Mechanical locking system for floor panels

Information

  • Patent Grant
  • 10995501
  • Patent Number
    10,995,501
  • Date Filed
    Friday, November 22, 2019
    4 years ago
  • Date Issued
    Tuesday, May 4, 2021
    3 years ago
Abstract
Floor panels are shown, which are provided with a vertical folding locking system on short edges that only locks vertically and a mechanical locking system on long edges that prevents displacement along the long edges. A locking system for primarily rectangular floor panels with long and short edges installed in parallel rows, which allows that the short edges may be locked to each other with a vertical movement without a horizontal connection and that such horizontal connection is accomplished by the locking system on the long edges including a first and second horizontal locking perpendicular to the edges and along the edges.
Description
TECHNICAL FIELD

The disclosure generally relates to the field of mechanical locking systems for floor panels and building panels. Furthermore, floorboards, locking systems, installation methods and production methods are shown.


FIELD OF APPLICATION

Embodiments of the present invention are particularly suitable for use in floating floors, which are formed of floor panels which are joined mechanically with a locking system integrated with the floor panel, i.e. mounted at the factory, are made up of one or more upper layers of veneer, decorative laminate or decorative plastic material, an intermediate core of wood-fibre-based material or plastic material and preferably a lower balancing layer on the rear side of the core. The following description of known technique, problems of known systems and objects and features of the invention will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular at laminate flooring formed as rectangular floor panels with long and shorts edges intended to be mechanically joined to each other on both long and short edges. The long and short edges are mainly used to simplify the description of the invention. The panels may be square. It should be emphasized that the invention may be used in any floor panel and it may be combined with all types of known locking systems, where the floor panels are intended to be joined using a mechanical locking system connecting the panels in the horizontal and vertical directions on at least two adjacent sides. The invention may thus also be applicable to, for instance, powder based floors, solid wooden floors, parquet floors with a core of wood or wood-fibre-based material and a surface of wood or wood veneer and the like, floors with a printed and preferably also varnished surface, floors with a surface layer of plastic or cork, linoleum, rubber. Even floors with hard surfaces such as stone, tile and similar materials are included and floorings with soft wear layer, for instance needle felt glued to a board. The invention may also be used for joining building panels which preferably contain a board material for instance wall panels, ceilings, furniture components and similar.


BACKGROUND

Laminate flooring usually comprise a core of a 6-12 mm fibre board, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material. A laminate surface may comprise melamine-impregnated paper. The most common core material is fibreboard with high density and good stability usually called HDF—High Density Fibreboard. Sometimes also MDF—Medium Density Fibreboard—is used as core.


Traditional laminate floor panels of this type have been joined by means of glued tongue-and-groove joints.


In addition to such traditional floors, floor panels have been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking means, which lock the panels horizontally and vertically. The mechanical locking systems are usually formed by machining of the core of the panel. Alternatively, parts of the locking system may be formed of a separate material, for instance aluminium or HDF, which is integrated with the floor panel, i.e. joined with the floor panel in connection with the manufacture thereof.


The main advantages of floating floors with mechanical locking systems are that they are easy to install. They may also be disassembled and used once more at a different location. However, there is still a need to improve the locking strength and to reduce the material costs.


Definition of Some Terms

In the following text, the visible surface of the installed floor panel is called “front side”, while the opposite side of the floor panel, facing the sub floor, is called “rear side”. The edge between the front and rear side is called “joint edge”. By “horizontal plane” is meant a plane, which extends parallel to the outer part of the surface layer. Immediately juxtaposed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane. By “vertical locking” is meant locking parallel to the vertical plane in D1 direction. By “horizontal locking” is meant locking parallel to the horizontal plane in D2 direction. By “first horizontal locking” is meant a horizontal locking perpendicular to the joint edges in D2 direction. By “second horizontal locking is meant a horizontal locking in the horizontal direction along the joint which prevents two panels to slide parallel to each other when they are laying in the same plane.


By “locking systems” are meant co acting connecting elements, which connect the floor panels vertically and/or horizontally. By “mechanical locking system” is meant that joining may take place without glue. Mechanical locking systems may also be joined by gluing. By “integrated with” means formed in one piece with the panel or factory connected to the panel.


By “up or upward” means toward the surface and by “down or downward” means toward the rear side. By “inwardly” is meant towards the centre of the floorboard and by “outwardly” means in the opposite direction.


By “carving” is meant a method to form a groove or a protrusion on an edge of a panel by carving a part of the edge to its final shape by one or several carving tool configurations comprising several non-rotating and fixed chip-removing surfaces located along the feeding direction.


Related Art and Problems Thereof

For mechanical joining of long edges as well as short edges in the vertical and in the first horizontal direction perpendicular to the edges several methods may be used. One of the most used methods is the angle-snap method. The long edges are installed by angling. The panel is then displaced in locked position along the long side. The short edges are locked by horizontal snapping. The vertical connection is generally a tongue and a groove. During the horizontal displacement, a strip with a locking element is bent and when the edges are in contact, the strip springs back and a locking element enters a locking groove and locks the panels horizontally. Such a snap connection is complicated since a hammer and a tapping block may need to be used to overcome the friction between the long edges and to bend the strip during the snapping action.


Similar locking systems may also be produced with a rigid strip and they are connected with an angling-angling method where both short and long edges are angled into a locked position.


Recently new and very efficient locking systems have been introduced with a separate flexible or displaceable integrated tongue on the short edge that allows installation with only an angling action, generally referred to as “vertical folding”. Such a system is described in WO 2006/043893 (Valinge Innovation AB).


Several versions are used on the market as shown in FIGS. 1a-1f. FIGS. 1a, 1b show a flexible tongue 30 with a flexible snap tab extending from the edge. FIGS. 1c, 1d show a displaceable tongue with an inner flexible part that is bendable horizontally in a cross section of the tongue or along the joint. Such systems are referred to as vertical snap systems. The locking system may also be locked with a side push action such that a displaceable tongue 30 is pushed into a locked position from the long side edge when adjacent short side edges are folded down to the sub floor. FIG. 1e shows a fold down system with a flexible tongue 30 that is made in one piece with the core. FIG. 1f shows a long edge locking system in a fold down system that is connected with angling.


All such locking systems comprise a horizontal locking, which is accomplished by cooperating hook element in the form of a strip with a locking element cooperating with a locking groove.


Several versions of fold down systems are described in WO 2006/104436, WO 2007/015669, WO 2008/004960, WO 2010/087752 (Valinge Innovation AB) and the entire contents thereof are hereby expressly incorporated by reference and they constitute a part of this description.


Although such systems are very efficient, there is still room for improvements. It is difficult to insert the separate tongue 30 during production into a groove 40 over a strip 6 comprising a locking element 8. The locking groove 14 reduces the strength and the edges may crack. The protruding locking strip with the locking element causes a waste when the edges are machined and such waste may be considerable in wide tile-shaped floorboards.


It is a major advantage if the strip 6 is more compact and shorter and if the locking element 8 and the locking groove 14 are eliminated.


One of the main advantages with the fold down systems is that there is no requirement that the long edges should be displaceable. In fact it is an advantage if the long edges do not slide during angling since a flexible tongue that is used in some systems presses the short edges apart during folding.


WO 2006/043893 describes a fold down system with an essentially horizontal protruding strip that does not have a locking element. Such fold down system has no horizontal connection and the short edges may be locked by for example gluing or nailing to the sub floor. It would be an advantage if such floorboards could be installed in a floating manner.


Such a floating installation may be accomplished according to this disclosure with a locking system that comprises long edges that are locked in a first horizontal direction perpendicular to the edge and in a second horizontal direction along the edge. Long edges that are not displaced after locking will also keep the short edges together and prevent separation.


It is known that a separation of short edges of floor panels may be prevented with increased friction or with projections and spaces between the long edges that will counteract mutual displacements along the edge and consequently prevent the short edges to slide apart.


It is for example known from Wilson U.S. Pat. No. 2,430,200 that several projections and recesses between a tongue and a groove in a mechanical locking system may be used to prevent displacement along the joint. Such projections and recesses are difficult to produce, the panels can only be locked in well-defined positions against adjacent long edges and they cannot be displaced against each other in angled position when top edges are in contact.


Terbrack U.S. Pat. No. 4,426,820 describes an impractical locking system with a perfect fit in a panel made of plastic material. The perfect fit may prevent displacement along the joint.


WO 1994/026999 (Valinge Innovation AB) describes a mechanical locking system that locks vertically and horizontally and where a rubber strip or any other sealing device is applied in the groove or between the flat projection part of the strip and the adjacent panel edge as shown principally in FIG. 1f. A rubber strip may be used to increase friction along the joint.


