searer Nov 1996 A
5597024 Bolyard et al. Jan 1997 A
5618602 Nelson Apr 1997 A
5630304 Austin May 1997 A
5653099 MacKenzie Aug 1997 A
5671575 Wu Sep 1997 A
5695875 Larsson et al. Dec 1997 A
5706621 Pervan Jan 1998 A
5768850 Chen Jun 1998 A
5797237 Finkell, Jr. Aug 1998 A
5823240 Bolyard et al. Oct 1998 A
5827592 Van Gulik et al. Oct 1998 A
5860267 Pervan Jan 1999 A
5899038 Stroppiana May 1999 A
5900099 Sweet et al. May 1999 A
5935668 Smith Aug 1999 A
5943239 Shamblin et al. Aug 1999 A
5968625 Hudson Oct 1999 A
5987839 Hamar et al. Nov 1999 A
6006486 Moriau et al. Dec 1999 A
6023907 Pervan Feb 2000 A
6029416 Andersson Feb 2000 A
6094882 Pervan Aug 2000 A
6101778 Martensson Aug 2000 A
6119423 Costantino Sep 2000 A
6134854 Stanchfield Oct 2000 A
6148884 Bolyard et al. Nov 2000 A
6173548 Hamar et al. Jan 2001 B1
6182410 Pervan Feb 2001 B1
6203653 Seidner Mar 2001 B1
6205639 Pervan Mar 2001 B1
6209278 Tychsen Apr 2001 B1
6216403 Belbeoc'h Apr 2001 B1
6216409 Roy et al. Apr 2001 B1
6247285 Moebus Jun 2001 B1
6254301 Hatch Jul 2001 B1
6314701 Meyerson Nov 2001 B1
6324803 Pervan Dec 2001 B1
6332733 Hamberger et al. Dec 2001 B1
6339908 Chuang Jan 2002 B1
6345481 Nelson Feb 2002 B1
6363677 Chen et al. Apr 2002 B1
6385936 Schneider May 2002 B1
6397547 Martensson Jun 2002 B1
6421970 Martensson et al. Jul 2002 B1
6438919 Knauseder Aug 2002 B1
6446405 Pervan Sep 2002 B1
6490836 Moriau et al. Dec 2002 B1
6505452 Hannig et al. Jan 2003 B1
6510665 Pervan Jan 2003 B1
6516579 Pervan Feb 2003 B1
6532709 Pervan Mar 2003 B1
6536178 Palsson et al. Mar 2003 B1
6606834 Martensson et al. Aug 2003 B1
6672030 Schulte Jan 2004 B1
6684592 Martin Feb 2004 B1
6722809 Hamberger et al. Apr 2004 B1
6729091 Martensson May 2004 B1
6763643 Martensson Jul 2004 B1
20010029720 Pervan Oct 2001 A1
20010034992 Pletzer et al. Nov 2001 A1
20020007608 Pervan Jan 2002 A1
20020014047 Thiers Feb 2002 A1
20020020127 Thiers et al. Feb 2002 A1
20020031646 Chen et al. Mar 2002 A1
20020046528 Pervan et al. Apr 2002 A1
20020069611 Leopolder Jun 2002 A1
20020100231 Miller et al. Aug 2002 A1
20020112433 Pervan Aug 2002 A1
20020178673 Pervan Dec 2002 A1
20020178674 Pervan Dec 2002 A1
20020178682 Pervan Dec 2002 A1
20030009972 Pervan et al. Jan 2003 A1
20030024199 Pervan et al. Feb 2003 A1
20030033777 Thiers et al. Feb 2003 A1
20030033784 Pervan Feb 2003 A1
20030041545 Stanchfield Mar 2003 A1
20030084636 Pervan May 2003 A1
20030115812 Pervan Jun 2003 A1
20030115821 Pervan Jun 2003 A1
20040255541 Thiers et al. Dec 2004 A1
20050034404 Pervan Feb 2005 A1
20050034405 Pervan Feb 2005 A1
Foreign Referenced Citations (183)
Number Date Country
713628 Jan 1998 AU
200020703 Jun 2000 AU
417526 Sep 1936 BE
0557844 Jun 1957 BE
1010339 Jun 1998 BE
1010487 Oct 1998 BE
0991373 Jun 1976 CA
2226286 Dec 1997 CA
2252791 May 1999 CA
2289309 Jul 2000 CA
200949 Jan 1939 CH
211877 Jan 1941 CH
690242 Jun 2000 CH
1 212 275 Mar 1966 DE
7102476 Jan 1971 DE
1 534 278 Nov 1971 DE
2 205 232 Aug 1973 DE
7402354 Jan 1974 DE
2 238 660 Feb 1974 DE
2 252 643 May 1974 DE
2 502 992 Jul 1976 DE
2 616 077 Oct 1977 DE
2 917 025 Nov 1980 DE
30 41781 Jun 1982 DE
32 14 207 Nov 1982 DE
32 46 376 Jun 1984 DE
33 43 601 Jun 1985 DE
35 38 538 Oct 1985 DE
86 04 004 Jun 1986 DE
35 12 204 Oct 1986 DE
35 44 845 Jun 1987 DE
36 31 390 Dec 1987 DE
40 02 547 Aug 1991 DE
41 30 115 Sep 1991 DE
41 34 452 Apr 1993 DE
