The disclosure generally relates to the field of mechanical locking systems for floor panels and building panels. Furthermore, floorboards, locking systems, installation methods and production methods are shown.
Embodiments of the present invention are particularly suitable for use in floating floors, which are formed of floor panels which are joined mechanically with a locking system integrated with the floor panel, i.e. mounted at the factory, are made up of one or more upper layers of veneer, decorative laminate or decorative plastic material, an intermediate core of wood-fibre-based material or plastic material and preferably a lower balancing layer on the rear side of the core. The following description of known technique, problems of known systems and objects and features of the invention will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular at laminate flooring formed as rectangular floor panels with long and shorts edges intended to be mechanically joined to each other on both long and short edges. The long and short edges are mainly used to simplify the description of the invention. The panels may be square. It should be emphasized that the invention may be used in any floor panel and it may be combined with all types of known locking systems, where the floor panels are intended to be joined using a mechanical locking system connecting the panels in the horizontal and vertical directions on at least two adjacent sides. The invention may thus also be applicable to, for instance, powder based floors, solid wooden floors, parquet floors with a core of wood or wood-fibre-based material and a surface of wood or wood veneer and the like, floors with a printed and preferably also varnished surface, floors with a surface layer of plastic or cork, linoleum, rubber. Even floors with hard surfaces such as stone, tile and similar materials are included and floorings with soft wear layer, for instance needle felt glued to a board. The invention may also be used for joining building panels which preferably contain a board material for instance wall panels, ceilings, furniture components and similar.
Laminate flooring usually comprise a core of a 6-12 mm fibre board, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material. A laminate surface may comprise melamine-impregnated paper. The most common core material is fibreboard with high density and good stability usually called HDF—High Density Fibreboard. Sometimes also MDF—Medium Density Fibreboard—is used as core.
Traditional laminate floor panels of this type have been joined by means of glued tongue-and-groove joints.
In addition to such traditional floors, floor panels have been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking means, which lock the panels horizontally and vertically. The mechanical locking systems are usually formed by machining of the core of the panel. Alternatively, parts of the locking system may be formed of a separate material, for instance aluminium or HDF, which is integrated with the floor panel, i.e. joined with the floor panel in connection with the manufacture thereof.
The main advantages of floating floors with mechanical locking systems are that they are easy to install. They may also be disassembled and used once more at a different location. However, there is still a need to improve the locking strength and to reduce the material costs.
In the following text, the visible surface of the installed floor panel is called “front side”, while the opposite side of the floor panel, facing the sub floor, is called “rear side”. The edge between the front and rear side is called “joint edge”. By “horizontal plane” is meant a plane, which extends parallel to the outer part of the surface layer. Immediately juxtaposed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane. By “vertical locking” is meant locking parallel to the vertical plane in D1 direction. By “horizontal locking” is meant locking parallel to the horizontal plane in D2 direction. By “first horizontal locking” is meant a horizontal locking perpendicular to the joint edges in D2 direction. By “second horizontal locking is meant a horizontal locking in the horizontal direction along the joint which prevents two panels to slide parallel to each other when they are laying in the same plane.
By “locking systems” are meant co acting connecting elements, which connect the floor panels vertically and/or horizontally. By “mechanical locking system” is meant that joining may take place without glue. Mechanical locking systems may also be joined by gluing. By “integrated with” means formed in one piece with the panel or factory connected to the panel.
By “up or upward” means toward the surface and by “down or downward” means toward the rear side. By “inwardly” is meant towards the centre of the floorboard and by “outwardly” means in the opposite direction.
By “carving” is meant a method to form a groove or a protrusion on an edge of a panel by carving a part of the edge to its final shape by one or several carving tool configurations comprising several non-rotating and fixed chip-removing surfaces located along the feeding direction.
For mechanical joining of long edges as well as short edges in the vertical and in the first horizontal direction perpendicular to the edges several methods may be used. One of the most used methods is the angle-snap method. The long edges are installed by angling. The panel is then displaced in locked position along the long side. The short edges are locked by horizontal snapping. The vertical connection is generally a tongue and a groove. During the horizontal displacement, a strip with a locking element is bent and when the edges are in contact, the strip springs back and a locking element enters a locking groove and locks the panels horizontally. Such a snap connection is complicated since a hammer and a tapping block may need to be used to overcome the friction between the long edges and to bend the strip during the snapping action.
Similar locking systems may also be produced with a rigid strip and they are connected with an angling-angling method where both short and long edges are angled into a locked position.
Recently new and very efficient locking systems have been introduced with a separate flexible or displaceable integrated tongue on the short edge that allows installation with only an angling action, generally referred to as “vertical folding”. Such a system is described in WO 2006/043893 (Valinge Innovation AB).
Several versions are used on the market as shown in
All such locking systems comprise a horizontal locking, which is accomplished by cooperating hook element in the form of a strip with a locking element cooperating with a locking groove.
Several versions of fold down systems are described in WO 2006/104436, WO 2007/015669, WO 2008/004960, WO 2010/087752 (Valinge Innovation AB) and the entire contents thereof are hereby expressly incorporated by reference and they constitute a part of this description.
Although such systems are very efficient, there is still room for improvements. It is difficult to insert the separate tongue 30 during production into a groove 40 over a strip 6 comprising a locking element 8. The locking groove 14 reduces the strength and the edges may crack. The protruding locking strip with the locking element causes a waste when the edges are machined and such waste may be considerable in wide tile-shaped floorboards.
It is a major advantage if the strip 6 is more compact and shorter and if the locking element 8 and the locking groove 14 are eliminated.
One of the main advantages with the fold down systems is that there is no requirement that the long edges should be displaceable. In fact it is an advantage if the long edges do not slide during angling since a flexible tongue that is used in some systems presses the short edges apart during folding.
WO 2006/043893 describes a fold down system with an essentially horizontal protruding strip that does not have a locking element. Such fold down system has no horizontal connection and the short edges may be locked by for example gluing or nailing to the sub floor. It would be an advantage if such floorboards could be installed in a floating manner.
Such a floating installation may be accomplished according to this disclosure with a locking system that comprises long edges that are locked in a first horizontal direction perpendicular to the edge and in a second horizontal direction along the edge. Long edges that are not displaced after locking will also keep the short edges together and prevent separation.
It is known that a separation of short edges of floor panels may be prevented with increased friction or with projections and spaces between the long edges that will counteract mutual displacements along the edge and consequently prevent the short edges to slide apart.
It is for example known from Wilson U.S. Pat. No. 2,430,200 that several projections and recesses between a tongue and a groove in a mechanical locking system may be used to prevent displacement along the joint. Such projections and recesses are difficult to produce, the panels can only be locked in well-defined positions against adjacent long edges and they cannot be displaced against each other in angled position when top edges are in contact.
Terbrack U.S. Pat. No. 4,426,820 describes an impractical locking system with a perfect fit in a panel made of plastic material. The perfect fit may prevent displacement along the joint.
WO 1994/026999 (Valinge Innovation AB) describes a mechanical locking system that locks vertically and horizontally and where a rubber strip or any other sealing device is applied in the groove or between the flat projection part of the strip and the adjacent panel edge as shown principally in
WO 98/22677 (Golvabia) describes a tongue and groove joint where several different types of materials are used to increase friction in order to prevent the edges from sliding apart perpendicularly to the edge. Example of materials inserted or applied in the tongue and groove joint are flock, strip-shaped bands of rubber, plastic, foamed rubber adhesive coated surfaces in which friction-increasing material is fixed such as sand, plastic or rubber particles. Roughened or coarsened surfaces may also be used.
WO 03/025307 and WO 03/089736 (Valinge Innovation AB) describe that displacement along long edges may be counteracted or prevented by means of high friction, glue, mechanical means etc. and that the short edges may be formed merely with vertical locking means or completely without locking means. WO03/012224 (Valinge Innovation AB) describes that flexible elastic sealing compounds based on acrylic plastics, elastomers of synthetic rubber, polyurethane-based hot-melt adhesives, etc. may be applied between the horizontal locking surfaces in order to compensate moisture movements due to swelling or shrinking. Such elastically material will increase the friction and prevent displacement of long edges along the joint.
Wernersson WO 2004/083557 discloses floor panels with mechanical locking means wherein predetermined surfaces of the edges are provided with splines. There is no disclosure of the geometry of such mechanical locking means, how such splines are formed and on which surfaces they are applied.
WO 2006/123988 (Valinge Innovation AB) describes a panel with a slide locking system comprises a plurality of small local protrusions that prevents displacement along the joint edges when the panels are laying flat on the sub floor. The protrusions may lock against a flexible rubber material at the adjacent panel. The short edges are provided only with a vertical locking comprising a tongue made in one piece with the core. The panels may be locked with vertical folding and the slide lock prevents sliding along the joint after folding. A folding system at the short edges that only locks vertically and which comprise a flexible separate tongue is not described.
These known technologies to prevent displacement along the long edges suffer from several disadvantages. Friction created by pressure and small hard materials is not reliable since swelling and shrinking in wood fibre based panels may change the friction forces, thus the panels may as time goes slide and the short edges separate from each other. Friction material that is applied on surfaces that form active horizontal locking surfaces, such as the locking surfaces of the locking element and the locking groove and upper adjacent joint edges may change the locking geometry and prevent an easy installation.
A first overall objective of the present invention is to provide a locking system for primarily rectangular floor panels with long and short edges installed in parallel rows, which allows that the short edges may be locked to each other with a vertical movement without a horizontal connection and that such horizontal connection is accomplished by the locking system on the long edges comprising a first and second horizontal locking perpendicular to the edges and along the edges.
The invention is based, in part, on the discovery that since displacement of the long edges is not needed in a fold down locking system, there is more freedom to design the long edges locking system.
The costs and functions should be favorable compared to known technology. A part of the overall objective is to improve the function and costs of those parts of the locking system that locks in the second horizontal direction along the joint when panels are installed on a sub floor.
More specifically the object is to provide a second horizontal locking system on the long edges, hereafter referred to as “slide lock” where one or several of the following advantages are obtained.