WO 98/22677 (Golvabia) describes a tongue and groove joint where several different types of materials are used to increase friction in order to prevent the edges from sliding apart perpendicularly to the edge. Example of materials inserted or applied in the tongue and groove joint are flock, strip-shaped bands of rubber, plastic, foamed rubber adhesive coated surfaces in which friction-increasing material is fixed such as sand, plastic or rubber particles. Roughened or coarsened surfaces may also be used.


WO 03/025307 and WO 03/089736 (Valinge Innovation AB) describe that displacement along long edges may be counteracted or prevented by means of high friction, glue, mechanical means etc. and that the short edges may be formed merely with vertical locking means or completely without locking means. WO03/012224 (Valinge Innovation AB) describes that flexible elastic sealing compounds based on acrylic plastics, elastomers of synthetic rubber, polyurethane-based hot-melt adhesives, etc. may be applied between the horizontal locking surfaces in order to compensate moisture movements due to swelling or shrinking. Such elastically material will increase the friction and prevent displacement of long edges along the joint.


Wernersson WO 2004/083557 discloses floor panels with mechanical locking means wherein predetermined surfaces of the edges are provided with splines. There is no disclosure of the geometry of such mechanical locking means, how such splines are formed and on which surfaces they are applied.


WO 2006/123988 (Valinge Innovation AB) describes a panel with a slide locking system comprises a plurality of small local protrusions that prevents displacement along the joint edges when the panels are laying flat on the sub floor. The protrusions may lock against a flexible rubber material at the adjacent panel. The short edges are provided only with a vertical locking comprising a tongue made in one piece with the core. The panels may be locked with vertical folding and the slide lock prevents sliding along the joint after folding. A folding system at the short edges that only locks vertically and which comprise a flexible separate tongue is not described.


These known technologies to prevent displacement along the long edges suffer from several disadvantages. Friction created by pressure and small hard materials is not reliable since swelling and shrinking in wood fibre based panels may change the friction forces, thus the panels may as time goes slide and the short edges separate from each other. Friction material that is applied on surfaces that form active horizontal locking surfaces, such as the locking surfaces of the locking element and the locking groove and upper adjacent joint edges may change the locking geometry and prevent an easy installation.


SUMMARY

A first overall objective of the present invention is to provide a locking system for primarily rectangular floor panels with long and short edges installed in parallel rows, which allows that the short edges may be locked to each other with a vertical movement without a horizontal connection and that such horizontal connection is accomplished by the locking system on the long edges comprising a first and second horizontal locking perpendicular to the edges and along the edges.


The invention is based, in part, on the discovery that since displacement of the long edges is not needed in a fold down locking system, there is more freedom to design the long edges locking system.


The costs and functions should be favorable compared to known technology. A part of the overall objective is to improve the function and costs of those parts of the locking system that locks in the second horizontal direction along the joint when panels are installed on a sub floor.


More specifically the object is to provide a second horizontal locking system on the long edges, hereafter referred to as “slide lock” where one or several of the following advantages are obtained.


The slide lock on the long edges should be activated when a panel is brought in contact with an already installed panel and then angled down to the sub floor.


The slide lock function should be reliable over time and the panels should be possible to lock and unlock in any position when two adjacent long edges are brought into contact with each other.


The slide lock should be strong and prevent short edges of two locked panels from separating when humidity changes or when people walk on a floor.


The slide lock should be possible to lock with high precision and without the use of tools.


The locking system and the slide lock should be designed in such a way that the material and production costs are low and that flexible materials may be applied in a safe way without the risk that such separate materials will be included in the active locking surfaces in an uncontrolled way.


The invention is based on a general approach that the locking element and the locking groove at the long edges should be used to accomplish a horizontal locking perpendicular to the edge but also along the edge.


The above objects of the invention are achieved wholly or partly by locking systems, floor panels, and installation and production methods according to the disclosure herein. Embodiments of the invention are evident from the description and drawings.


A first aspect of the invention is a flooring system comprising a plurality of rectangular floor panels with short edges and long edges. The panels are adapted to be installed on a sub floor and connected to each other with a mechanical locking system for locking the panels vertically and horizontally. Said locking system comprising a tongue and a tongue groove for mechanically locking together adjacent edges vertical to the horizontal plane, thereby forming a vertical mechanical connection between the panels. A locking element at a first long edge and a locking groove at an opposite second long edge form a first horizontal mechanical connection between adjacent long edges locking the panels to each other in a direction parallel to the horizontal plane and at right angles to said adjacent long edges. The panels are provided with a short edge locking connection comprising a separate tongue for locking adjacent short edges in a first vertical direction, inserted in a fixation groove at a short edge of a panel. The tongue is preferably at least partly flexible and/or displaceable. The short edge locking connection further comprises a locking strip and a locking cavity for locking adjacent short edges in a second vertical direction. The short edge locking connection is configured to lock the adjacent edges in a vertical direction only. The long edges are provided with a second horizontal mechanical connection locking the panels to each other along said adjacent long edges, in a direction parallel to the horizontal plane and parallel to said adjacent long edges, when the panel are laying flat on the sub floor.


Said second horizontal mechanical connection at the long edges may comprises a locking element and locking groove with two sets of cooperating locking surfaces, wherein a first set is located closer to a vertical plane (VP) and the upper joint edges than a second set.


The two sets of locking surfaces may be inclined such that a lower part of the locking element is larger than an upper part.


The vertical extension of the second set of locking surfaces may be essentially the same or larger than the vertical extension of the first set of locking surfaces.


The long edge locking system may comprises a third set of cooperating locking surfaces located at the outer and lower part of the strip.


There may be a space between the upper part of the locking element and the locking groove.


Said second horizontal mechanical connection may comprise a flexible material which is applied in an essentially vertical groove.


Said second horizontal mechanical connection may comprise a flexible material, which is compressed horizontally in two opposite directions


Said second horizontal mechanical connection may comprise a flexible material, which is located in an essentially vertical groove that is complementary with a wedge shaped locking element.


Said second horizontal mechanical connection may comprise a friction element located on the upper part of the locking element that cooperates with a friction groove.


The friction groove may comprise a flexible material.


Said second horizontal mechanical connection may comprise friction cavities located at the locking element.


Said second horizontal mechanical connection may comprise compressible material that is applied in the locking system at surfaces that do not comprise cooperative active locking surfaces that lock the panels vertically and horizontally.


The short edge locking connection may be locked with a vertical snap action where the separate tongue is displaced in the fixation groove during vertical displacement.


The short edge locking connection may be locked when the separate tongue is displaced in the fixation groove along the short edge.


According to a first preferred embodiment the locking system at the long edges comprises a locking element and locking groove with two sets of cooperating locking surfaces. A first set is located closer to a vertical plane and the upper joint edges than a second set. The locking surfaces are preferably inclined such that a lower part of the locking element is larger than an upper part. It is preferred that there is a space between the upper part of the locking element and the locking groove. Such a space may be used to give more production tolerances. Preferably, the vertical extension of the second set of locking surfaces is essentially the same or larger than the vertical extension of the first set of locking surfaces.


According to a second embodiment of the invention the long edge locking system comprises a flexible material located in a vertical groove that prevents displacement along the edges. The flexible material is preferably located between cooperating surfaces of the locking element and the locking groove.


According to a third embodiment of the invention the long edge locking system comprises at least three sets of cooperative locking surfaces between a locking element located on a strip and a locking groove. The first and the second sets are located in the upper part of the locking element wherein the first set is closer to the upper edges than the second set. The third set is located on the lower and outer part of the strip. This geometry is used to accomplish a strong press fit between the locking element and the locking groove and the panels will be tightly secured to each other such that displacement along the long edges and perpendicular to the short edges will be prevented.


Such a locking system with a press fit may be made much stronger than conventional locking systems with hooks at the short edges.


Said second mechanical connection may comprise a flexible tongue which is inserted in a fixation groove formed in the locking groove.


The above-described locking system at the long edges may also be used just individually to lock one pair of two adjacent edges, preferably the long edges, horizontally perpendicularly to the edges and along the edges. Such a locking system may be used together with many other types of locking systems at the other pair of adjacent edges, preferably the short edges, and may contribute to increase the horizontal locking strength at the short edges considerably. This is especially an advantage in large floors, with a length or width exceeding for example 20 m, and which are for example installed in commercial areas where the load on the floor may be considerable.