42 15 273 Nov 1993 DE
42 42 530 Jun 1994 DE
43 13 037 Aug 1994 DE
93 17 191 Mar 1995 DE
296 10 462 Oct 1996 DE
196 01 322 May 1997 DE
296 18 318 May 1997 DE
297 10 175 Sep 1997 DE
196 51 149 Jun 1998 DE
197 09 641 Sep 1998 DE
197 18 319 Nov 1998 DE
197 18 812 Nov 1998 DE
200 01 225 Aug 2000 DE
200 02 744 Sep 2000 DE
199 25 248 Dec 2000 DE
200 13 380 Dec 2000 DE
200 17 461 Mar 2001 DE
200 18 284 Mar 2001 DE
100 01 248 Jul 2001 DE
100 32 204 Jul 2001 DE
100 44 016 Mar 2002 DE
202 05 774 Aug 2002 DE
0 248 127 Dec 1987 EP
0 623 724 Nov 1994 EP
0 652 340 May 1995 EP
0 665 347 Aug 1995 EP
0 690 185 Jan 1996 EP
0 698 162 Feb 1996 EP
0 843 763 May 1998 EP
0 849 416 Jun 1998 EP
0 855 482 Jul 1998 EP
0 877 130 Nov 1998 EP
0 958 441 Nov 1998 EP
0 903 451 Mar 1999 EP
0 969 163 Jan 2000 EP
0 969 163 Jan 2000 EP
0 969 164 Jan 2000 EP
0 969 164 Jan 2000 EP
0 974 713 Jan 2000 EP
0 976 889 Feb 2000 EP
1 048 423 Nov 2000 EP
1 251 219 Jul 2001 EP
1 120 515 Aug 2001 EP
1 146 182 Oct 2001 EP
1 223 265 Jul 2002 EP
1 262 609 Dec 2002 EP
843060 Aug 1984 FI
1 293 043 Apr 1962 FR
1 568 295 Jan 1986 FR
2 630 149 Oct 1989 FR
2 637 932 Apr 1990 FR
2 675 174 Oct 1992 FR
2 691 491 Nov 1993 FR
2 697 275 Apr 1994 FR
2 712 329 May 1995 FR
2 781 513 Jan 2000 FR
2 785 633 May 2000 FR
2 810 060 Dec 2001 FR
240629 Oct 1925 GB
424057 Feb 1935 GB
585205 Jan 1947 GB
599793 Mar 1948 GB
636423 Apr 1950 GB
812671 Apr 1959 GB
1127915 Oct 1968 GB
1171337 Nov 1969 GB
1237744 Jun 1971 GB
1275511 May 1972 GB
1430423 Mar 1976 GB
2117813 Oct 1983 GB
2126106 Mar 1984 GB
2143381 Oct 1991 GB
2256023 Nov 1992 GB
54-65528 May 1979 JP
57-119056 Jul 1982 JP
57-185110 Nov 1982 JP
59-186336 Nov 1984 JP
3-169967 Jul 1991 JP
4-106264 Apr 1992 JP
4-191001 Jul 1992 JP
5-148984 Jun 1993 JP
6-56310 May 1994 JP
6-146553 May 1994 JP
6-320510 Nov 1994 JP
7-076923 Mar 1995 JP
7-180333 Jul 1995 JP
7-300979 Nov 1995 JP
7-310426 Nov 1995 JP
8-109734 Apr 1996 JP
9-38906 Feb 1997 JP
9-88315 Mar 1997 JP
2000 179137 Jun 2000 JP
P2000 226932 Aug 2000 JP
2001 173213 Jun 2001 JP
2001 179710 Jul 2001 JP
2001 254503 Sep 2001 JP
2001 260107 Sep 2001 JP
P2001 329681 Nov 2001 JP
7601773 Aug 1976 NL
157871 Jul 1984 NO
305614 May 1995 NO
24931 Nov 1974 PL
372 051 May 1973 SE
450 141 Jun 1984 SE
501 014 Oct 1994 SE
502 994 Mar 1996 SE
506 254 Nov 1997 SE
509 059 Jun 1998 SE
509 060 Jun 1998 SE
512 290 Dec 1999 SE
512 313 Dec 1999 SE
0000200-6 Jul 2001 SE
363795 Nov 1973 SU
WO 8402155 Jun 1984 WO
WO 8703839 Jul 1987 WO
WO 9217657 Oct 1992 WO
WO 9313280 Jul 1993 WO
WO 9401628 Jan 1994 WO
WO 9426999 Nov 1994 WO
WO 9627719 Sep 1996 WO
WO 9627721 Sep 1996 WO
WO 9630177 Oct 1996 WO
WO 9719232 May 1997 WO
WO 9747834 Dec 1997 WO
WO 9822677 May 1998 WO
WO 9824994 Jun 1998 WO
WO 9824995 Jun 1998 WO
WO 9838401 Sep 1998 WO
WO 9940273 Aug 1999 WO
WO 9966151 Dec 1999 WO
WO 9966152 Dec 1999 WO
WO 0006854 Jan 2000 WO
WO 0020705 Apr 2000 WO
WO 0020706 Apr 2000 WO
WO 0066856 Nov 2000 WO
WO 0102669 Jan 2001 WO
WO 0107729 Feb 2001 WO
0166877 Sep 2001 WO
WO 0166876 Sep 2001 WO
WO 0175247 Oct 2001 WO
WO 0177461 Oct 2001 WO
0198604 Dec 2001 WO
WO 0196688 Dec 2001 WO
WO 0198603 Dec 2001 WO
WO 02060691 Aug 2002 WO
WO 03016654 Feb 2003 WO
WO 03074814 Sep 2003 WO
WO 04083557 Sep 2004 WO
Related Publications (1)
Number Date Country
20040016196 A1 Jan 2004 US
Provisional Applications (1)
Number Date Country
60372092 Apr 2002 US