The slide lock on the long edges should be activated when a panel is brought in contact with an already installed panel and then angled down to the sub floor.
The slide lock function should be reliable over time and the panels should be possible to lock and unlock in any position when two adjacent long edges are brought into contact with each other.
The slide lock should be strong and prevent short edges of two locked panels from separating when humidity changes or when people walk on a floor.
The slide lock should be possible to lock with high precision and without the use of tools.
The locking system and the slide lock should be designed in such a way that the material and production costs are low and that flexible materials may be applied in a safe way without the risk that such separate materials will be included in the active locking surfaces in an uncontrolled way.
The invention is based on a general approach that the locking element and the locking groove at the long edges should be used to accomplish a horizontal locking perpendicular to the edge but also along the edge.
The above objects of the invention are achieved wholly or partly by locking systems, floor panels, and installation and production methods according to the disclosure herein. Embodiments of the invention are evident from the description and drawings.
A first aspect of the invention is a flooring system comprising a plurality of rectangular floor panels with short edges and long edges. The panels are adapted to be installed on a sub floor and connected to each other with a mechanical locking system for locking the panels vertically and horizontally. Said locking system comprising a tongue and a tongue groove for mechanically locking together adjacent edges vertical to the horizontal plane, thereby forming a vertical mechanical connection between the panels. A locking element at a first long edge and a locking groove at an opposite second long edge form a first horizontal mechanical connection between adjacent long edges locking the panels to each other in a direction parallel to the horizontal plane and at right angles to said adjacent long edges. The panels are provided with a short edge locking connection comprising a separate tongue for locking adjacent short edges in a first vertical direction, inserted in a fixation groove at a short edge of a panel. The tongue is preferably at least partly flexible and/or displaceable. The short edge locking connection further comprises a locking strip and a locking cavity for locking adjacent short edges in a second vertical direction. The short edge locking connection is configured to lock the adjacent edges in a vertical direction only. The long edges are provided with a second horizontal mechanical connection locking the panels to each other along said adjacent long edges, in a direction parallel to the horizontal plane and parallel to said adjacent long edges, when the panel are laying flat on the sub floor.
Said second horizontal mechanical connection at the long edges may comprises a locking element and locking groove with two sets of cooperating locking surfaces, wherein a first set is located closer to a vertical plane (VP) and the upper joint edges than a second set.
The two sets of locking surfaces may be inclined such that a lower part of the locking element is larger than an upper part.
The vertical extension of the second set of locking surfaces may be essentially the same or larger than the vertical extension of the first set of locking surfaces.
The long edge locking system may comprises a third set of cooperating locking surfaces located at the outer and lower part of the strip.
There may be a space between the upper part of the locking element and the locking groove.
Said second horizontal mechanical connection may comprise a flexible material which is applied in an essentially vertical groove.
Said second horizontal mechanical connection may comprise a flexible material, which is compressed horizontally in two opposite directions
Said second horizontal mechanical connection may comprise a flexible material, which is located in an essentially vertical groove that is complementary with a wedge shaped locking element.
Said second horizontal mechanical connection may comprise a friction element located on the upper part of the locking element that cooperates with a friction groove.
The friction groove may comprise a flexible material.
Said second horizontal mechanical connection may comprise friction cavities located at the locking element.
Said second horizontal mechanical connection may comprise compressible material that is applied in the locking system at surfaces that do not comprise cooperative active locking surfaces that lock the panels vertically and horizontally.
The short edge locking connection may be locked with a vertical snap action where the separate tongue is displaced in the fixation groove during vertical displacement.
The short edge locking connection may be locked when the separate tongue is displaced in the fixation groove along the short edge.
According to a first preferred embodiment the locking system at the long edges comprises a locking element and locking groove with two sets of cooperating locking surfaces. A first set is located closer to a vertical plane and the upper joint edges than a second set. The locking surfaces are preferably inclined such that a lower part of the locking element is larger than an upper part. It is preferred that there is a space between the upper part of the locking element and the locking groove. Such a space may be used to give more production tolerances. Preferably, the vertical extension of the second set of locking surfaces is essentially the same or larger than the vertical extension of the first set of locking surfaces.
According to a second embodiment of the invention the long edge locking system comprises a flexible material located in a vertical groove that prevents displacement along the edges. The flexible material is preferably located between cooperating surfaces of the locking element and the locking groove.
According to a third embodiment of the invention the long edge locking system comprises at least three sets of cooperative locking surfaces between a locking element located on a strip and a locking groove. The first and the second sets are located in the upper part of the locking element wherein the first set is closer to the upper edges than the second set. The third set is located on the lower and outer part of the strip. This geometry is used to accomplish a strong press fit between the locking element and the locking groove and the panels will be tightly secured to each other such that displacement along the long edges and perpendicular to the short edges will be prevented.
Such a locking system with a press fit may be made much stronger than conventional locking systems with hooks at the short edges.
Said second mechanical connection may comprise a flexible tongue which is inserted in a fixation groove formed in the locking groove.
The above-described locking system at the long edges may also be used just individually to lock one pair of two adjacent edges, preferably the long edges, horizontally perpendicularly to the edges and along the edges. Such a locking system may be used together with many other types of locking systems at the other pair of adjacent edges, preferably the short edges, and may contribute to increase the horizontal locking strength at the short edges considerably. This is especially an advantage in large floors, with a length or width exceeding for example 20 m, and which are for example installed in commercial areas where the load on the floor may be considerable.
A second aspect of the invention is two floor panels provided with a locking system comprising a tongue and a tongue groove for mechanically locking together adjacent edges vertical to the horizontal plane, thereby forming a vertical mechanical connection between the panels. The locking system further comprises a first horizontal mechanical connection between adjacent edges for locking the panels to each other in a direction parallel to the horizontal plane and at right angles to said adjacent edges. The first horizontal mechanical connection comprises a locking element at a first edge and a locking groove at an opposite second edge. The tongue may be a separate tongue, preferably at least partly flexible and/or displaceable, inserted in a fixation groove at an edge of a panel. The locking system further comprises a second horizontal mechanical connection locking the panels to each other along said first and second edge, in a direction parallel to the horizontal plane and parallel to said adjacent edges, when the panels are laying flat on a sub floor.
The locking element and the locking groove preferably comprise two sets of cooperating locking surfaces, wherein a first set is located closer to a vertical plane (VP) and the upper joint edges than a second set.
At least one of the two sets of cooperating locking surfaces may comprise a flexible material. The flexible material may be a flexible tongue inserted in a fixation groove. The fixation groove may be formed in the locking groove.
The two sets of locking surfaces may be inclined such that a lower part of the locking element is larger than an upper part.
The vertical extension of the second set of locking surfaces may be essentially the same or larger than the vertical extension of the first set of locking surfaces.
The locking system may comprise a third set of cooperating locking surfaces located at the outer and lower part of the strip.
There may be a space between the upper part of the locking element and the locking groove.
Said second horizontal mechanical connection may comprise a flexible material, which is applied in an essentially vertical groove, said flexible material is preferably compressed horizontally in two opposite directions. The flexible material may be complementary with a wedge shaped locking element.
Said second horizontal mechanical connection may comprises a friction element located on the upper part of the locking element that cooperates with a friction groove.
The friction groove may comprise a flexible material.
Said second horizontal mechanical connection may comprise friction cavities located at the locking element.
Said second horizontal mechanical connection may comprise compressible material that is applied in the locking system at surfaces that do not comprise cooperative active locking surfaces that lock the panels vertically and horizontally.
The edges may be locked with a vertical snap action where the separate tongue is displaced in the fixation groove during vertical displacement.
The edges may be locked when the separate tongue is displaced in the fixation groove along the short edge.
The disclosure will in the following be described in connection to exemplary embodiments and in greater detail with reference to the appended exemplary drawings, wherein:
To facilitate understanding, several locking systems in the figures are shown schematically. It should be emphasized that improved or different functions may be achieved using combinations of the preferred embodiments.
The inventor has tested all known and especially all commercially used locking systems on the market that are installed with vertical folding in all type of floor panels, especially laminate and wood floorings and the conclusion is that at least all these known locking systems which have one or more locking elements cooperating with locking grooves may be adjusted to a system with a slide lock on the long edges which prevents displacement along the adjacent edges and with fold down locking system on short edges that only locks vertically.
The most preferable embodiments are however based on floorboards with a surface layer of laminate, powder based paper free surfaces or wood surfaces, a core of HDF or wood and a locking system on the long edge with a strip extending beyond the upper edge which allows locking by angling combined with a tongue and groove joint on the short edges comprising a separate tongue which preferably only locks vertically.
All embodiments may be used separately or in combinations. Angles, dimensions, rounded parts, spaces between surfaces, etc. are only examples and may be adjusted within the basic principles of the invention.
Such a locking system may be more cost efficient than convectional fold down systems since there is no need for a protruding strip with a locking element. Softer, thinner and less costly core materials may be used in a locking system that only is used for vertical locking. The horizontal locking may be obtained with a slide lock system at the long edges.
In wood cores, such as plywood or wood lamella core, it is preferred the fibre orientation is mainly perpendicular to the length direction of the edges. Layers in the plywood core may be adapted such that at least one set of cooperation surfaces comprises such fibre orientation that will provide a very high friction and a strong locking along the joint.
Such a locking system with a press fit with or without additional preferably flexible friction increasing materials between the locking element and the locking groove, may be made much stronger than conventional locking systems with hooks at the short edges. A horizontally extending groove 35 may be formed in a wall or the locking groove 14 in order to increase the flexibility of one of the locking surfaces 23 in the third set of locking surfaces. A similar mainly vertical groove 35a may also be formed in the strip 6. The forming may be made with rotating tools or carving tools.
The locking element and the locking groove may be formed in a very precise manner if high precision profiling is used where several tools are positioned at the same tool station such that the upper edge 4 and the locking element are formed at the same time in order to eliminate turning of the panels during machining. The locking groove and the upper edge 5 may be formed in the same way. The locking system may also be formed partly or completely with carving tools that allow forming of more complex geometries with undercuts.