A second aspect of the invention is two floor panels provided with a locking system comprising a tongue and a tongue groove for mechanically locking together adjacent edges vertical to the horizontal plane, thereby forming a vertical mechanical connection between the panels. The locking system further comprises a first horizontal mechanical connection between adjacent edges for locking the panels to each other in a direction parallel to the horizontal plane and at right angles to said adjacent edges. The first horizontal mechanical connection comprises a locking element at a first edge and a locking groove at an opposite second edge. The tongue may be a separate tongue, preferably at least partly flexible and/or displaceable, inserted in a fixation groove at an edge of a panel. The locking system further comprises a second horizontal mechanical connection locking the panels to each other along said first and second edge, in a direction parallel to the horizontal plane and parallel to said adjacent edges, when the panels are laying flat on a sub floor.


The locking element and the locking groove preferably comprise two sets of cooperating locking surfaces, wherein a first set is located closer to a vertical plane (VP) and the upper joint edges than a second set.


At least one of the two sets of cooperating locking surfaces may comprise a flexible material. The flexible material may be a flexible tongue inserted in a fixation groove. The fixation groove may be formed in the locking groove.


The two sets of locking surfaces may be inclined such that a lower part of the locking element is larger than an upper part.


The vertical extension of the second set of locking surfaces may be essentially the same or larger than the vertical extension of the first set of locking surfaces.


The locking system may comprise a third set of cooperating locking surfaces located at the outer and lower part of the strip.


There may be a space between the upper part of the locking element and the locking groove.


Said second horizontal mechanical connection may comprise a flexible material, which is applied in an essentially vertical groove, said flexible material is preferably compressed horizontally in two opposite directions. The flexible material may be complementary with a wedge shaped locking element.


Said second horizontal mechanical connection may comprises a friction element located on the upper part of the locking element that cooperates with a friction groove.


The friction groove may comprise a flexible material.


Said second horizontal mechanical connection may comprise friction cavities located at the locking element.


Said second horizontal mechanical connection may comprise compressible material that is applied in the locking system at surfaces that do not comprise cooperative active locking surfaces that lock the panels vertically and horizontally.


The edges may be locked with a vertical snap action where the separate tongue is displaced in the fixation groove during vertical displacement.


The edges may be locked when the separate tongue is displaced in the fixation groove along the short edge.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will in the following be described in connection to exemplary embodiments and in greater detail with reference to the appended exemplary drawings, wherein:



FIGS. 1a-1f illustrate locking systems according to known technology.



FIGS. 2a-2d illustrate a short edge locking system according to preferred embodiments of the invention.



FIGS. 3a-3f illustrate a long edge locking system according to preferred embodiments of the invention.



FIGS. 4a-4c illustrate a preferred embodiment of short edge locking system.



FIGS. 5a-5f illustrate exemplary separate tongues that may be used in to lock short edges.



FIGS. 6a-6f illustrate preferred embodiments of the invention.



FIGS. 7a-7c illustrate a long edge locking system according to an embodiment of the invention.



FIGS. 8a-8b illustrate vertical folding with a conventional locking system and a locking system according to an embodiment of the invention.



FIGS. 9a-9d illustrate preferred embodiments of the invention.





DETAILED DESCRIPTION OF EMBODIMENTS

To facilitate understanding, several locking systems in the figures are shown schematically. It should be emphasized that improved or different functions may be achieved using combinations of the preferred embodiments.


The inventor has tested all known and especially all commercially used locking systems on the market that are installed with vertical folding in all type of floor panels, especially laminate and wood floorings and the conclusion is that at least all these known locking systems which have one or more locking elements cooperating with locking grooves may be adjusted to a system with a slide lock on the long edges which prevents displacement along the adjacent edges and with fold down locking system on short edges that only locks vertically.


The most preferable embodiments are however based on floorboards with a surface layer of laminate, powder based paper free surfaces or wood surfaces, a core of HDF or wood and a locking system on the long edge with a strip extending beyond the upper edge which allows locking by angling combined with a tongue and groove joint on the short edges comprising a separate tongue which preferably only locks vertically.


All embodiments may be used separately or in combinations. Angles, dimensions, rounded parts, spaces between surfaces, etc. are only examples and may be adjusted within the basic principles of the invention.



FIGS. 2a-2d show a first preferred embodiment of a short edge locking system provided with a flexible and displaceable tongue 30 in a first edge 1 inserted in a fixation groove 40 that cooperated with a tongue groove 20 in an adjacent second panel 1′ and locks the panels in a first vertical direction according to known technology. The first panel 1 (strip panel) comprises a protruding strip 6 that extends outwardly beyond a vertical plane VP. The second panel 1′ comprises a locking cavity 7 that cooperates with the locking strip 6 and locks the panels in a second vertical direction. FIG. 2d shows that the panels are only locked vertically and that they may be released or connected horizontally in essentially the same plane since there is no locking element on the strip and no hook connections in the locking system that prevents such horizontal displacement.


Such a locking system may be more cost efficient than convectional fold down systems since there is no need for a protruding strip with a locking element. Softer, thinner and less costly core materials may be used in a locking system that only is used for vertical locking. The horizontal locking may be obtained with a slide lock system at the long edges.



FIGS. 3a and 3b show a slide lock system according to one preferred embodiment comprising a tongue 10 and a tongue groove 9, a locking strip 6, a locking element 8 and a locking groove 14. A flexible and compressible material 16 such as synthetic or natural rubber or plastic foam is applied in the upper part of the locking groove 14 as a layer or in local spots, or on the upper part of the locking element 8. The upper part of the locking element 8 is formed such that preferably two horizontally opposite edges press against the compressible material 16a, 16b. In a wood floor with a lamella core, the locking element and the locking groove will be formed across the fibre orientation. The swelling and shrinking in the horizontal direction along the wood fibres is extremely small and will not cause any dimensional changes of the fitting tolerances between the locking element 8 and the locking groove 14. The counter pressure will not have any effect on the locking tolerances and swelling and shrinking of this part of the locking system will easily be compensated by the flexibility of the compressible material even in other wood based materials such as HDF, chipboard or plywood. It is preferred that the upper part of the locking element is wedge formed and that it cooperates with a complementary groove 14. It is preferred that the inner part of the groove 14 is smaller than the groove opening. This design may be used to create a friction connection even without compressible material.



FIGS. 3c and 3d show a locking system with at least three sets of cooperative locking surfaces between the locking element 8 and the locking groove 14. The first 11,12 and the second 21,22 sets are located in the upper part of the locking element wherein the first set is closer to the upper edges 4,5 than the second set. The third set 23,24 is located, preferably below the first and the second sets, preferably on the lower and outer part of the strip 6. The locking surfaces are essentially flat but they may also be curved. The locking surfaces are preferably inclined. Preferably the angle A1 against a horizontal plane HP of the first set of cooperated surfaces should be slightly smaller than the angle A3 of the third set. This geometry may be used to accomplish an easy locking with angling and a strong press fit between the locking element 8 and the locking groove 14 and the panels will be tightly secured to each other such that displacement along the long edges and perpendicular to the short edges will be prevented. Preferably all or some of the cooperating sets of surfaces are made with angles A1, A2, A3 that are between 40-80 degrees against the horizontal plane or even more preferably between 45 and 75 degrees.


In wood cores, such as plywood or wood lamella core, it is preferred the fibre orientation is mainly perpendicular to the length direction of the edges. Layers in the plywood core may be adapted such that at least one set of cooperation surfaces comprises such fibre orientation that will provide a very high friction and a strong locking along the joint.


Such a locking system with a press fit with or without additional preferably flexible friction increasing materials between the locking element and the locking groove, may be made much stronger than conventional locking systems with hooks at the short edges. A horizontally extending groove 35 may be formed in a wall or the locking groove 14 in order to increase the flexibility of one of the locking surfaces 23 in the third set of locking surfaces. A similar mainly vertical groove 35a may also be formed in the strip 6. The forming may be made with rotating tools or carving tools.


The locking element and the locking groove may be formed in a very precise manner if high precision profiling is used where several tools are positioned at the same tool station such that the upper edge 4 and the locking element are formed at the same time in order to eliminate turning of the panels during machining. The locking groove and the upper edge 5 may be formed in the same way. The locking system may also be formed partly or completely with carving tools that allow forming of more complex geometries with undercuts.


The above described slide lock systems are preferably used on long edges and in combination with a fold down locking system on short edges as shown in FIGS. 2a-2d.



FIGS. 3e and 3f show that the flexible material may be combined with or replaced by with a flexible and preferable displaceable tongue 30 in one of the edges that is inserted in a fixation groove 40 and comprises a part, preferably an outer part, that is in contact with an adjacent edge and prevents displacement of the edges along the joint. The flexible tongue 30 is preferably inserted in a fixation groove 40 that is formed in the locking groove 14. The outer part of the tongue preferably comprises small and sharp locking protrusions that increase the longitudinal friction. The tongue may be fixed into the fixation groove 40 with friction and/or glue. One or several tongues 30 may be attached to one edge, preferably the long edge of a floor panel.



