The invention generally relates to the field of mechanical locking systems for floor panels and building panels. The invention comprises floorboards, locking systems, installation methods and production methods.
The present invention is particularly suitable for use in floating floors, which are formed of floor panels which are joined mechanically with a locking system integrated with the floor panel, i.e. mounted at the factory, and are made up of one or more upper layers of veneer, decorative laminate or decorative plastic material, an intermediate core of wood-fiber-based material or plastic material and preferably a lower balancing layer on the rear side of the core. The following description of prior-art technique, problems of known systems and objects and features of the invention will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular at laminate flooring formed as rectangular floor panels with long and shorts edges intended to be mechanically joined to each other on both long and short edges. The long and short edges are mainly used to simplify the description. The panels could be square.
It should be emphasized that the invention can be used in any floor panel and it could be combined with all types of known locking systems, where the floor panels are intended to be joined using a mechanical locking system connecting the panels in the horizontal and vertical directions on at least two adjacent sides. The invention can thus also be applicable to, for instance, solid wooden floors, parquet floors with a core of wood or wood-fiber-based material and a surface of wood or wood veneer and the like, floors with a printed and preferably also varnished surface, floors with a surface layer of plastic or cork, linoleum, rubber. Even floors with hard surfaces such as stone, tile and similar material are included, and floorings with soft wear layers, for instance, needle felt glued to a board. The invention can also be used for joining building panels which preferably contain a board material for instance wall panels, ceilings, furniture components and similar.
Laminate flooring usually consists of a core of a 6-12 mm fiber board, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material. A laminate surface may consist of melamine impregnated paper. The most common core material is fiberboard with high density and good stability usually called HDF—High Density Fiberboard. Sometimes also MDF—Medium Density Fiberboard—is used as the core.
Traditional laminate floor panels of this type have been joined by means of glued tongue-and-groove joints.
In addition to such traditional floors, floor panels have been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking means, which lock the panels horizontally and vertically. The mechanical locking systems are usually formed by machining the core of the panel. Alternatively, parts of the locking system can be formed of a separate material, for instance aluminum or HDF, which is integrated with the floor panel, i.e., joined with the floor panel in connection with the manufacture thereof.
The main advantages of floating floors with mechanical locking systems are that they are easy to install. They can also easily be taken up again and used once more at a different location.
In the following text, the visible surface of the installed floor panel is called “front side”, while the opposite side of the floor panel, facing the sub floor, is called “rear side”. The edge between the front and rear side is called “joint edge”. By “horizontal plane” is meant a plane, which extends parallel to the outer part of the surface layer. Immediately juxtaposed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane. By “vertical locking” is meant locking parallel to the vertical plane in D1 direction. By “horizontal locking” is meant locking parallel to the horizontal plane in D2 direction. By “first horizontal locking” is meant a horizontal locking perpendicular to the joint edges in D2 direction. By “second horizontal locking is meant a horizontal locking in the horizontal direction along the joint which prevents two panels to slide parallel to each other when they are laying in the same plane and locked both vertically and in the first horizontal direction.
By “locking systems” are meant co acting connecting elements which connect the floor panels vertically and/or horizontally in the first horizontal direction D2. By “mechanical locking system” is meant that joining can take place without glue. Mechanical locking systems can in many cases also be joined by gluing. By “integrated with” means formed in one piece with the panel or factory connected to the panel.
For mechanical joining of long edges as well as short edges in the vertical and in the first horizontal direction (direction D1, D2) several methods could be used. One of the most used methods is the angle-snap method. The long edges are installed by angling. The panel is than displaced in locked position along the long side. The short edges are locked by horizontal snapping. The vertical connection is generally a tongue and a groove. During the horizontal displacement, a strip with a locking element is bent and when the edges are in contact, the strip springs back and a locking element enters a locking groove and locks the panels horizontally. Such a snap connection is complicated since a hammer and a tapping block may need to be used to overcome the friction between the long edges and to bend the strip during the snapping action. The friction on the long side could be reduced and the panels could be displaced without tools. The snapping resistance is however considerable especially in locking systems made in one piece with the core. Wood based materials are generally difficult to bend. Cracks in the panel may occur during snapping. It would be an advantage if the panels could be installed by angling of long edges but without a snap action to lock the short edges. Such a locking could be accomplished with a locking system that locks the long edges in such a way that also displacement along the joint is counteracted.