The above described slide lock systems are preferably used on long edges and in combination with a fold down locking system on short edges as shown in
The fixation groove may be formed in the outer part of the strip 6 and it is also possible the replace the flexible tongue 30 with a sharp nail made of for example plastic or metal, preferably aluminium.
All described embodiments may be combined. The slide lock system may also be combined with a conventional one piece tongue 10 and groove 9 system on the short edges. The flexible tongue may be designed such that it allows some displacement especially if a hammer and a tapping block is used. Two panels may also be connected with the short edges partly or completely and may thereafter be angled into a locked position at long edges.
The fixation groove may extend along the whole length or may be a local groove with a length that may be slightly longer than the length of the flexible tongue 30.
The slide lock system may also be used independently to lock panels at one pair of opposite edges and may be combined with any type of locking system at another pair of edges, preferably short edges. The slide lock system may be used to improve the overall locking of the panels and to increase the locking strengths at another pair of edges. This may be an advantage in thin panels or soft core material such as for example PVC where it is difficult to form large locking element. It is also suitable for narrow panels where the length of the locking element is rather small. Material savings may be obtained in for example a lamella core wood material where a separate, stronger and more expensive material usually is used at the short edges to form the strip and the locking element.
The panels are installed such that a long edge 2″ of a new panel in a second row is put at an angle against a long edge 2 of a first panel installed in a previous row and displaced until its short edge 1′ is in contact with a short edge 1 of a second panel installed in the second row. The new panel is angled down whereby the flexible tongue 30 locks the short edges 1,1′ vertically. The long edges comprise a locking system with a friction connection that prevents displacement of the panels along the long edges 2,2′,2″.
The long edge locking along the edge may be accomplished with a tight fit, with high friction or with all known methods to prevent displacement along the joint.
Wood floor with a lamella core that generally has a rough surface may be formed with a locking system with tight fit and with rather large cooperating locking surfaces. No flexible materials are needed to obtain sufficient friction. Such long side locking system is extremely difficult to displace, especially when the floor boards are long, for example 1.8-2.4 m and the friction force is generally sufficient to accomplish a locking which keeps the short edges together during the lifetime of the floor. Only a few small flexible tongues 30 may be provided at the long edges in order to give the necessary extra locking that may be needed in some applications and in very dry conditions when the wood material shrinks.
The locking strength of the slide lock may be increased considerably with a locking strip that is slightly bended and that causes a permanent vertical pressure as shown in
Wedge shaped locking elements 8 that are pressed into a cooperating locking groove 14 as shown in
A flexing groove 34, 34′ may be formed in the locking element 8 and/or behind the locking groove 14 in order to increase the flexibility of the walls of the locking element 8 or the locking groove 14. Such flexing groove may also be filled with a flexible material that increases the flexibility further.
A wedge shaped locking element as described above may be used to position the upper edges with a small play of for example of about 0.01-0.10 mm. Such a play will allow the top edges to swell and damages on the upper edges or squeaking sound will be eliminated. Such locking system is also very suitable to use in glue down floor installations or in combination with bevels between the upper joint edges.
The above-described embodiment may of course be combined with friction cavities 18 and flexible material 16 may be inserted between the locking element and the locking groove
The locking system may be formed with two or more sets of locking elements and locking grooves in order to increase the friction. Small friction grooves 23 parallel with the joint edge may also increase the friction.
Glue or wax that cures after some time is also possible to use and may eliminate problems with shrinking and swelling of a pre tensioned locking system. Wax mixed with aluminium oxide particles, which are applied in the locking system, increases the friction considerably.
The long edge locking system may be used with all known vertical folding systems that lock the short edges vertically and horizontally.
The separate tongues are generally factory connected into an edge. Separate lose tongues that are inserted prior to folding or when two short edges are laying flat on the sub floor are not excluded.
The long edge locking system may be formed such that it is displaceable in an angle of 3-5 degrees. This facilitates installation around doors and similar.
The invention has been described above by way of example only and the skilled person will appreciate that various modifications may be made within the scope of the invention as defined by the appended claims.
This application is a continuation of U.S. application Ser. No. 15/603,913, filed on May 24, 2017, which is a continuation of U.S. application Ser. No. 13/544,281, filed on Jul. 9, 2012, now U.S. Pat. No. 9,725,912, which claims benefit of Provisional Application No. 61/506,282, filed Jul. 11, 2011. The entire contents of each of U.S. application Ser. No. 15/603,913, U.S. application Ser. No. 13/544,281 and Provisional Application No. 61/506,282 are hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
87853 | Kappes | Mar 1869 | A |
108068 | Utley | Oct 1870 | A |
124228 | Stuart | Mar 1872 | A |
213740 | Conner | Apr 1879 | A |
274354 | McCarthy et al. | Mar 1883 | A |
316176 | Ransom | Apr 1885 | A |
634581 | Miller | Oct 1899 | A |
861911 | Stewart | Jul 1907 | A |
1194636 | Joy | Aug 1916 | A |
1723306 | Sipe | Aug 1929 | A |
1743492 | Sipe | Jan 1930 | A |
1809393 | Rockwell | Jun 1931 | A |
1902716 | Newton | Mar 1933 | A |
2026511 | Storm | Dec 1935 | A |
2027292 | Rockwell | Jan 1936 | A |
2110728 | Hoggatt | Mar 1938 | A |
2142305 | Davis | Jan 1939 | A |
2204675 | Grunert | Jun 1940 | A |
2266464 | Kraft | Dec 1941 | A |
2277758 | Hawkins | Mar 1942 | A |
2430200 | Wilson | Nov 1947 | A |
2596280 | Nystrom | May 1952 | A |
2732706 | Friedman | Jan 1956 | A |
2740167 | Rowley | Apr 1956 | A |
2858584 | Gaines | Nov 1958 | A |
2863185 | Riedi | Dec 1958 | A |
2865058 | Andersson | Dec 1958 | A |
2889016 | Warren | Jun 1959 | A |
3023681 | Worson | Mar 1962 | A |
3077703 | Bergstrom | Feb 1963 | A |
3099110 | Spaight | Jul 1963 | A |
3147522 | Schumm | Sep 1964 | A |
3172237 | Bradley | Mar 1965 | A |
3187612 | Hervey | Jun 1965 | A |
3271787 | Clary | Sep 1966 | A |
3276797 | Humes, Jr. | Oct 1966 | A |
3308588 | Von Wedel | Mar 1967 | A |