FIG. 3e shows a locking system comprising a tongue 10 and a strip on the same edge 2. This geometry saves material when the locking system is formed. The adjacent panel 2′ comprises a tongue groove 9 with an upper 9a and a lower lip 9b that cooperates with the tongue 10 for vertical locking. The locking groove 14 comprises a fixation groove 40 that may be inclined in order to facilitate easy insertion of the flexible tongue 30 into the fixation groove 40. An outer sliding surface 30a of the flexible tongue 30 is during angling sliding against a siding surface 8a on the locking element and the flexible tongue is displaced inwardly and outwardly in the fixation groove. All types of tongues, which comprise at least one part that is flexible, may be used. The outer part of the flexible tongue may be wedge formed and may in locked position press with pre tension into the tongue groove 20a. The upper part of the tongue groove 20a is in this embodiment inclined upwards and outwardly such that the panels may be unlocked with an angling action.


The fixation groove may be formed in the outer part of the strip 6 and it is also possible the replace the flexible tongue 30 with a sharp nail made of for example plastic or metal, preferably aluminium.



FIG. 3f shows a locking system with a flexible tongue 30 that presses against an upper part 21 of the locking element 8. Such a locking system may have a flexible tongue that may is only be displaced with a distance of less than 0.5 mm. Even 0.1-0.2 mm may be sufficient to provide a locking.


All described embodiments may be combined. The slide lock system may also be combined with a conventional one piece tongue 10 and groove 9 system on the short edges. The flexible tongue may be designed such that it allows some displacement especially if a hammer and a tapping block is used. Two panels may also be connected with the short edges partly or completely and may thereafter be angled into a locked position at long edges.


The fixation groove may extend along the whole length or may be a local groove with a length that may be slightly longer than the length of the flexible tongue 30.


The slide lock system may also be used independently to lock panels at one pair of opposite edges and may be combined with any type of locking system at another pair of edges, preferably short edges. The slide lock system may be used to improve the overall locking of the panels and to increase the locking strengths at another pair of edges. This may be an advantage in thin panels or soft core material such as for example PVC where it is difficult to form large locking element. It is also suitable for narrow panels where the length of the locking element is rather small. Material savings may be obtained in for example a lamella core wood material where a separate, stronger and more expensive material usually is used at the short edges to form the strip and the locking element.



FIGS. 4a-4c show that the separate tongue may be attached to the fold panel 1′.



FIGS. 5a-5d show that all known tongues may be used in the short edge locking system. FIG. 5a shows a bow shaped tongue and FIG. 5b shows a bristle tongue. Such tongues are bended in length direction during locking. FIG. 5c shows a wedge tongue that is displaced with a side push action from the long edge such that it is displaced both along and perpendicular to the edge into the tongue groove 20. FIG. 5d shows as side push rigid tongue that is only displaced along the edge such that the protrusions on the tongue overlap the protrusions formed in the tongue groove 20.



FIG. 5e shows a flexible tongue 30 that may be used to prevent displacement along the edge. The tongue comprises friction connections 31 that are located in the inner part of the fixation groove 40 and locking protrusion 32 that may be in contact with the adjacent edge, preferably an outer part of the locking element 8. Tongues as shown in FIGS. 5a and 5b may also be used.



FIG. 5f shows a locking system that comprises a flexible tongue 30 and that is in a locking position whereby one of the edges 2′ is angled to the sub floor. The flexible tongue 30 is in contact with the outer part of the strip when the locking element 8 and the locking groove 14 overlaps each other. This specific geometry prevents separation of the edges during angling.



FIGS. 6a-6f show that all known fold down systems may be adapted to a locking system according to an embodiment of the invention by removing a part the locking element and preferably a part of the strip 6. This will provide cost savings due to less waste and a stronger joint. It is also possible to form a fold down system in very thin floorboards for example with a thickness of about 4-6 mm. FIG. 6d shows a side push system with a wedge shaped tongue and FIG. 6e shows a side push system with a tongue comprising protrusions. Even one-piece systems with a machined tongue as shown in FIG. 6f may be used. A short strip 6 provides a much easier machining of the undercut groove 41. This groove 41 may also be formed with carving



FIG. 6d shows that all shown fold down locking systems may be adjusted such that the edge 6a may be formed without a protruding strip 6 and the tongue 30 may lock vertically upwards and downwards.



FIGS. 7a-7b show preferred embodiments. The long side locking system comprises a friction element 15, which in this embodiment is located on the upper part of the locking element 8, and that cooperates with a friction groove 17. One advantage is that no compressible material 16 is applied in the active locking surfaces 9a,9b,10a,10b,3,4,11,12 that lock the panels vertically and horizontally.



FIG. 7c shows that the friction may be improved if friction cavities 18 are formed on the upper part of the locking element 8 or in the friction element 15. Such cavities form expansion spaces for the flexible material 16 that may be applied with lower requirements on production tolerances. The cavities are preferably formed with a screw cutter as describe in WO2010/087752. Friction cavities 18′ may also be formed on other parts of the locking system for example the outer part of the strip 6.



FIGS. 8a and 8b show that known locking systems, as shown in FIG. 8a, may easily be converted to a locking system according to an embodiment of the invention, as shown in FIG. 8b, and that the new locking system may be compatible with the old locking system. Friction cavities 18 are formed in the upper part of the locking element with a screw cutter, compressible material 16 is preferably inserted essentially in the groove along the whole long edge or in parts thereof and the locking element on the short edges is removed. A flexible tongue may also be inserted into the long edge as described above.


The panels are installed such that a long edge 2″ of a new panel in a second row is put at an angle against a long edge 2 of a first panel installed in a previous row and displaced until its short edge 1′ is in contact with a short edge 1 of a second panel installed in the second row. The new panel is angled down whereby the flexible tongue 30 locks the short edges 1,1′ vertically. The long edges comprise a locking system with a friction connection that prevents displacement of the panels along the long edges 2,2′,2″.



FIG. 9a shows that several friction elements 15,15′ and friction grooves 17,17′ with compressible material 16,16, may be provided.



FIG. 9b shows that the protruding strip 6 at short edges may be replaced by overlapping upper edges 32, 33 above the separate tongue 30. It is of course possible to use both overlapping edges and a locking strip 6 cooperating with a locking cavity 7.



FIG. 9c shows that flexible and compressible material 16 may be applied on the friction element 15.


The long edge locking along the edge may be accomplished with a tight fit, with high friction or with all known methods to prevent displacement along the joint.


Wood floor with a lamella core that generally has a rough surface may be formed with a locking system with tight fit and with rather large cooperating locking surfaces. No flexible materials are needed to obtain sufficient friction. Such long side locking system is extremely difficult to displace, especially when the floor boards are long, for example 1.8-2.4 m and the friction force is generally sufficient to accomplish a locking which keeps the short edges together during the lifetime of the floor. Only a few small flexible tongues 30 may be provided at the long edges in order to give the necessary extra locking that may be needed in some applications and in very dry conditions when the wood material shrinks.


The locking strength of the slide lock may be increased considerably with a locking strip that is slightly bended and that causes a permanent vertical pressure as shown in FIG. 9d. Sufficient friction may be created even in HDF material that generally is formed with rather smooth surfaces. A strip 6 that in locked position is bended backwards will press the locking element 8 into the locking groove 14 when people walk on the floor or when furniture is applied on the surface. This will increase the locking strength of the second horizontal connection along the long edges. The locking strength may be increased further if for example a pressing protrusion 23 is formed on the lower part of the strip, preferably under the locking element. Such pressing protrusion 23 may be applied as a separate material on essentially the whole strip 6 or on separate parts along the edge.


Wedge shaped locking elements 8 that are pressed into a cooperating locking groove 14 as shown in FIG. 9d may create a sufficient friction even without a compressible friction material. FIG. 9d shows embodiment that comprises a locking element 8 and locking groove with two sets of cooperating locking surfaces. A first set 11,12 is located closer to the vertical plane than a second set 21,22. The locking surfaces are preferably inclined such that a lower part of the locking element is larger than an upper part. The locking surfaces may be essentially plane or curved. It is preferred that there is a space S between the upper part of the locking element and the locking groove. Such a space S may be used to give more production tolerances. The angle A1,A2 of the cooperating surfaces, or tangent line in case the surfaces are curved, should preferably be larger than about 45 degrees. Preferably the vertical extension of the second set 21,22 of locking surfaces is essentially the same or larger than the vertical extension of the first set 11,12 of locking surfaces. The second set should preferably extend downwards to a level, which is below the first set.