It is known from Wilson U.S. Pat. No. 2,430,200 that several projections and recesses could be used to prevent displacement along the joint. Such projections and recesses are difficult to produce, the panels can only be locked in well-defined positions against adjacent long edges and they cannot be displaced against each other in angled position against each other when top edges are in contact. Terbrack U.S. Pat. No. 4,426,820 describes a locking system with a tight fit in a panel made of plastic material. The tight fit prevents displacement along the joint. A system with tight fit does not give a safe and reliable locking over time especially if the locking system is made of wood fiber based material, which swells and shrink when the humidity varies over time.
A first overall objective of the present invention is to provide a locking system for primarily rectangular floor panels with long and short edges installed in parallel rows, which allows that the short edges could be locked to each other horizontally by the locking system on the long edges. The costs and functions should be favorable compared to known technology. A part of the overall objective is to improve the function and costs of those parts of the locking system that locks in the horizontal direction along the joint when panels are installed on a sub floor.
More specifically the object is to provide a second horizontal locking system on the long edges, hereafter referred to as “slide lock” where one or several of the following advantages are obtained.
The slide lock on the long edges should be activated when a panel is brought in contact with an already installed panel and then angled down to the sub floor.
The slide lock function should be reliable over time and the panels should be possible to lock and unlock in any position when two adjacent long edges are brought into contact with each other.
The slide lock should be strong and prevent that short edges of two locked panels will separate when humidity is changing or when people walk on a floor.
The slide lock should be possible to lock with high precision and without the use of tools.
The locking system and the slide lock should be designed in such a way that the material and production costs could be low.
A second objective is to provide an installation method for installation of floorboards with a slide lock.
A third objective is to provide a production method for a slide lock system.
The above objects of the invention are achieved wholly or partly by locking systems, floor panels, and installation and production methods according to the independent claim. Embodiments of the invention are evident from the dependent claims and from the description and drawings.
According to a first aspect of the invention, a flooring system is provided comprising a plurality of rectangular floor panels to be installed on a sub floor. The floor panels have long and short edges, which are connectable to each other along one pair of adjacent edges of adjacent panels. The connectable adjacent edges have a mechanical locking system comprising a tongue formed in one piece with the panel and a groove for mechanically locking together said adjacent edges at right angles to the horizontal plane of the panels, thereby forming a vertical mechanical connection between the panels. One pair of adjacent edges has a locking element at one first edge and a locking groove at an opposite second edge thereby forming a first horizontal mechanical connection locking the panels to each other in a direction parallel to the horizontal plane and at right angles to the joint edges. Each panel is at said adjacent edges provided with a second horizontal mechanical connection locking the panels to each other along the joint edges, in a direction parallel to the horizontal plane and parallel to the joint edges, when the panels are laying flat on the sub floor. The second horizontal mechanical connection comprises a plurality of small local protrusions in said mechanical locking system which prevents displacement along the joint edges when the panels are laying flat on the sub floor and are locked with the vertical and the first horizontal connections.
Although it is an advantage to integrate the slide locking system with the panel, the invention does not exclude an embodiment in which parts of the locking system are delivered as separate components to be connected to the panel by the installer prior to installation. Such separate components could be applied in the locking system in order to prevent displacement along the joint when two panels are locked by preferably angling. Displacement could also be prevented and additional strength could be accomplished with a locking system which is pre glued.
It is an advantage if the short edges have a vertical locking preferably with a tongue and a groove. The short edges could however be made without vertical locking especially if the panels are narrow. In such a case long edges will also lock the short edges even in the vertical direction.