3325585 | Brenneman | Jun 1967 | A |
3331180 | Vissing et al. | Jul 1967 | A |
3378958 | Parks et al. | Apr 1968 | A |
3396640 | Fujihara | Aug 1968 | A |
3512324 | Reed | May 1970 | A |
3517927 | Kennel | Jun 1970 | A |
3526071 | Watanabe | Sep 1970 | A |
3535844 | Glaros | Oct 1970 | A |
3572224 | Perry | Mar 1971 | A |
3579941 | Tibbals | May 1971 | A |
3626822 | Koster | Dec 1971 | A |
3640191 | Hendrich | Feb 1972 | A |
3694983 | Couquet | Oct 1972 | A |
3720027 | Christensen | Mar 1973 | A |
3722379 | Koester | Mar 1973 | A |
3731445 | Hoffmann et al. | May 1973 | A |
3742669 | Mansfeld | Jul 1973 | A |
3760547 | Brenneman | Sep 1973 | A |
3760548 | Sauer et al. | Sep 1973 | A |
3764767 | Randolph | Oct 1973 | A |
3778954 | Meserole | Dec 1973 | A |
3849235 | Gwynne | Nov 1974 | A |
3919820 | Green | Nov 1975 | A |
3950915 | Cole | Apr 1976 | A |
3994609 | Puccio | Nov 1976 | A |
4007767 | Colledge | Feb 1977 | A |
4007994 | Brown | Feb 1977 | A |
4030852 | Hein | Jun 1977 | A |
4037377 | Howell et al. | Jul 1977 | A |
4041665 | de Munck | Aug 1977 | A |
4064571 | Phipps | Dec 1977 | A |
4080086 | Watson | Mar 1978 | A |
4082129 | Morelock | Apr 1978 | A |
4100710 | Kowallik | Jul 1978 | A |
4104840 | Heintz et al. | Aug 1978 | A |
4107892 | Bellem | Aug 1978 | A |
4113399 | Hansen, Sr. et al. | Sep 1978 | A |
4154041 | Namy | May 1979 | A |
4169688 | Toshio | Oct 1979 | A |
RE30154 | Jarvis | Nov 1979 | E |
4196554 | Anderson | Apr 1980 | A |
4227430 | Janssen et al. | Oct 1980 | A |
4299070 | Oltmanns | Nov 1981 | A |
4304083 | Anderson | Dec 1981 | A |
4426820 | Terbrack | Jan 1984 | A |
4447172 | Galbreath | May 1984 | A |
4512131 | Laramore | Apr 1985 | A |
4599841 | Haid | Jul 1986 | A |
4622784 | Black | Nov 1986 | A |
4648165 | Whitehorne | Mar 1987 | A |
4819932 | Trotter, Jr. | Apr 1989 | A |
4948716 | Mihayashi et al. | Aug 1990 | A |
4998395 | Bezner | Mar 1991 | A |
5007222 | Raymond | Apr 1991 | A |
5026112 | Rice | Jun 1991 | A |
5071282 | Brown | Dec 1991 | A |
5135597 | Barker | Aug 1992 | A |
5148850 | Urbanick | Sep 1992 | A |
5173012 | Ortwein et al. | Dec 1992 | A |
5182892 | Chase | Feb 1993 | A |
5247773 | Weir | Sep 1993 | A |
5272850 | Mysliwiec et al. | Dec 1993 | A |
5274979 | Tsai | Jan 1994 | A |
5281055 | Neitzke et al. | Jan 1994 | A |
5293728 | Christopher et al. | Mar 1994 | A |
5295341 | Kajiwara | Mar 1994 | A |
5344700 | McGath et al. | Sep 1994 | A |
5348778 | Knipp et al. | Sep 1994 | A |
5373674 | Winter, IV | Dec 1994 | A |
5465546 | Buse | Nov 1995 | A |
5485702 | Sholton | Jan 1996 | A |
5502939 | Zadok et al. | Apr 1996 | A |
5548937 | Shimonohara | Aug 1996 | A |
5577357 | Civelli | Nov 1996 | A |
5587218 | Betz | Dec 1996 | A |
5598682 | Haughian | Feb 1997 | A |
5616389 | Blatz | Apr 1997 | A |
5618602 | Nelson | Apr 1997 | A |
5634309 | Polen | Jun 1997 | A |
5658086 | Brokaw et al. | Aug 1997 | A |
5694730 | Del Rincon et al. | Dec 1997 | A |
5755068 | Ormiston | May 1998 | A |
5860267 | Pervan | Jan 1999 | A |
5899038 | Stroppiana | May 1999 | A |
5910084 | Koike | Jun 1999 | A |
5950389 | Porter | Sep 1999 | A |
5970675 | Schray | Oct 1999 | A |
6006486 | Moriau | Dec 1999 | A |
6029416 | Andersson | Feb 2000 | A |
6052960 | Yonemura | Apr 2000 | A |
6065262 | Motta | May 2000 | A |
6098354 | Skandis | Aug 2000 | A |
6122879 | Montes | Sep 2000 | A |
6134854 | Stanchfield | Oct 2000 | A |
6145261 | Godfrey et al. | Nov 2000 | A |
6164618 | Yonemura | Dec 2000 | A |
6173548 | Hamar et al. | Jan 2001 | B1 |
6182410 | Pervan | Feb 2001 | B1 |
6203653 | Seidner | Mar 2001 | B1 |
6210512 | Jones | Apr 2001 | B1 |
6254301 | Hatch | Jul 2001 | B1 |
6295779 | Canfield | Oct 2001 | B1 |
6314701 | Meyerson | Nov 2001 | B1 |
6324796 | Heath | Dec 2001 | B1 |
6324809 | Nelson | Dec 2001 | B1 |
6332733 | Hamberger | Dec 2001 | B1 |
6339908 | Chuang | Jan 2002 | B1 |
6345481 | Nelson | Feb 2002 | B1 |
6358352 | Schmidt | Mar 2002 | B1 |
6363677 | Chen et al. | Apr 2002 | B1 |
6385936 | Schneider | May 2002 | B1 |
6418683 | Martensson et al. | Jul 2002 | B1 |
6446413 | Gruber | Sep 2002 | B1 |
6449918 | Nelson | Sep 2002 | B1 |
6450235 | Lee | Sep 2002 | B1 |
6490836 | Moriau et al. | Dec 2002 | B1 |
6505452 | Hannig | Jan 2003 | B1 |
6546691 | Leopolder | Apr 2003 | B2 |
6553724 | Bigler | Apr 2003 | B1 |
6576079 | Kai | Jun 2003 | B1 |
6584747 | Kettler et al. | Jul 2003 | B2 |
6588166 | Martensson | Jul 2003 | B2 |
6591568 | Pålsson | Jul 2003 | B1 |
6601359 | Olofsson | Aug 2003 | B2 |
6617009 | Chen et al. | Sep 2003 | B1 |
6647689 | Pletzer et al. | Nov 2003 | B2 |
6647690 | Martensson | Nov 2003 | B1 |
6651400 | Murphy | Nov 2003 | B1 |
6670019 | Andersson | Dec 2003 | B2 |
6672030 | Schulte | Jan 2004 | B2 |
6681820 | Olofsson | Jan 2004 | B2 |
6682254 | Olofsson et al. | Jan 2004 | B1 |
6684592 | Martin | Feb 2004 | B2 |
6685391 | Gideon | Feb 2004 | B1 |
6729091 | Martensson | May 2004 | B1 |
6763643 | Martensson | Jul 2004 | B1 |
6766622 | Thiers | Jul 2004 | B1 |
6769219 | Schwitte et al. | Aug 2004 | B2 |
6769835 | Stridsman | Aug 2004 | B2 |
6802166 | Gerhard | Oct 2004 | B1 |
6804926 | Eisermann | Oct 2004 | B1 |
6808777 | Andersson et al. | Oct 2004 | B2 |
6854235 | Martensson | Feb 2005 | B2 |
6862857 | Tychsen | Mar 2005 | B2 |
6865855 | Knauseder | Mar 2005 | B2 |
6874291 | Weber | Apr 2005 | B1 |
6880307 | Schwitte et al. | Apr 2005 | B2 |
6948716 | Drouin | Sep 2005 | B2 |
7021019 | Knauseder | Apr 2006 | B2 |
7040068 | Moriau et al. | May 2006 | B2 |
7051486 | Pervan | May 2006 | B2 |
7108031 | Secrest | Sep 2006 | B1 |
7121058 | Pålsson | Oct 2006 | B2 |
7152383 | Wilkinson et al. | Dec 2006 | B1 |
7156383 | Jacobs | Jan 2007 | B1 |
7188456 | Knauseder | Mar 2007 | B2 |
7219392 | Mullet et al. | May 2007 | B2 |
7251916 | Konzelmann et al. | Aug 2007 | B2 |
7257926 | Kirby | Aug 2007 | B1 |
7337588 | Moebus | Mar 2008 | B1 |
7377081 | Ruhdorfer | May 2008 | B2 |
7380383 | Olofsson et al. | Jun 2008 | B2 |
7441384 | Miller et al. | Oct 2008 | B2 |
7451578 | Hannig | Nov 2008 | B2 |
7454875 | Pervan et al. | Nov 2008 | B2 |
7516588 | Pervan | Apr 2009 | B2 |
7517427 | Sjoberg et al. | Apr 2009 | B2 |
7520092 | Showers et al. | Apr 2009 | B2 |
7533500 | Morton et al. | May 2009 | B2 |
7556849 | Thompson et al. | Jul 2009 | B2 |
7568322 | Pervan | Aug 2009 | B2 |
7584583 | Bergelin et al. | Sep 2009 | B2 |
7591116 | Thiers et al. | Sep 2009 | B2 |
7614197 | Nelson | Nov 2009 | B2 |
7617651 | Grafenauer | Nov 2009 | B2 |
7621092 | Groeke et al. | Nov 2009 | B2 |
7621094 | Moriau et al. | Nov 2009 | B2 |
7634884 | Pervan | Dec 2009 | B2 |
7637068 | Pervan | Dec 2009 | B2 |
7644553 | Knauseder | Jan 2010 | B2 |
7654055 | Ricker | Feb 2010 | B2 |
7677005 | Pervan | Mar 2010 | B2 |
7716889 | Pervan | May 2010 | B2 |
7721503 | Pervan et al. | May 2010 | B2 |
7726088 | Muehlebach | Jun 2010 | B2 |
7748176 | Harding et al. | Jul 2010 | B2 |
7757452 | Pervan | Jul 2010 | B2 |
7802411 | Pervan | Sep 2010 | B2 |
7806624 | McLean et al. | Oct 2010 | B2 |
7827749 | Groeke et al. | Nov 2010 | B2 |
7841144 | Pervan et al. | Nov 2010 | B2 |
7841145 | Pervan et al. | Nov 2010 | B2 |
7841150 | Pervan | Nov 2010 | B2 |
7849642 | Forster et al. | Dec 2010 | B2 |
7856789 | Eisermann | Dec 2010 | B2 |