A flexing groove 34, 34′ may be formed in the locking element 8 and/or behind the locking groove 14 in order to increase the flexibility of the walls of the locking element 8 or the locking groove 14. Such flexing groove may also be filled with a flexible material that increases the flexibility further.


A wedge shaped locking element as described above may be used to position the upper edges with a small play of for example of about 0.01-0.10 mm. Such a play will allow the top edges to swell and damages on the upper edges or squeaking sound will be eliminated. Such locking system is also very suitable to use in glue down floor installations or in combination with bevels between the upper joint edges.


The above-described embodiment may of course be combined with friction cavities 18 and flexible material 16 may be inserted between the locking element and the locking groove


The locking system may be formed with two or more sets of locking elements and locking grooves in order to increase the friction. Small friction grooves 23 parallel with the joint edge may also increase the friction.


Glue or wax that cures after some time is also possible to use and may eliminate problems with shrinking and swelling of a pre tensioned locking system. Wax mixed with aluminium oxide particles, which are applied in the locking system, increases the friction considerably.


The long edge locking system may be used with all known vertical folding systems that lock the short edges vertically and horizontally.


The separate tongues are generally factory connected into an edge. Separate lose tongues that are inserted prior to folding or when two short edges are laying flat on the sub floor are not excluded.


The long edge locking system may be formed such that it is displaceable in an angle of 3-5 degrees. This facilitates installation around doors and similar.


The invention has been described above by way of example only and the skilled person will appreciate that various modifications may be made within the scope of the invention as defined by the appended claims.

Claims
  • 1. A flooring system comprising a plurality of rectangular floor panels with short edges and long edges, the short edges being shorter than the long edges, the floor panels are adapted to be installed on a sub floor and connected to each other with a long edge mechanical locking system for locking the floor panels vertically and horizontally, said long edge mechanical locking system comprising a tongue and a tongue groove for mechanically locking together adjacent edges vertical to a horizontal plane, forming a vertical mechanical connection between the floor panels, and a locking element at a first long edge and a locking groove at an opposite second long edge thereby forming a first horizontal mechanical connection between adjacent long edges locking the floor panels to each other in a direction parallel to the horizontal plane and at right angles to said adjacent long edges, wherein the floor panels are provided with a short edge locking connection comprising a separate tongue, for locking adjacent short edges in a first vertical direction, inserted in a fixation groove at a short edge of a floor panel, wherein at least part of the separate tongue is displaceable toward and away from each of the adjacent short edges during locking, and wherein the floor panels are further provided with a locking strip and a locking cavity for locking adjacent short edges in a second vertical direction,wherein the first long edge and opposite second long edge are provided with a second horizontal mechanical connection locking the floor panels to each other along said adjacent long edges, in a direction parallel to the horizontal plane and parallel to said adjacent long edges, when the floor panels are laying flat on the sub floor, andwherein the second horizontal mechanical connection comprises a friction groove on one of the first long edge and the opposite second long edge, and a plurality of wedge shaped locking elements on the other one of the first long edge and the opposite second long edge, the plurality of wedge shaped locking elements being complementary with the friction groove.
  • 2. The flooring system as claimed in claim 1, wherein said second horizontal mechanical connection at the first long edge and opposite second long edge comprises a locking element and locking groove with two sets of cooperating locking surfaces wherein a first set is located closer to a vertical plane and upper joint edges than a second set.
  • 3. The flooring system as claimed in claim 2, wherein the two sets of locking surfaces are inclined such that a lower part of the locking element is larger than an upper part.
  • 4. The flooring system as claimed in claim 2, wherein the vertical extension of the second set of locking surfaces is the same or larger than a vertical extension of the first set of the two sets of cooperating locking surfaces.
  • 5. The flooring system as claimed in claim 2, wherein the long edge mechanical locking system further comprises a third set of cooperating locking surfaces located at the outer and lower part of a strip having the locking element.
  • 6. The flooring system as claimed in claim 2, wherein there is a space between an upper part of the locking element and the locking groove.
  • 7. The flooring system as claimed in claim 1, wherein said second horizontal mechanical connection comprises a flexible material which is applied in the friction groove.
  • 8. The flooring system as claimed in claim 7, wherein said flexible material is compressed horizontally in two opposite directions.
  • 9. The flooring system as claimed in claim 1, wherein each wedge shaped locking element is located on an upper part of the locking element that cooperates with the friction groove.
  • 10. The flooring system as claimed in claim 9, wherein the friction groove comprises a flexible material.
  • 11. The flooring system as claimed in claim 1, wherein said second horizontal mechanical connection comprises friction cavities located on the locking element.
  • 12. The flooring system as claimed in claim 1, wherein said second horizontal mechanical connection comprises compressible material that is applied in the long edge mechanical locking system at surfaces that do not comprise cooperative active locking surfaces which lock the floor panels vertically to the horizontal plane and horizontally in a direction parallel to the horizontal plane and at right angles to said adjacent long edges.
  • 13. The flooring system as claimed in claim 1, wherein the short edge locking connection is locked with a vertical snap action where the separate tongue is displaced toward and away from each of the adjacent short edges in the fixation groove during vertical displacement.
  • 14. The flooring system as claimed in claim 1, wherein the short edge locking connection is locked when the separate tongue is displaced in the fixation groove along the short edge.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 15/603,913, filed on May 24, 2017, which is a continuation of U.S. application Ser. No. 13/544,281, filed on Jul. 9, 2012, now U.S. Pat. No. 9,725,912, which claims benefit of Provisional Application No. 61/506,282, filed Jul. 11, 2011. The entire contents of each of U.S. application Ser. No. 15/603,913, U.S. application Ser. No. 13/544,281 and Provisional Application No. 61/506,282 are hereby expressly incorporated by reference herein.