The invention is especially suited for use in floor panels, which are difficult to snap for example because they have a core, which is not flexible, or strong enough to form a strong snap locking system. The invention is also suitable for wide floor panels, for example with a width larger than 20 cm, where the high snapping resistance is a major disadvantage during installation, in panels where parts of the locking system on the long edge is made of a material with high friction, such as wood and in locking systems which are produced with tight fit or without play or even with pretension. Especially panels with such pretension where the locking strip is bent in locked position and presses the panels together are very difficult to displace and snap. A locking system that avoids snapping will decrease the installation time of such panels considerably. However, a tight fit and pretension in the locked position could improve the strength of the slide lock. An alternative to small protrusions, in some applications, is to use a high friction core material together with a tight fit between as many adjacent surfaces in the locking system as possible. Even a wood based material might be used if normal shrinking and swelling is reduced.
The invention is also suited to lock parallel rows to each other such that the rows maintain their position after installation. This could be an advantage in floors which are installed in advanced patterns such as tiles or stone reproductions where grout lines or other decorative effect must be aligned accurately or in any other installation where it is an advantage if the floor panels cannot slide after installation.
According to a second aspect of the invention a production method is provided to make a mechanical locking system between two edges of a first and second panel containing a wood fiber based core. According to the invention the locking system is formed at least partly in the core and comprises protrusions formed in the wood based core. The protrusions are at least partly formed by embossing.
According to a third aspect of the invention an installation method to install a floor is provided, comprising a plurality of rectangular floor panels laying in parallel rows on a sub floor with long and short edges which are connectable to each other along one pair of adjacent long edges and one pair of adjacent short edges. The panels have a mechanical locking system comprising a tongue formed in one piece with the panels and groove for mechanically locking together said adjacent long and short edges at right angles to the horizontal plane of the panels, thereby forming a vertical mechanical connection between the panels. The panels have also a locking element at one first long edge and a locking groove at an opposite second long edge which form a first horizontal mechanical connection locking the long edges of the panels to each other in a direction parallel to the horizontal plane and at right angles to the joint edges. Each panel is at said adjacent long edges provided with a second horizontal mechanical connection locking the panels to each other along the joined long edges when the panels are laying flat on the sub floor. The second horizontal mechanical connection comprises small local protrusions in said mechanical locking system on the long edges which prevents displacement along the joint when the panels are laying flat on the sub floor and are locked with the vertical and the first horizontal connections. The method comprises five steps:
To facilitate understanding, several locking systems in the figures are shown schematically. It should be emphasized that improved or different functions can be achieved using combinations of the preferred embodiments. The inventor has tested all known and especially all commercially used locking systems on the market in all type of floor panels, especially laminate and wood floorings and the conclusion is that at least all these known locking systems which have one or more locking elements cooperating with locking grooves could be adjusted to a system with a slide lock which prevents displacement along the adjacent edges. The locking systems described by the drawings could all be locked with angling. The principles of the invention could however also be used in snap systems or in systems which are locked with a vertical folding. The slide lock prevents sliding along the joint after snapping or folding.
The invention does not exclude floor panels with a slide lock on for example a long and/or a short side and floor panels with a angling, snapping or vertical folding lock on short side which locks horizontally and where the slide lock on the long side for example gives additional strength to the short side locking.
The most preferable embodiments are however based on floorboards with a surface layer of laminate or wood, a core of HDF or wood and a locking system on the long edge with a strip extending beyond the upper edge which allows locking by angling combined with a tongue and groove joint on the short edges. The described embodiments are therefore non-restrictive examples based on such floor panels. All embodiments could be used separately or in combinations. Angles, dimensions, rounded parts, spaces between surfaces etc. are only examples and could be adjusted within the basic principles of the invention.
A first preferred embodiment of a floor panel 1, 1′ provided with a slide lock system according to the invention is now described with reference to
The front sides of the panels are essentially positioned in a common horizontal plane HP, and the upper parts of the joint edges abut against each other in a vertical plane VP. The mechanical locking system provides locking of the panels relative to each other in the vertical direction D1 as well as the horizontal direction D2.