7861482 | Pervan et al. | Jan 2011 | B2 |
7866110 | Pervan | Jan 2011 | B2 |
7896571 | Hannig et al. | Mar 2011 | B1 |
7900416 | Yokubison et al. | Mar 2011 | B1 |
7908815 | Pervan et al. | Mar 2011 | B2 |
7908816 | Grafenauer | Mar 2011 | B2 |
7913471 | Pervan | Mar 2011 | B2 |
7930862 | Bergelin et al. | Apr 2011 | B2 |
7954295 | Pervan | Jun 2011 | B2 |
7964133 | Cappelle | Jun 2011 | B2 |
7980039 | Groeke | Jul 2011 | B2 |
7980041 | Pervan | Jul 2011 | B2 |
8001741 | Duernberger | Aug 2011 | B2 |
8006458 | Olofsson et al. | Aug 2011 | B1 |
8033074 | Pervan | Oct 2011 | B2 |
8042311 | Pervan | Oct 2011 | B2 |
8061104 | Pervan | Nov 2011 | B2 |
8079196 | Pervan | Dec 2011 | B2 |
8112967 | Pervan et al. | Feb 2012 | B2 |
8171692 | Pervan | May 2012 | B2 |
8181416 | Pervan et al. | May 2012 | B2 |
8191334 | Braun | Jun 2012 | B2 |
8220217 | Muehlebach | Jul 2012 | B2 |
8234830 | Pervan et al. | Aug 2012 | B2 |
8245478 | Bergelin | Aug 2012 | B2 |
8281549 | Du | Oct 2012 | B2 |
8302367 | Schulte | Nov 2012 | B2 |
8336272 | Prager et al. | Dec 2012 | B2 |
8341914 | Pervan et al. | Jan 2013 | B2 |
8341915 | Pervan et al. | Jan 2013 | B2 |
8353140 | Pervan et al. | Jan 2013 | B2 |
8359794 | Biro et al. | Jan 2013 | B2 |
8359805 | Pervan et al. | Jan 2013 | B2 |
8365499 | Nilsson et al. | Feb 2013 | B2 |
8375673 | Evjen | Feb 2013 | B2 |
8381476 | Hannig | Feb 2013 | B2 |
8381477 | Pervan et al. | Feb 2013 | B2 |
8387327 | Pervan | Mar 2013 | B2 |
8448402 | Pervan et al. | May 2013 | B2 |
8499521 | Pervan et al. | Aug 2013 | B2 |
8505257 | Boo et al. | Aug 2013 | B2 |
8511031 | Bergelin et al. | Aug 2013 | B2 |
8522505 | Beach | Sep 2013 | B2 |
8528289 | Pervan et al. | Sep 2013 | B2 |
8544230 | Pervan | Oct 2013 | B2 |
8544232 | Wybo | Oct 2013 | B2 |
8544233 | Pålsson | Oct 2013 | B2 |
8544234 | Pervan et al. | Oct 2013 | B2 |
8572922 | Pervan | Nov 2013 | B2 |
8578675 | Palsson et al. | Nov 2013 | B2 |
8590250 | Oh | Nov 2013 | B2 |
8596013 | Boo | Dec 2013 | B2 |
8615952 | Engström | Dec 2013 | B2 |
8621814 | Cappelle | Jan 2014 | B2 |
8627862 | Pervan et al. | Jan 2014 | B2 |
8631623 | Engström | Jan 2014 | B2 |
8635829 | Schulte | Jan 2014 | B2 |
8640418 | Paetrow et al. | Feb 2014 | B2 |
8640424 | Pervan et al. | Feb 2014 | B2 |
8650826 | Pervan et al. | Feb 2014 | B2 |
8677714 | Pervan | Mar 2014 | B2 |
8689512 | Pervan | Apr 2014 | B2 |
8701368 | Vermeulen | Apr 2014 | B2 |
8707650 | Pervan | Apr 2014 | B2 |
8713886 | Boo et al. | May 2014 | B2 |
8733065 | Pervan | May 2014 | B2 |
8733410 | Pervan | May 2014 | B2 |
8763341 | Pervan | Jul 2014 | B2 |
8769905 | Pervan | Jul 2014 | B2 |
8776473 | Pervan et al. | Jul 2014 | B2 |
8806832 | Kell | Aug 2014 | B2 |
8833026 | Devos et al. | Sep 2014 | B2 |
8844236 | Pervan et al. | Sep 2014 | B2 |
8857126 | Pervan et al. | Oct 2014 | B2 |
8869485 | Pervan | Oct 2014 | B2 |
8887468 | Hakansson et al. | Nov 2014 | B2 |
8898988 | Pervan | Dec 2014 | B2 |
8925274 | Pervan et al. | Jan 2015 | B2 |
8938929 | Engström | Jan 2015 | B2 |
8959866 | Pervan | Feb 2015 | B2 |
8973331 | Boo | Mar 2015 | B2 |
8991055 | Cappelle | Mar 2015 | B2 |
8997423 | Mann | Apr 2015 | B2 |
8997430 | Vermeulen et al. | Apr 2015 | B1 |
9027306 | Pervan | May 2015 | B2 |
9051738 | Pervan et al. | Jun 2015 | B2 |
9068360 | Pervan | Jun 2015 | B2 |
9080329 | Döhring | Jul 2015 | B2 |
9091077 | Boo | Jul 2015 | B2 |
9103126 | Kell | Aug 2015 | B2 |
9103128 | Pomberger | Aug 2015 | B2 |
9151062 | Cappelle et al. | Oct 2015 | B2 |
9181697 | Masanek, Jr. et al. | Nov 2015 | B2 |
9194134 | Nygren et al. | Nov 2015 | B2 |
9206611 | Vermeulen et al. | Dec 2015 | B2 |
9212492 | Pervan et al. | Dec 2015 | B2 |
9216541 | Boo et al. | Dec 2015 | B2 |
9238917 | Pervan et al. | Jan 2016 | B2 |
9284737 | Pervan et al. | Mar 2016 | B2 |
9290948 | Capelle | Mar 2016 | B2 |
9309679 | Pervan et al. | Apr 2016 | B2 |
9316002 | Boo | Apr 2016 | B2 |
9340974 | Pervan et al. | May 2016 | B2 |
9347227 | Ramachandra et al. | May 2016 | B2 |
9347469 | Pervan | May 2016 | B2 |
9359774 | Pervan | Jun 2016 | B2 |
9366034 | Meirlaen et al. | Jun 2016 | B2 |
9366036 | Pervan | Jun 2016 | B2 |
9371654 | Capelle | Jun 2016 | B2 |
9376821 | Pervan et al. | Jun 2016 | B2 |
9382716 | Pervan et al. | Jul 2016 | B2 |
9388584 | Pervan et al. | Jul 2016 | B2 |
9428919 | Pervan et al. | Aug 2016 | B2 |
9453347 | Pervan et al. | Sep 2016 | B2 |
9458634 | Derelov | Oct 2016 | B2 |
9476202 | Clancy et al. | Oct 2016 | B2 |
9482012 | Nygren et al. | Nov 2016 | B2 |
9540825 | Ramachandra | Jan 2017 | B2 |
9540826 | Pervan et al. | Jan 2017 | B2 |
9663940 | Boo | May 2017 | B2 |
9725912 | Pervan | Aug 2017 | B2 |
9771723 | Pervan | Sep 2017 | B2 |
9777487 | Pervan et al. | Oct 2017 | B2 |
9803374 | Pervan | Oct 2017 | B2 |
9803375 | Pervan | Oct 2017 | B2 |
9822533 | Huang | Nov 2017 | B2 |
9856656 | Pervan | Jan 2018 | B2 |
9874027 | Pervan | Jan 2018 | B2 |
9945130 | Nygren et al. | Apr 2018 | B2 |
9951526 | Boo et al. | Apr 2018 | B2 |
10000935 | Kell | Jun 2018 | B2 |
10006210 | Pervan et al. | Jun 2018 | B2 |
10017948 | Boo | Jul 2018 | B2 |
10113319 | Pervan | Oct 2018 | B2 |
10125488 | Boo | Nov 2018 | B2 |
10138636 | Pervan | Nov 2018 | B2 |
10161139 | Pervan | Dec 2018 | B2 |
10180005 | Pervan et al. | Jan 2019 | B2 |
10214915 | Pervan et al. | Feb 2019 | B2 |
10214917 | Pervan et al. | Feb 2019 | B2 |
10240348 | Pervan et al. | Mar 2019 | B2 |
10240349 | Pervan et al. | Mar 2019 | B2 |
10246883 | Derelöv | Apr 2019 | B2 |
10352049 | Boo | Jul 2019 | B2 |
10358830 | Pervan | Jul 2019 | B2 |
10378217 | Pervan | Aug 2019 | B2 |
10458125 | Pervan | Oct 2019 | B2 |
10480196 | Boo | Nov 2019 | B2 |
10519676 | Pervan | Dec 2019 | B2 |
10526792 | Pervan et al. | Jan 2020 | B2 |
10538922 | Pervan | Jan 2020 | B2 |
10570625 | Pervan | Feb 2020 | B2 |
10640989 | Pervan | May 2020 | B2 |
10655339 | Pervan | May 2020 | B2 |
10669723 | Pervan et al. | Jun 2020 | B2 |
10724251 | Kell | Jul 2020 | B2 |
10731358 | Pervan | Aug 2020 | B2 |
10794065 | Boo et al. | Oct 2020 | B2 |
10828798 | Fransson | Nov 2020 | B2 |
20010024707 | Andersson et al. | Sep 2001 | A1 |
20010034991 | Martensson | Nov 2001 | A1 |
20010045150 | Owens | Nov 2001 | A1 |
20020014047 | Thiers | Feb 2002 | A1 |
20020031646 | Chen et al. | Mar 2002 | A1 |
20020069611 | Leopolder | Jun 2002 | A1 |
20020092263 | Schulte | Jul 2002 | A1 |
20020095894 | Pervan | Jul 2002 | A1 |
20020108343 | Knauseder | Aug 2002 | A1 |
20020170258 | Schwitte et al. | Nov 2002 | A1 |
20020170259 | Ferris | Nov 2002 | A1 |
20020178674 | Pervan | Dec 2002 | A1 |
20020178680 | Martensson | Dec 2002 | A1 |
20020189190 | Charmat et al. | Dec 2002 | A1 |
20020189747 | Steinwender | Dec 2002 | A1 |
20020194807 | Nelson et al. | Dec 2002 | A1 |
20030009971 | Palmberg | Jan 2003 | A1 |
20030024199 | Pervan et al. | Feb 2003 | A1 |
20030037504 | Schwitte et al. | Feb 2003 | A1 |
20030066588 | Pålsson | Apr 2003 | A1 |
20030084636 | Pervan | May 2003 | A1 |
20030094230 | Sjoberg | May 2003 | A1 |
20030101674 | Pervan | Jun 2003 | A1 |
20030101681 | Tychsen | Jun 2003 | A1 |
20030145549 | Palsson et al. | Aug 2003 | A1 |
20030180091 | Stridsman | Sep 2003 | A1 |
20030188504 | Ralf | Oct 2003 | A1 |
20030196405 | Pervan | Oct 2003 | A1 |
20040016196 | Pervan | Jan 2004 | A1 |