US Referenced Citations (700)
Number Name Date Kind
87853 Kappes Mar 1869 A
108068 Utley Oct 1870 A
124228 Stuart Mar 1872 A
213740 Conner Apr 1879 A
274354 McCarthy et al. Mar 1883 A
316176 Ransom Apr 1885 A
634581 Miller Oct 1899 A
861911 Stewart Jul 1907 A
1194636 Joy Aug 1916 A
1723306 Sipe Aug 1929 A
1743492 Sipe Jan 1930 A
1809393 Rockwell Jun 1931 A
1902716 Newton Mar 1933 A
2026511 Storm Dec 1935 A
2027292 Rockwell Jan 1936 A
2110728 Hoggatt Mar 1938 A
2142305 Davis Jan 1939 A
2204675 Grunert Jun 1940 A
2266464 Kraft Dec 1941 A
2277758 Hawkins Mar 1942 A
2430200 Wilson Nov 1947 A
2596280 Nystrom May 1952 A
2732706 Friedman Jan 1956 A
2740167 Rowley Apr 1956 A
2858584 Gaines Nov 1958 A
2863185 Riedi Dec 1958 A
2865058 Andersson Dec 1958 A
2889016 Warren Jun 1959 A
3023681 Worson Mar 1962 A
3077703 Bergstrom Feb 1963 A
3099110 Spaight Jul 1963 A
3147522 Schumm Sep 1964 A
3172237 Bradley Mar 1965 A
3187612 Hervey Jun 1965 A
3271787 Clary Sep 1966 A
3276797 Humes, Jr. Oct 1966 A
3308588 Von Wedel Mar 1967 A
3325585 Brenneman Jun 1967 A
3331180 Vissing et al. Jul 1967 A
3378958 Parks et al. Apr 1968 A
3396640 Fujihara Aug 1968 A
3512324 Reed May 1970 A
3517927 Kennel Jun 1970 A
3526071 Watanabe Sep 1970 A
3535844 Glaros Oct 1970 A
3572224 Perry Mar 1971 A
3579941 Tibbals May 1971 A
3626822 Koster Dec 1971 A
3640191 Hendrich Feb 1972 A
3694983 Couquet Oct 1972 A
3720027 Christensen Mar 1973 A
3722379 Koester Mar 1973 A
3731445 Hoffmann et al. May 1973 A
3742669 Mansfeld Jul 1973 A
3760547 Brenneman Sep 1973 A
3760548 Sauer et al. Sep 1973 A
3764767 Randolph Oct 1973 A
3778954 Meserole Dec 1973 A
3849235 Gwynne Nov 1974 A
3919820 Green Nov 1975 A
3950915 Cole Apr 1976 A
3994609 Puccio Nov 1976 A
4007767 Colledge Feb 1977 A
4007994 Brown Feb 1977 A
4030852 Hein Jun 1977 A
4037377 Howell et al. Jul 1977 A
4041665 de Munck Aug 1977 A
4064571 Phipps Dec 1977 A
4080086 Watson Mar 1978 A
4082129 Morelock Apr 1978 A
4100710 Kowallik Jul 1978 A
4104840 Heintz et al. Aug 1978 A
4107892 Bellem Aug 1978 A
4113399 Hansen, Sr. et al. Sep 1978 A
4154041 Namy May 1979 A
4169688 Toshio Oct 1979 A
RE30154 Jarvis Nov 1979 E
4196554 Anderson Apr 1980 A
4227430 Janssen et al. Oct 1980 A
4299070 Oltmanns Nov 1981 A
4304083 Anderson Dec 1981 A
4426820 Terbrack Jan 1984 A
4447172 Galbreath May 1984 A
4512131 Laramore Apr 1985 A
4599841 Haid Jul 1986 A
4622784 Black Nov 1986 A
4648165 Whitehorne Mar 1987 A
4819932 Trotter, Jr. Apr 1989 A
4948716 Mihayashi et al. Aug 1990 A
4998395 Bezner Mar 1991 A
5007222 Raymond Apr 1991 A
5026112 Rice Jun 1991 A
5071282 Brown Dec 1991 A
5135597 Barker Aug 1992 A
5148850 Urbanick Sep 1992 A
5173012 Ortwein et al. Dec 1992 A
5182892 Chase Feb 1993 A
5247773 Weir Sep 1993 A
5272850 Mysliwiec et al. Dec 1993 A
5274979 Tsai Jan 1994 A
5281055 Neitzke et al. Jan 1994 A
5293728 Christopher et al. Mar 1994 A
5295341 Kajiwara Mar 1994 A
5344700 McGath et al. Sep 1994 A
5348778 Knipp et al. Sep 1994 A
5373674 Winter, IV Dec 1994 A
5465546 Buse Nov 1995 A
5485702 Sholton Jan 1996 A
5502939 Zadok et al. Apr 1996 A
5548937 Shimonohara Aug 1996 A
5577357 Civelli Nov 1996 A
5587218 Betz Dec 1996 A
5598682 Haughian Feb 1997 A
5616389 Blatz Apr 1997 A
5618602 Nelson Apr 1997 A
5634309 Polen Jun 1997 A
5658086 Brokaw et al. Aug 1997 A
5694730 Del Rincon et al. Dec 1997 A
5755068 Ormiston May 1998 A
5860267 Pervan Jan 1999 A
5899038 Stroppiana May 1999 A
5910084 Koike Jun 1999 A
5950389 Porter Sep 1999 A
5970675 Schray Oct 1999 A
6006486 Moriau Dec 1999 A
6029416 Andersson Feb 2000 A
6052960 Yonemura Apr 2000 A
6065262 Motta May 2000 A
6098354 Skandis Aug 2000 A
6122879 Montes Sep 2000 A
6134854 Stanchfield Oct 2000 A
6145261 Godfrey et al. Nov 2000 A
6164618 Yonemura Dec 2000 A
6173548 Hamar et al. Jan 2001 B1
6182410 Pervan Feb 2001 B1
6203653 Seidner Mar 2001 B1
6210512 Jones Apr 2001 B1
6254301 Hatch Jul 2001 B1
6295779 Canfield Oct 2001 B1
6314701 Meyerson Nov 2001 B1
6324796 Heath Dec 2001 B1
6324809 Nelson Dec 2001 B1
6332733 Hamberger Dec 2001 B1
6339908 Chuang Jan 2002 B1
6345481 Nelson Feb 2002 B1
6358352 Schmidt Mar 2002 B1
6363677 Chen et al. Apr 2002 B1
6385936 Schneider May 2002 B1
6418683 Martensson et al. Jul 2002 B1
6446413 Gruber Sep 2002 B1
6449918 Nelson Sep 2002 B1
6450235 Lee Sep 2002 B1
6490836 Moriau et al. Dec 2002 B1
6505452 Hannig Jan 2003 B1
6546691 Leopolder Apr 2003 B2
6553724 Bigler Apr 2003 B1
6576079 Kai Jun 2003 B1
6584747 Kettler et al. Jul 2003 B2
6588166 Martensson Jul 2003 B2
6591568 Pålsson Jul 2003 B1
6601359 Olofsson Aug 2003 B2
6617009 Chen et al. Sep 2003 B1
6647689 Pletzer et al. Nov 2003 B2
6647690 Martensson Nov 2003 B1
6651400 Murphy Nov 2003 B1
6670019 Andersson Dec 2003 B2
6672030 Schulte Jan 2004 B2
6681820 Olofsson Jan 2004 B2
6682254 Olofsson et al. Jan 2004 B1
6684592 Martin Feb 2004 B2
6685391 Gideon Feb 2004 B1
6729091 Martensson May 2004 B1
6763643 Martensson Jul 2004 B1
6766622 Thiers Jul 2004 B1
6769219 Schwitte et al. Aug 2004 B2
6769835 Stridsman Aug 2004 B2
6802166 Gerhard Oct 2004 B1
6804926 Eisermann Oct 2004 B1
6808777 Andersson et al. Oct 2004 B2
6854235 Martensson Feb 2005 B2
6862857 Tychsen Mar 2005 B2
6865855 Knauseder Mar 2005 B2
6874291 Weber Apr 2005 B1
6880307 Schwitte et al. Apr 2005 B2
6948716 Drouin Sep 2005 B2
7021019 Knauseder Apr 2006 B2
7040068 Moriau et al. May 2006 B2
7051486 Pervan May 2006 B2
7108031 Secrest Sep 2006 B1
7121058 Pålsson Oct 2006 B2
7152383 Wilkinson et al. Dec 2006 B1
7156383 Jacobs Jan 2007 B1
7188456 Knauseder Mar 2007 B2
7219392 Mullet et al. May 2007 B2
7251916 Konzelmann et al. Aug 2007 B2
7257926 Kirby Aug 2007 B1
7337588 Moebus Mar 2008 B1
7377081 Ruhdorfer May 2008 B2
7380383 Olofsson et al. Jun 2008 B2
7441384 Miller et al. Oct 2008 B2
7451578 Hannig Nov 2008 B2
7454875 Pervan et al. Nov 2008 B2
7516588 Pervan Apr 2009 B2
7517427 Sjoberg et al. Apr 2009 B2
7520092 Showers et al. Apr 2009 B2
7533500 Morton et al. May 2009 B2
7556849 Thompson et al. Jul 2009 B2
7568322 Pervan Aug 2009 B2
7584583 Bergelin et al. Sep 2009 B2
7591116 Thiers et al. Sep 2009 B2
7614197 Nelson Nov 2009 B2
7617651 Grafenauer Nov 2009 B2
7621092 Groeke et al. Nov 2009 B2
7621094 Moriau et al. Nov 2009 B2
7634884 Pervan Dec 2009 B2
7637068 Pervan Dec 2009 B2
7644553 Knauseder Jan 2010 B2
7654055 Ricker Feb 2010 B2
7677005 Pervan Mar 2010 B2
7716889 Pervan May 2010 B2
7721503 Pervan et al. May 2010 B2