To provide joining of the two joint edges in the D1 and D2 directions, the edges of the floor panel 1 have in a manner known per se a locking strip 6 with a locking element 8, and a groove 9 made in one piece with the panel in one joint edge and a tongue 10 made in one piece with the panel at an opposite edge of a similar panel V. The tongue 10 and the groove 9 provide the vertical locking D1.
The mechanical locking system according to an embodiment of the invention comprises a second horizontal locking 16, 17 formed as small local protrusions on the upper part of the strip 6 and on the lower part of the panel V in the edge portion between the tongue 10 and the locking groove 14. When the panels 1, 1′ are locked together in a common plane and are laying flat on the sub floor as shown in
Compression of wood fibers with a wheel could also be used to form parts of the locking system such as the locking grove 14 or the locking element 8 or any other parts. This production method makes it possible to compress fibers and to form parts with smooth surfaces, improved production tolerances and increased density.
The following basic principles to make a slide lock have now been described:
Local protrusions are formed in one piece with the panel material preferably on both adjacent edges and they cooperate with each other in locked position.
A separate material softer than the panel material is applied in the locking system and this material could preferably cooperate with the protrusions which are formed in one piece with the panel.
A separate material harder than the material of the panel is applied in the locking system. Parts of this harder material, which preferably has sharp protrusions or grains, are in locked position pressed into the panel material.
Separate soft and flexible friction material is applied into the locking system with or without protrusions.
All of these principles could be used separately or in combinations and several principles could be used in the same locking system. For example a soft material could be applied on both edges and local protrusions could also be formed on both edges and both local protrusions could cooperate with both soft materials.
It is not necessary that the second and the new panels are held in the same angle since some twisting of the panels may occur or may even be applied to the panels.
The installation method and the locking system according to the embodiments of the invention make it possible to install floor panels in a simple way without tools and without any snap action on the short sides. The locking system could be designed in such a way that the upper part of the locking element keeps the floorboards in an angled position until they are pressed down to the sub floor.
If the short edges do not have a tongue, installation could be made by just angling the floor boards to the sub floor. Even the traditional installation with angling the new panel Fl 3 to the sub floor and thereafter displacing the new panel towards the second panel Fl 2 could be used. The disadvantage is that a hammer and a tapping block should be used to overcome the resistance of the slide lock. This could be done without damaging the slide lock or substantially decreasing the sliding strength since the panels will be pushed upwards into a small angle by the small local protrusions.
It will be apparent to those skilled in the art that various modifications and variations of the present invention can be made without departing from the spirit and scope of the invention. Thus, it is intended that the present invention include the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
The present application is a continuation of U.S. application Ser. No. 14/938,612, filed on Nov. 11, 2015, which is a divisional of U.S. application Ser. No. 14/683,340, filed on Apr. 10, 2015, which is a continuation of U.S. application Ser. No. 14/270,711, filed on May 6, 2014, now U.S. Pat. No. 9,027,306, which is a continuation of U.S. application Ser. No. 13/426,159, filed on Mar. 21, 2012, now U.S. Pat. No. 8,733,065, which is a continuation of U.S. application Ser. No. 11/822,684, filed on Jul. 9, 2007, now U.S. Pat. No. 8,171,692, which is a continuation of U.S. application Ser. No. 10/908,658, filed on May 20, 2005, now U.S. Pat. No. 8,061,104. The entire contents of each of U.S. application Ser. No. 14/938,612, U.S. application Ser. No. 14/683,340, U.S. application Ser. No. 14/270,711, U.S. application Ser. No. 13/426,159, U.S. application Ser. No. 11/822,684, and U.S. application Ser. No. 10/908,658 are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14683340 | Apr 2015 | US |
Child | 14938612 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14938612 | Nov 2015 | US |
Child | 16581990 | US | |
Parent | 14270711 | May 2014 | US |
Child | 14683340 | US | |
Parent | 13426159 | Mar 2012 | US |
Child | 14270711 | US | |
Parent | 11822684 | Jul 2007 | US |
Child | 13426159 | US | |
Parent | 10908658 | May 2005 | US |
Child | 11822684 | US |