20040031225 | Fowler | Feb 2004 | A1 |
20040031227 | Knauseder | Feb 2004 | A1 |
20040049999 | Krieger | Mar 2004 | A1 |
20040060255 | Knauseder | Apr 2004 | A1 |
20040068954 | Martensson | Apr 2004 | A1 |
20040123548 | Gimpel et al. | Jul 2004 | A1 |
20040128934 | Hecht | Jul 2004 | A1 |
20040137180 | Sjoberg et al. | Jul 2004 | A1 |
20040139676 | Knauseder | Jul 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040159066 | Thiers et al. | Aug 2004 | A1 |
20040168392 | Konzelmann et al. | Sep 2004 | A1 |
20040177584 | Pervan | Sep 2004 | A1 |
20040182033 | Wernersson | Sep 2004 | A1 |
20040182036 | Sjoberg | Sep 2004 | A1 |
20040200175 | Weber | Oct 2004 | A1 |
20040211143 | Hanning | Oct 2004 | A1 |
20040238001 | Risden | Dec 2004 | A1 |
20040244325 | Nelson | Dec 2004 | A1 |
20040250492 | Becker | Dec 2004 | A1 |
20040261348 | Vulin | Dec 2004 | A1 |
20050003132 | Blix et al. | Jan 2005 | A1 |
20050028474 | Kim | Feb 2005 | A1 |
20050050827 | Schitter | Mar 2005 | A1 |
20050160694 | Pervan | Jul 2005 | A1 |
20050166514 | Pervan | Aug 2005 | A1 |
20050183370 | Cripps | Aug 2005 | A1 |
20050205161 | Lewark | Sep 2005 | A1 |
20050210810 | Pervan | Sep 2005 | A1 |
20050235593 | Hecht | Oct 2005 | A1 |
20050252130 | Martensson | Nov 2005 | A1 |
20050252167 | Van Horne, Jr. | Nov 2005 | A1 |
20050268570 | Pervan | Dec 2005 | A2 |
20060053724 | Braun et al. | Mar 2006 | A1 |
20060070333 | Pervan | Apr 2006 | A1 |
20060101769 | Pervan | May 2006 | A1 |
20060156670 | Knauseder | Jul 2006 | A1 |
20060174577 | O'Neil | Aug 2006 | A1 |
20060179754 | Yang | Aug 2006 | A1 |
20060185287 | Glazer et al. | Aug 2006 | A1 |
20060236642 | Pervan | Oct 2006 | A1 |
20060260254 | Pervan | Nov 2006 | A1 |
20060272262 | Pomberger | Dec 2006 | A1 |
20070003366 | Wedberg | Jan 2007 | A1 |
20070006543 | Engström | Jan 2007 | A1 |
20070011981 | Eiserman | Jan 2007 | A1 |
20070022689 | Thrush et al. | Feb 2007 | A1 |
20070028547 | Grafenauer | Feb 2007 | A1 |
20070065293 | Hannig | Mar 2007 | A1 |
20070094969 | McIntosh et al. | May 2007 | A1 |
20070094985 | Grafenauer | May 2007 | A1 |
20070108679 | Grothaus | May 2007 | A1 |
20070113509 | Zhang | May 2007 | A1 |
20070151189 | Yang et al. | Jul 2007 | A1 |
20070175156 | Pervan et al. | Aug 2007 | A1 |
20070193178 | Groeke et al. | Aug 2007 | A1 |
20070209736 | Deringor et al. | Sep 2007 | A1 |
20070214741 | Llorens Miravet | Sep 2007 | A1 |
20080000182 | Pervan | Jan 2008 | A1 |
20080000185 | Duernberger | Jan 2008 | A1 |
20080000186 | Pervan et al. | Jan 2008 | A1 |
20080000187 | Pervan et al. | Jan 2008 | A1 |
20080005998 | Pervan | Jan 2008 | A1 |
20080010931 | Pervan et al. | Jan 2008 | A1 |
20080010937 | Pervan et al. | Jan 2008 | A1 |
20080028707 | Pervan | Feb 2008 | A1 |
20080034708 | Pervan | Feb 2008 | A1 |
20080041008 | Pervan | Feb 2008 | A1 |
20080053029 | Ricker | Mar 2008 | A1 |
20080066415 | Pervan | Mar 2008 | A1 |
20080104921 | Pervan | May 2008 | A1 |
20080110125 | Pervan | May 2008 | A1 |
20080134607 | Pervan | Jun 2008 | A1 |
20080134613 | Pervan | Jun 2008 | A1 |
20080134614 | Pervan | Jun 2008 | A1 |
20080155930 | Pervan et al. | Jul 2008 | A1 |
20080184646 | Alford | Aug 2008 | A1 |
20080199676 | Bathelier et al. | Aug 2008 | A1 |
20080216434 | Pervan | Sep 2008 | A1 |
20080216920 | Pervan | Sep 2008 | A1 |
20080236088 | Hannig et al. | Oct 2008 | A1 |
20080295432 | Pervan et al. | Dec 2008 | A1 |
20080295438 | Knauseder | Dec 2008 | A1 |
20080302044 | Johansson | Dec 2008 | A1 |
20090019806 | Muehlebach | Jan 2009 | A1 |
20090049787 | Hannig | Feb 2009 | A1 |
20090064624 | Sokol | Mar 2009 | A1 |
20090100782 | Groeke et al. | Apr 2009 | A1 |
20090126308 | Hannig et al. | May 2009 | A1 |
20090133353 | Pervan et al. | May 2009 | A1 |
20090151290 | Liu | Jun 2009 | A1 |
20090173032 | Prager et al. | Jul 2009 | A1 |
20090193741 | Capelle | Aug 2009 | A1 |
20090193748 | Boo | Aug 2009 | A1 |
20090193753 | Schitter | Aug 2009 | A1 |
20090217615 | Engstrom | Sep 2009 | A1 |
20090241460 | Beaulieu | Oct 2009 | A1 |
20090249733 | Moebus | Oct 2009 | A1 |
20090308014 | Muehlebach | Dec 2009 | A1 |
20100018149 | Thiers | Jan 2010 | A1 |
20100043333 | Hannig et al. | Feb 2010 | A1 |
20100083603 | Goodwin | Apr 2010 | A1 |
20100170189 | Schulte | Jul 2010 | A1 |
20100173122 | Susnjara | Jul 2010 | A1 |
20100218450 | Braun | Sep 2010 | A1 |
20100275541 | Prinz | Nov 2010 | A1 |
20100281803 | Cappelle | Nov 2010 | A1 |
20100293879 | Pervan et al. | Nov 2010 | A1 |
20100300029 | Braun et al. | Dec 2010 | A1 |
20100300031 | Pervan et al. | Dec 2010 | A1 |
20100313510 | Tang | Dec 2010 | A1 |
20100319290 | Pervan | Dec 2010 | A1 |
20100319291 | Pervan et al. | Dec 2010 | A1 |
20110016815 | Yang | Jan 2011 | A1 |
20110030303 | Pervan et al. | Feb 2011 | A1 |
20110041996 | Pervan | Feb 2011 | A1 |
20110047922 | Fleming, III | Mar 2011 | A1 |
20110088344 | Pervan et al. | Apr 2011 | A1 |
20110088345 | Pervan | Apr 2011 | A1 |
20110088346 | Hannig | Apr 2011 | A1 |
20110094178 | Braun | Apr 2011 | A1 |
20110131916 | Chen | Jun 2011 | A1 |
20110138722 | Hannig | Jun 2011 | A1 |
20110154763 | Bergelin et al. | Jun 2011 | A1 |
20110162312 | Schulte | Jul 2011 | A1 |
20110167744 | Whispell | Jul 2011 | A1 |
20110167750 | Pervan | Jul 2011 | A1 |
20110167751 | Engström | Jul 2011 | A1 |
20110173914 | Engström | Jul 2011 | A1 |
20110197535 | Baker et al. | Aug 2011 | A1 |
20110225921 | Schulte | Sep 2011 | A1 |
20110225922 | Pervan et al. | Sep 2011 | A1 |
20110247285 | Wybo et al. | Oct 2011 | A1 |
20110252733 | Pervan | Oct 2011 | A1 |
20110271631 | Engstrom | Nov 2011 | A1 |
20110271632 | Cappelle et al. | Nov 2011 | A1 |
20110283650 | Pervan et al. | Nov 2011 | A1 |
20120017533 | Pervan et al. | Jan 2012 | A1 |
20120031029 | Pervan et al. | Feb 2012 | A1 |
20120036804 | Pervan | Feb 2012 | A1 |
20120042598 | Vermeulen et al. | Feb 2012 | A1 |
20120055112 | Engström | Mar 2012 | A1 |
20120124932 | Schulte et al. | May 2012 | A1 |
20120151865 | Pervan et al. | Jun 2012 | A1 |
20120174515 | Pervan | Jul 2012 | A1 |
20120174519 | Schulte | Jul 2012 | A1 |
20120174520 | Pervan | Jul 2012 | A1 |
20120174521 | Schulte et al. | Jul 2012 | A1 |
20120192521 | Schulte | Aug 2012 | A1 |
20120222378 | Cappelle et al. | Sep 2012 | A1 |
20120240502 | Wilson et al. | Sep 2012 | A1 |
20120279161 | Håkansson et al. | Nov 2012 | A1 |
20120304590 | Engström | Dec 2012 | A1 |
20120324816 | Huang | Dec 2012 | A1 |
20130008117 | Pervan | Jan 2013 | A1 |
20130008118 | Baert et al. | Jan 2013 | A1 |
20130014463 | Pervan | Jan 2013 | A1 |
20130019555 | Pervan | Jan 2013 | A1 |
20130025231 | Vermeulen | Jan 2013 | A1 |
20130025964 | Ramachandra et al. | Jan 2013 | A1 |
20130042562 | Pervan | Feb 2013 | A1 |
20130042563 | Pervan | Feb 2013 | A1 |
20130042564 | Pervan et al. | Feb 2013 | A1 |
20130042565 | Pervan | Feb 2013 | A1 |
20130047536 | Pervan | Feb 2013 | A1 |
20130081349 | Pervan et al. | Apr 2013 | A1 |
20130111837 | Devos et al. | May 2013 | A1 |
20130111845 | Pervan | May 2013 | A1 |
20130145708 | Pervan | Jun 2013 | A1 |
20130152500 | Engström | Jun 2013 | A1 |
20130160391 | Pervan et al. | Jun 2013 | A1 |
20130167467 | Vermeulen et al. | Jul 2013 | A1 |
20130219806 | Carrubba | Aug 2013 | A1 |
20130232905 | Pervan | Sep 2013 | A2 |