7726088 Muehlebach Jun 2010 B2
7748176 Harding et al. Jul 2010 B2
7757452 Pervan Jul 2010 B2
7802411 Pervan Sep 2010 B2
7806624 McLean et al. Oct 2010 B2
7827749 Groeke et al. Nov 2010 B2
7841144 Pervan et al. Nov 2010 B2
7841145 Pervan et al. Nov 2010 B2
7841150 Pervan Nov 2010 B2
7849642 Forster et al. Dec 2010 B2
7856789 Eisermann Dec 2010 B2
7861482 Pervan et al. Jan 2011 B2
7866110 Pervan Jan 2011 B2
7896571 Hannig et al. Mar 2011 B1
7900416 Yokubison et al. Mar 2011 B1
7908815 Pervan et al. Mar 2011 B2
7908816 Grafenauer Mar 2011 B2
7913471 Pervan Mar 2011 B2
7930862 Bergelin et al. Apr 2011 B2
7954295 Pervan Jun 2011 B2
7964133 Cappelle Jun 2011 B2
7980039 Groeke Jul 2011 B2
7980041 Pervan Jul 2011 B2
8001741 Duernberger Aug 2011 B2
8006458 Olofsson et al. Aug 2011 B1
8033074 Pervan Oct 2011 B2
8042311 Pervan Oct 2011 B2
8061104 Pervan Nov 2011 B2
8079196 Pervan Dec 2011 B2
8112967 Pervan et al. Feb 2012 B2
8171692 Pervan May 2012 B2
8181416 Pervan et al. May 2012 B2
8191334 Braun Jun 2012 B2
8220217 Muehlebach Jul 2012 B2
8234830 Pervan et al. Aug 2012 B2
8245478 Bergelin Aug 2012 B2
8281549 Du Oct 2012 B2
8302367 Schulte Nov 2012 B2
8336272 Prager et al. Dec 2012 B2
8341914 Pervan et al. Jan 2013 B2
8341915 Pervan et al. Jan 2013 B2
8353140 Pervan et al. Jan 2013 B2
8359794 Biro et al. Jan 2013 B2
8359805 Pervan et al. Jan 2013 B2
8365499 Nilsson et al. Feb 2013 B2
8375673 Evjen Feb 2013 B2
8381476 Hannig Feb 2013 B2
8381477 Pervan et al. Feb 2013 B2
8387327 Pervan Mar 2013 B2
8448402 Pervan et al. May 2013 B2
8499521 Pervan et al. Aug 2013 B2
8505257 Boo et al. Aug 2013 B2
8511031 Bergelin et al. Aug 2013 B2
8522505 Beach Sep 2013 B2
8528289 Pervan et al. Sep 2013 B2
8544230 Pervan Oct 2013 B2
8544232 Wybo Oct 2013 B2
8544233 Pålsson Oct 2013 B2
8544234 Pervan et al. Oct 2013 B2
8572922 Pervan Nov 2013 B2
8578675 Palsson et al. Nov 2013 B2
8590250 Oh Nov 2013 B2
8596013 Boo Dec 2013 B2
8615952 Engström Dec 2013 B2
8621814 Cappelle Jan 2014 B2
8627862 Pervan et al. Jan 2014 B2
8631623 Engström Jan 2014 B2
8635829 Schulte Jan 2014 B2
8640418 Paetrow et al. Feb 2014 B2
8640424 Pervan et al. Feb 2014 B2
8650826 Pervan et al. Feb 2014 B2
8677714 Pervan Mar 2014 B2
8689512 Pervan Apr 2014 B2
8701368 Vermeulen Apr 2014 B2
8707650 Pervan Apr 2014 B2
8713886 Boo et al. May 2014 B2
8733065 Pervan May 2014 B2
8733410 Pervan May 2014 B2
8763341 Pervan Jul 2014 B2
8769905 Pervan Jul 2014 B2
8776473 Pervan et al. Jul 2014 B2
8806832 Kell Aug 2014 B2
8833026 Devos et al. Sep 2014 B2
8844236 Pervan et al. Sep 2014 B2
8857126 Pervan et al. Oct 2014 B2
8869485 Pervan Oct 2014 B2
8887468 Hakansson et al. Nov 2014 B2
8898988 Pervan Dec 2014 B2
8925274 Pervan et al. Jan 2015 B2
8938929 Engström Jan 2015 B2
8959866 Pervan Feb 2015 B2
8973331 Boo Mar 2015 B2
8991055 Cappelle Mar 2015 B2
8997423 Mann Apr 2015 B2
8997430 Vermeulen et al. Apr 2015 B1
9027306 Pervan May 2015 B2
9051738 Pervan et al. Jun 2015 B2
9068360 Pervan Jun 2015 B2
9080329 Döhring Jul 2015 B2
9091077 Boo Jul 2015 B2
9103126 Kell Aug 2015 B2
9103128 Pomberger Aug 2015 B2
9151062 Cappelle et al. Oct 2015 B2
9181697 Masanek, Jr. et al. Nov 2015 B2
9194134 Nygren et al. Nov 2015 B2
9206611 Vermeulen et al. Dec 2015 B2
9212492 Pervan et al. Dec 2015 B2
9216541 Boo et al. Dec 2015 B2
9238917 Pervan et al. Jan 2016 B2
9284737 Pervan et al. Mar 2016 B2
9290948 Capelle Mar 2016 B2
9309679 Pervan et al. Apr 2016 B2
9316002 Boo Apr 2016 B2
9340974 Pervan et al. May 2016 B2
9347227 Ramachandra et al. May 2016 B2
9347469 Pervan May 2016 B2
9359774 Pervan Jun 2016 B2
9366034 Meirlaen et al. Jun 2016 B2
9366036 Pervan Jun 2016 B2
9371654 Capelle Jun 2016 B2
9376821 Pervan et al. Jun 2016 B2
9382716 Pervan et al. Jul 2016 B2
9388584 Pervan et al. Jul 2016 B2
9428919 Pervan et al. Aug 2016 B2
9453347 Pervan et al. Sep 2016 B2
9458634 Derelov Oct 2016 B2
9476202 Clancy et al. Oct 2016 B2
9482012 Nygren et al. Nov 2016 B2
9540825 Ramachandra Jan 2017 B2
9540826 Pervan et al. Jan 2017 B2
9663940 Boo May 2017 B2
9725912 Pervan Aug 2017 B2
9771723 Pervan Sep 2017 B2
9777487 Pervan et al. Oct 2017 B2
9803374 Pervan Oct 2017 B2
9803375 Pervan Oct 2017 B2
9822533 Huang Nov 2017 B2
9856656 Pervan Jan 2018 B2
9874027 Pervan Jan 2018 B2
9945130 Nygren et al. Apr 2018 B2
9951526 Boo et al. Apr 2018 B2
10000935 Kell Jun 2018 B2
10006210 Pervan et al. Jun 2018 B2
10017948 Boo Jul 2018 B2
10113319 Pervan Oct 2018 B2
10125488 Boo Nov 2018 B2
10138636 Pervan Nov 2018 B2
10161139 Pervan Dec 2018 B2
10180005 Pervan et al. Jan 2019 B2
10214915 Pervan et al. Feb 2019 B2
10214917 Pervan et al. Feb 2019 B2
10240348 Pervan et al. Mar 2019 B2
10240349 Pervan et al. Mar 2019 B2
10246883 Derelöv Apr 2019 B2
10352049 Boo Jul 2019 B2
10358830 Pervan Jul 2019 B2
10378217 Pervan Aug 2019 B2
10458125 Pervan Oct 2019 B2
10480196 Boo Nov 2019 B2
10519676 Pervan Dec 2019 B2
10526792 Pervan et al. Jan 2020 B2
10538922 Pervan Jan 2020 B2
10570625 Pervan Feb 2020 B2
10640989 Pervan May 2020 B2
10655339 Pervan May 2020 B2
10669723 Pervan et al. Jun 2020 B2
10724251 Kell Jul 2020 B2
10731358 Pervan Aug 2020 B2
10794065 Boo et al. Oct 2020 B2
10828798 Fransson Nov 2020 B2
20010024707 Andersson et al. Sep 2001 A1
20010034991 Martensson Nov 2001 A1
20010045150 Owens Nov 2001 A1
20020014047 Thiers Feb 2002 A1
20020031646 Chen et al. Mar 2002 A1
20020069611 Leopolder Jun 2002 A1
20020092263 Schulte Jul 2002 A1
20020095894 Pervan Jul 2002 A1
20020108343 Knauseder Aug 2002 A1
20020170258 Schwitte et al. Nov 2002 A1
20020170259 Ferris Nov 2002 A1
20020178674 Pervan Dec 2002 A1
20020178680 Martensson Dec 2002 A1
20020189190 Charmat et al. Dec 2002 A1
20020189747 Steinwender Dec 2002 A1
20020194807 Nelson et al. Dec 2002 A1
20030009971 Palmberg Jan 2003 A1
20030024199 Pervan et al. Feb 2003 A1
20030037504 Schwitte et al. Feb 2003 A1
20030066588 Pålsson Apr 2003 A1
20030084636 Pervan May 2003 A1
20030094230 Sjoberg May 2003 A1
20030101674 Pervan Jun 2003 A1
20030101681 Tychsen Jun 2003 A1
20030145549 Palsson et al. Aug 2003 A1
20030180091 Stridsman Sep 2003 A1
20030188504 Ralf Oct 2003 A1
20030196405 Pervan Oct 2003 A1
20040016196 Pervan Jan 2004 A1
20040031225 Fowler Feb 2004 A1
20040031227 Knauseder Feb 2004 A1
20040049999 Krieger Mar 2004 A1
20040060255 Knauseder Apr 2004 A1
20040068954 Martensson Apr 2004 A1
20040123548 Gimpel et al. Jul 2004 A1
20040128934 Hecht Jul 2004 A1