20130239508 | Pervan et al. | Sep 2013 | A1 |
20130263454 | Boo et al. | Oct 2013 | A1 |
20130263547 | Boo | Oct 2013 | A1 |
20130283719 | Döhring et al. | Oct 2013 | A1 |
20130305650 | Liu | Nov 2013 | A1 |
20130309441 | Hannig | Nov 2013 | A1 |
20130318906 | Pervan et al. | Dec 2013 | A1 |
20140007539 | Pervan et al. | Jan 2014 | A1 |
20140020324 | Pervan | Jan 2014 | A1 |
20140026513 | Bishop | Jan 2014 | A1 |
20140033633 | Kell | Feb 2014 | A1 |
20140033634 | Pervan | Feb 2014 | A1 |
20140053497 | Pervan et al. | Feb 2014 | A1 |
20140059966 | Boo | Mar 2014 | A1 |
20140069043 | Pervan | Mar 2014 | A1 |
20140090335 | Pervan et al. | Apr 2014 | A1 |
20140109501 | Pervan | Apr 2014 | A1 |
20140109506 | Pervan et al. | Apr 2014 | A1 |
20140123586 | Pervan et al. | May 2014 | A1 |
20140130437 | Cappelle | May 2014 | A1 |
20140144096 | Vermeulen et al. | May 2014 | A1 |
20140150369 | Hannig | Jun 2014 | A1 |
20140190112 | Pervan | Jul 2014 | A1 |
20140208677 | Pervan et al. | Jul 2014 | A1 |
20140223852 | Pervan | Aug 2014 | A1 |
20140237931 | Pervan | Aug 2014 | A1 |
20140250813 | Nygren et al. | Sep 2014 | A1 |
20140260060 | Pervan et al. | Sep 2014 | A1 |
20140283466 | Boo | Sep 2014 | A1 |
20140290173 | Hamberger | Oct 2014 | A1 |
20140305065 | Pervan | Oct 2014 | A1 |
20140366476 | Pervan | Dec 2014 | A1 |
20140366477 | Kell | Dec 2014 | A1 |
20140373478 | Pervan et al. | Dec 2014 | A2 |
20140373480 | Pervan et al. | Dec 2014 | A1 |
20150000221 | Boo | Jan 2015 | A1 |
20150013260 | Pervan | Jan 2015 | A1 |
20150047284 | Cappelle | Feb 2015 | A1 |
20150059281 | Pervan | Mar 2015 | A1 |
20150089896 | Pervan et al. | Apr 2015 | A2 |
20150113908 | Ramachandra et al. | Apr 2015 | A1 |
20150121796 | Pervan | May 2015 | A1 |
20150152644 | Boo | Jun 2015 | A1 |
20150167318 | Pervan | Jun 2015 | A1 |
20150176619 | Baker | Jun 2015 | A1 |
20150211239 | Pervan | Jul 2015 | A1 |
20150233125 | Pervan et al. | Aug 2015 | A1 |
20150267419 | Pervan | Sep 2015 | A1 |
20150300029 | Pervan | Oct 2015 | A1 |
20150330088 | Derelov | Nov 2015 | A1 |
20150337537 | Boo | Nov 2015 | A1 |
20150368910 | Kell | Dec 2015 | A1 |
20160032596 | Nygren et al. | Feb 2016 | A1 |
20160060879 | Pervan | Mar 2016 | A1 |
20160069088 | Boo et al. | Mar 2016 | A1 |
20160076260 | Pervan et al. | Mar 2016 | A1 |
20160090744 | Pervan et al. | Mar 2016 | A1 |
20160153200 | Pervan | Jun 2016 | A1 |
20160168866 | Pervan et al. | Jun 2016 | A1 |
20160186426 | Boo | Jun 2016 | A1 |
20160194884 | Pervan et al. | Jul 2016 | A1 |
20160201336 | Pervan | Jul 2016 | A1 |
20160251859 | Pervan et al. | Sep 2016 | A1 |
20160251860 | Pervan | Sep 2016 | A1 |
20160281368 | Pervan et al. | Sep 2016 | A1 |
20160281370 | Pervan et al. | Sep 2016 | A1 |
20160326751 | Pervan | Nov 2016 | A1 |
20160340913 | Derelöv | Nov 2016 | A1 |
20170037641 | Nygren et al. | Feb 2017 | A1 |
20170081860 | Boo | Mar 2017 | A1 |
20170254096 | Pervan | Sep 2017 | A1 |
20170321433 | Pervan et al. | Nov 2017 | A1 |
20170362834 | Pervan et al. | Dec 2017 | A1 |
20180001509 | Myllykangas et al. | Jan 2018 | A1 |
20180001510 | Fransson | Jan 2018 | A1 |
20180001573 | Blomgren et al. | Jan 2018 | A1 |
20180002933 | Pervan | Jan 2018 | A1 |
20180016783 | Boo | Jan 2018 | A1 |
20180030737 | Pervan | Feb 2018 | A1 |
20180030738 | Pervan | Feb 2018 | A1 |
20180119431 | Pervan et al. | May 2018 | A1 |
20180178406 | Fransson et al. | Jun 2018 | A1 |
20190024387 | Pervan et al. | Jan 2019 | A1 |
20190048592 | Boo | Feb 2019 | A1 |
20190048596 | Pervan | Feb 2019 | A1 |
20190063076 | Boo et al. | Feb 2019 | A1 |
20190071879 | Thiers et al. | Mar 2019 | A1 |
20190093370 | Pervan et al. | Mar 2019 | A1 |
20190093371 | Pervan | Mar 2019 | A1 |
20190119928 | Pervan et al. | Apr 2019 | A1 |
20190127989 | Kell | May 2019 | A1 |
20190127990 | Pervan et al. | May 2019 | A1 |
20190169859 | Pervan et al. | Jun 2019 | A1 |
20190232473 | Fransson et al. | Aug 2019 | A1 |
20190271165 | Boo | Sep 2019 | A1 |
20190376298 | Pervan et al. | Dec 2019 | A1 |
20190394314 | Pervan et al. | Dec 2019 | A1 |
20200102756 | Pervan | Apr 2020 | A1 |
20200109569 | Pervan | Apr 2020 | A1 |
20200149289 | Pervan | May 2020 | A1 |
20200173175 | Pervan | Jun 2020 | A1 |
20200224430 | Ylikangas et al. | Jul 2020 | A1 |
20200263437 | Pervan | Aug 2020 | A1 |
20200284045 | Kell | Sep 2020 | A1 |
20200318667 | Derelöv | Oct 2020 | A1 |
20200354969 | Pervan et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
201588375 | Sep 2010 | CN |
201110035241.6 | Jan 2011 | CN |
138 992 | Jul 1901 | DE |
142 293 | Jul 1902 | DE |
2 159 042 | Jun 1973 | DE |
25 05 489 | Aug 1976 | DE |
33 43 601 | Jun 1985 | DE |
33 43 601 | Jun 1985 | DE |
39 32 980 | Nov 1991 | DE |
42 15 273 | Nov 1993 | DE |
42 42 530 | Jun 1994 | DE |
196 01 322 | May 1997 | DE |
299 22 649 | Mar 2000 | DE |
200 02 744 | Aug 2000 | DE |
199 40 837 | Nov 2000 | DE |
199 58 225 | Jun 2001 | DE |
202 05 774 | Aug 2002 | DE |
10 2004 001 363 | Aug 2005 | DE |
10 2005 002 297 | Aug 2005 | DE |
10 2006 024 184 | Nov 2007 | DE |
10 2007 018 309 | Aug 2008 | DE |
10 2007 016 533 | Oct 2008 | DE |
10 2007 032 885 | Jan 2009 | DE |
10 2007 035 648 | Jan 2009 | DE |
10 2007 049 792 | Feb 2009 | DE |
10 2009 041 297 | Mar 2011 | DE |
0 013 852 | Aug 1980 | EP |
0 871 156 | Oct 1998 | EP |
1 120 515 | Aug 2001 | EP |
1 146 182 | Oct 2001 | EP |
1 251 219 | Oct 2002 | EP |
1 279 778 | Jan 2003 | EP |
1 350 904 | Oct 2003 | EP |
1 350 904 | Oct 2003 | EP |
1 396 593 | Mar 2004 | EP |
1 420 125 | May 2004 | EP |
1 437 457 | Jul 2004 | EP |
1 437 457 | Jul 2004 | EP |
1 640 530 | Mar 2006 | EP |
1 650 375 | Apr 2006 | EP |
1 650 375 | Sep 2006 | EP |
1 980 683 | Oct 2008 | EP |
2 000 610 | Dec 2008 | EP |
2 236 694 | Oct 2010 | EP |
2 270 291 | Jan 2011 | EP |
2 278 091 | Jan 2011 | EP |
2 270 291 | May 2011 | EP |
2 333 195 | Jun 2011 | EP |
2 388 394 | Nov 2011 | EP |
1.138.595 | Jun 1957 | FR |
2 256 807 | Aug 1975 | FR |
2 810 060 | Dec 2001 | FR |
240629 | Oct 1925 | GB |
376352 | Jul 1932 | GB |
1171337 | Nov 1969 | GB |
2 051 916 | Jan 1981 | GB |
H03-110258 | May 1991 | JP |
H05-018028 | Jan 1993 | JP |
H06-146553 | May 1994 | JP |
H06-2880117 | Oct 1994 | JP |
H06-306961 | Nov 1994 | JP |
H06-322848 | Nov 1994 | JP |
H07-300979 | Nov 1995 | JP |
2900115 | Jun 1999 | JP |
2002-047782 | Feb 2002 | JP |
526 688 | May 2005 | SE |
WO 9426999 | Nov 1994 | WO |
WO 9627721 | Sep 1996 | WO |
WO 9747834 | Dec 1997 | WO |
WO 9822677 | May 1998 | WO |
WO 9966151 | Dec 1999 | WO |
WO 9966152 | Dec 1999 | WO |
WO 0043281 | Jul 2000 | WO |
WO 0047841 | Aug 2000 | WO |
WO 0055067 | Sep 2000 | WO |
WO 0102670 | Jan 2001 | WO |
WO 0102672 | Jan 2001 | WO |
WO 0107729 | Feb 2001 | WO |
WO 2011012105 | Feb 2001 | WO |
WO 0138657 | May 2001 | WO |
WO 0144669 | Jun 2001 | WO |
WO 0144669 | Jun 2001 | WO |
WO 0148332 | Jul 2001 | WO |
WO 0151732 | Jul 2001 | WO |
WO 0151733 | Jul 2001 | WO |
WO 0166877 | Sep 2001 | WO |
WO 0175247 | Oct 2001 | WO |
WO 0177461 | Oct 2001 | WO |
WO 02055809 | Jul 2002 | WO |
WO 02055810 | Jul 2002 | WO |
WO 02081843 | Oct 2002 | WO |
WO 02103135 | Dec 2002 | WO |
WO 03012224 | Feb 2003 | WO |
WO 03016654 | Feb 2003 | WO |
WO 03025307 | Mar 2003 | WO |
WO 03038210 | May 2003 | WO |
WO 03044303 | May 2003 | WO |
WO 03074814 | Sep 2003 | WO |
WO 03083234 | Oct 2003 | WO |
WO 03087497 | Oct 2003 | WO |
WO 03089736 | Oct 2003 | WO |
WO 2004003314 | Jan 2004 | WO |
WO 2004020764 | Mar 2004 | WO |
WO 2004048716 | Jun 2004 | WO |
WO 2004050780 | Jun 2004 | WO |
WO 2004079128 | Sep 2004 | WO |
WO 2004079130 | Sep 2004 | WO |
WO 2004083557 | Sep 2004 | WO |
WO 2004085765 | Oct 2004 | WO |
WO 2005003488 | Jan 2005 | WO |
WO 2005003489 | Jan 2005 | WO |
WO 2005054599 | Jun 2005 | WO |
WO 2006043893 | Apr 2006 | WO |
WO 2006050928 | May 2006 | WO |
WO 2006104436 | Oct 2006 | WO |
WO 2006123988 | Nov 2006 | WO |
WO 2006125646 | Nov 2006 | WO |
WO 2007015669 | Feb 2007 | WO |
WO 2007015669 | Feb 2007 | WO |
WO 2007142589 | Dec 2007 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2008017281 | Feb 2008 | WO |
WO 2008060232 | May 2008 | WO |
WO 2009066153 | May 2009 | WO |
WO 2009116926 | Sep 2009 | WO |
WO 2010070472 | Jun 2010 | WO |
WO 2010070472 | Jun 2010 | WO |
WO 2010070605 | Jun 2010 | WO |
WO 2010087752 | Aug 2010 | WO |
WO 2011001326 | Jan 2011 | WO |
WO 2011012104 | Feb 2011 | WO |
WO 2011012104 | Feb 2011 | WO |
WO 2011032540 | Mar 2011 | WO |
WO 2011038709 | Apr 2011 | WO |
WO 2011108812 | Sep 2011 | WO |
WO 2011151758 | Dec 2011 | WO |
WO 2011151758 | Dec 2011 | WO |
WO 2012059093 | May 2012 | WO |
WO 2013012386 | Jan 2013 | WO |
Entry |
---|
U.S. Appl. No. 14/503,780, Darko Pervan, filed Oct. 1, 2014, (Cited herein as US Patent Application Publication No. 2015/0013260 A1 of Jan. 15, 2015). |
U.S. Appl. No. 15/172,926, Darko Pervan and Agne Pålsson, filed Jun. 3, 2016, (Cited herein as US Patent Application Publication No. 2016/0281368 A1 of Sep. 29, 2016). |
U.S. Appl. No. 15/896,571, Darko Pervan, Niclas Håkansson and Per Nygren, filed Feb. 14, 2018, (Cited herein as US Patent Application Publication No. 2019/0093370 A1 of Mar. 28, 2019). |
U.S. Appl. No. 16/143,610, Darko Pervan, filed Sep. 27, 2018, (Cited herein as US Patent Application Publication No. 2019/0024387 A1 of Jan. 24, 2019). |
U.S. Appl. No. 16/163,088, Darko Pervan, filed Oct. 17, 2018, (Cited herein as US Patent Application Publication No. 2019/0048596 A1 of Feb. 14, 2019). |
U.S. Appl. No. 16/224,951, Darko Pervan and Tony Pervan, filed Dec. 19, 2018, (Cited herein as US Patent Application Publication No. 2019/0119928 A1 of Apr. 25, 2019). |
U.S. Appl. No. 16/269,806, Darko Pervan and Tony Pervan, filed Feb. 7, 2019, (Cited herein as US Patent Application Publication No. 2019/0169859 A1 of Jun. 6, 2019). |
U.S. Appl. No. 16/419,660, Christian Boo, filed May 22, 2019, (Cited herein as US Patent Application Publication No. 2019/0271165 A1 of Sep. 5, 2019). |
U.S. Appl. No. 16/439,827, Darko Pervan, filed Jun. 13, 2019, (Cited herein as US Patent Publication No. 2020/0102756 A1 of Apr. 2, 2020). |
U.S. Appl. No. 16/581,990, Darko Pervan, filed Sep. 25, 2019. |
U.S. Appl. No. 16/713,373, Roger Ylikangas, Karl Quist, Anders Nilsson and Caroline Landgård, filed Dec. 13, 2019. |
U.S. Appl. No. 16/781,301, Darko Pervan, filed Feb. 4, 2020. |
U.S. Appl. No. 16/581,990, Pervan. |
U.S. Appl. No. 16/713,373, Ylikangas et al. |
U.S. Appl. No. 16/781,301, Pervan. |
International Search Report dated Oct. 1, 2012 in PCT/SE2012/050817, Swedish Patent Office, Stockholm, Sweden, 9 pages. |
Extended European Search Report dated Apr. 30, 2015 in EP 12811602.7, European Patent Office, Munich, DE, 4 pages. |
Extended European Search report dated Oct. 9, 2019 in EP 19183301.1, European Patent Office, Munich, DE, 12 pages. |
Välinge Innovation AB, Technical Disclosure entitled “Mechanical locking for floor panels with a flexible bristle tongue,” IP.com No. IPCOM000145262D, Jan. 12, 2007, IP.com PriorArtDatabase, 57 pages (VA033). |
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA-038 Mechanical Locking of Floor Panels With Vertical Folding,” IP com No. IPCOM000179246D, Feb. 10, 2009, IP.com Prior Art Database, 59 pages. |
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA043 5G Linear Slide Tongue,” IP com No. IPCOM000179015D, Feb. 4, 2009, IP.com Prior Art Database, 126 pages. |
Engstrand, Ola (Owner)/Välinge Innovation AB, Technical Disclosure entitled “VA043b PCT Mechanical Locking of Floor Panels,” IP com No. IPCOM000189420D, Nov. 9, 2009, IP.com Prior Art Database, 62 pages. |
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA055 Mechanical locking system for floor panels,” IP com No. IPCOM000206454D, Apr. 27, 2011, IP.com Prior Art Database, 25 pages. |
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA058 Rocker Tongue,” IP com No. IPCOM000203832D, Feb. 4, 2011, IP.com Prior Art Database, 22 pages. |
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA066b Glued Tongue,” IP com No. IPCOM000210865D, Sep. 13, 2011, IP.com Prior Art Database, 19 pages. |
Pervan, Darko (Inventor)/Välinge Flooring Technology AB, Technical Disclosure entitled “VA067 Fold Slide Loc,” IP com No. IPCOM000208542D, Jul. 12, 2011, IP.com Prior Art Database, 37 pages. |
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA068 Press Lock VFT,” IP com No. IPCOM000208854D, Jul. 20, 2011, IP.com Prior Art Database, 25 pages. |
Pervan, Darko (Author), Technical Disclosure entitled “VA069 Combi Tongue,” IP com No. IPCOM000210866D, Sep. 13, 2011, IP.com Prior Art Database, 41 pages. |
Pervan, Darko (Author), Technical Disclosure entitled “VA070 Strip Part,” IP com No. IPCOM000210867D, Sep. 13, 2011, IP.com Prior Art Database, 43 pages. |
Pervan, Darko (Author), Technical Disclosure entitled “VA071 Pull Lock,” IP com No. IPCOM000210868D, Sep. 13, 2011, IP.com Prior Art Database, 22 pages. |
Pervan, Darko (Author), Technical Disclosure entitled “VA073a Zip Loc,” IP com No. IPCOM000210869D, Sep. 13, 2011, IP.com Prior Art Database, 36 pages. |
LifeTips, “Laminate Flooring Tips,” available at (http://flooring.lifetips.com/cat/61734/laminate-flooring-tips/index.html), 2000, 12 pages. |
Pervan, Darko, U.S. Appl. No. 16/581,990 entitled “Mechanical Locking System for Floor Panels,” filed Sep. 25, 2019. |
Ylikangas, Roger, et al., U.S. Appl. No. 16/713,373 entitled “Unlocking System for Panels,” filed Dec. 13, 2019. |
Pervan, Darko, U.S. Appl. No. 16/781,301 entitled “Mechanical Locking of Floor Panels,” filed Feb. 4, 2020. |
U.S. Appl. No. 16/861,666, Darko Pervan, filed Apr. 29, 2020. |
U.S. Appl. No. 16/861,686, Darko Pervan and Agne Pålsson, filed Apr. 29, 2020. |
U.S. Appl. No. 16/908,902, Darko Pervan, filed Jun. 23, 2020. |
U.S. Appl. No. 16/861,666, Pervan. |
U.S. Appl. No. 16/861,686, Perven et al. |
U.S. Appl. No. 16/908,902, Pervan. |
Pervan, Darko, U.S. Appl. No. 16/861,666 entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed Apr. 29, 2020. |
Pervan, Darko, et al., U.S. Appl. No. 16/861,686 entitled “Mechanical Locking of Floor Panels with a Flexible Bristle Tongue,” filed Apr. 29, 2020 |
Pervan, Darko, U.S. Appl. No. 16/908,902 entitled “Mechanical Locking System for Floor Panels,” filed Jun. 23, 2020. |
Number | Date | Country | |
---|---|---|---|
20200087927 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
61506282 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15603913 | May 2017 | US |
Child | 16692104 | US | |
Parent | 13544281 | Jul 2012 | US |
Child | 15603913 | US |