20040137180 Sjoberg et al. Jul 2004 A1
20040139676 Knauseder Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040159066 Thiers et al. Aug 2004 A1
20040168392 Konzelmann et al. Sep 2004 A1
20040177584 Pervan Sep 2004 A1
20040182033 Wernersson Sep 2004 A1
20040182036 Sjoberg Sep 2004 A1
20040200175 Weber Oct 2004 A1
20040211143 Hanning Oct 2004 A1
20040238001 Risden Dec 2004 A1
20040244325 Nelson Dec 2004 A1
20040250492 Becker Dec 2004 A1
20040261348 Vulin Dec 2004 A1
20050003132 Blix et al. Jan 2005 A1
20050028474 Kim Feb 2005 A1
20050050827 Schitter Mar 2005 A1
20050160694 Pervan Jul 2005 A1
20050166514 Pervan Aug 2005 A1
20050183370 Cripps Aug 2005 A1
20050205161 Lewark Sep 2005 A1
20050210810 Pervan Sep 2005 A1
20050235593 Hecht Oct 2005 A1
20050252130 Martensson Nov 2005 A1
20050252167 Van Horne, Jr. Nov 2005 A1
20050268570 Pervan Dec 2005 A2
20060053724 Braun et al. Mar 2006 A1
20060070333 Pervan Apr 2006 A1
20060101769 Pervan May 2006 A1
20060156670 Knauseder Jul 2006 A1
20060174577 O'Neil Aug 2006 A1
20060179754 Yang Aug 2006 A1
20060185287 Glazer et al. Aug 2006 A1
20060236642 Pervan Oct 2006 A1
20060260254 Pervan Nov 2006 A1
20060272262 Pomberger Dec 2006 A1
20070003366 Wedberg Jan 2007 A1
20070006543 Engström Jan 2007 A1
20070011981 Eiserman Jan 2007 A1
20070022689 Thrush et al. Feb 2007 A1
20070028547 Grafenauer Feb 2007 A1
20070065293 Hannig Mar 2007 A1
20070094969 McIntosh et al. May 2007 A1
20070094985 Grafenauer May 2007 A1
20070108679 Grothaus May 2007 A1
20070113509 Zhang May 2007 A1
20070151189 Yang et al. Jul 2007 A1
20070175156 Pervan et al. Aug 2007 A1
20070193178 Groeke et al. Aug 2007 A1
20070209736 Deringor et al. Sep 2007 A1
20070214741 Llorens Miravet Sep 2007 A1
20080000182 Pervan Jan 2008 A1
20080000185 Duernberger Jan 2008 A1
20080000186 Pervan et al. Jan 2008 A1
20080000187 Pervan et al. Jan 2008 A1
20080005998 Pervan Jan 2008 A1
20080010931 Pervan et al. Jan 2008 A1
20080010937 Pervan et al. Jan 2008 A1
20080028707 Pervan Feb 2008 A1
20080034708 Pervan Feb 2008 A1
20080041008 Pervan Feb 2008 A1
20080053029 Ricker Mar 2008 A1
20080066415 Pervan Mar 2008 A1
20080104921 Pervan May 2008 A1
20080110125 Pervan May 2008 A1
20080134607 Pervan Jun 2008 A1
20080134613 Pervan Jun 2008 A1
20080134614 Pervan Jun 2008 A1
20080155930 Pervan et al. Jul 2008 A1
20080184646 Alford Aug 2008 A1
20080199676 Bathelier et al. Aug 2008 A1
20080216434 Pervan Sep 2008 A1
20080216920 Pervan Sep 2008 A1
20080236088 Hannig et al. Oct 2008 A1
20080295432 Pervan et al. Dec 2008 A1
20080295438 Knauseder Dec 2008 A1
20080302044 Johansson Dec 2008 A1
20090019806 Muehlebach Jan 2009 A1
20090049787 Hannig Feb 2009 A1
20090064624 Sokol Mar 2009 A1
20090100782 Groeke et al. Apr 2009 A1
20090126308 Hannig et al. May 2009 A1
20090133353 Pervan et al. May 2009 A1
20090151290 Liu Jun 2009 A1
20090173032 Prager et al. Jul 2009 A1
20090193741 Capelle Aug 2009 A1
20090193748 Boo Aug 2009 A1
20090193753 Schitter Aug 2009 A1
20090217615 Engstrom Sep 2009 A1
20090241460 Beaulieu Oct 2009 A1
20090249733 Moebus Oct 2009 A1
20090308014 Muehlebach Dec 2009 A1
20100018149 Thiers Jan 2010 A1
20100043333 Hannig et al. Feb 2010 A1
20100083603 Goodwin Apr 2010 A1
20100170189 Schulte Jul 2010 A1
20100173122 Susnjara Jul 2010 A1
20100218450 Braun Sep 2010 A1
20100275541 Prinz Nov 2010 A1
20100281803 Cappelle Nov 2010 A1
20100293879 Pervan et al. Nov 2010 A1
20100300029 Braun et al. Dec 2010 A1
20100300031 Pervan et al. Dec 2010 A1
20100313510 Tang Dec 2010 A1
20100319290 Pervan Dec 2010 A1
20100319291 Pervan et al. Dec 2010 A1
20110016815 Yang Jan 2011 A1
20110030303 Pervan et al. Feb 2011 A1
20110041996 Pervan Feb 2011 A1
20110047922 Fleming, III Mar 2011 A1
20110088344 Pervan et al. Apr 2011 A1
20110088345 Pervan Apr 2011 A1
20110088346 Hannig Apr 2011 A1
20110094178 Braun Apr 2011 A1
20110131916 Chen Jun 2011 A1
20110138722 Hannig Jun 2011 A1
20110154763 Bergelin et al. Jun 2011 A1
20110162312 Schulte Jul 2011 A1
20110167744 Whispell Jul 2011 A1
20110167750 Pervan Jul 2011 A1
20110167751 Engström Jul 2011 A1
20110173914 Engström Jul 2011 A1
20110197535 Baker et al. Aug 2011 A1
20110225921 Schulte Sep 2011 A1
20110225922 Pervan et al. Sep 2011 A1
20110247285 Wybo et al. Oct 2011 A1
20110252733 Pervan Oct 2011 A1
20110271631 Engstrom Nov 2011 A1
20110271632 Cappelle et al. Nov 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20120017533 Pervan et al. Jan 2012 A1
20120031029 Pervan et al. Feb 2012 A1
20120036804 Pervan Feb 2012 A1
20120042598 Vermeulen et al. Feb 2012 A1
20120055112 Engström Mar 2012 A1
20120124932 Schulte et al. May 2012 A1
20120151865 Pervan et al. Jun 2012 A1
20120174515 Pervan Jul 2012 A1
20120174519 Schulte Jul 2012 A1
20120174520 Pervan Jul 2012 A1
20120174521 Schulte et al. Jul 2012 A1
20120192521 Schulte Aug 2012 A1
20120222378 Cappelle et al. Sep 2012 A1
20120240502 Wilson et al. Sep 2012 A1
20120279161 Håkansson et al. Nov 2012 A1
20120304590 Engström Dec 2012 A1
20120324816 Huang Dec 2012 A1
20130008117 Pervan Jan 2013 A1
20130008118 Baert et al. Jan 2013 A1
20130014463 Pervan Jan 2013 A1
20130019555 Pervan Jan 2013 A1
20130025231 Vermeulen Jan 2013 A1
20130025964 Ramachandra et al. Jan 2013 A1
20130042562 Pervan Feb 2013 A1
20130042563 Pervan Feb 2013 A1
20130042564 Pervan et al. Feb 2013 A1
20130042565 Pervan Feb 2013 A1
20130047536 Pervan Feb 2013 A1
20130081349 Pervan et al. Apr 2013 A1
20130111837 Devos et al. May 2013 A1
20130111845 Pervan May 2013 A1
20130145708 Pervan Jun 2013 A1
20130152500 Engström Jun 2013 A1
20130160391 Pervan et al. Jun 2013 A1
20130167467 Vermeulen et al. Jul 2013 A1
20130219806 Carrubba Aug 2013 A1
20130232905 Pervan Sep 2013 A2
20130239508 Pervan et al. Sep 2013 A1
20130263454 Boo et al. Oct 2013 A1
20130263547 Boo Oct 2013 A1
20130283719 Döhring et al. Oct 2013 A1
20130305650 Liu Nov 2013 A1
20130309441 Hannig Nov 2013 A1
20130318906 Pervan et al. Dec 2013 A1
20140007539 Pervan et al. Jan 2014 A1
20140020324 Pervan Jan 2014 A1
20140026513 Bishop Jan 2014 A1
20140033633 Kell Feb 2014 A1
20140033634 Pervan Feb 2014 A1
20140053497 Pervan et al. Feb 2014 A1
20140059966 Boo Mar 2014 A1
20140069043 Pervan Mar 2014 A1
20140090335 Pervan et al. Apr 2014 A1
20140109501 Pervan Apr 2014 A1
20140109506 Pervan et al. Apr 2014 A1
20140123586 Pervan et al. May 2014 A1
20140130437 Cappelle May 2014 A1
20140144096 Vermeulen et al. May 2014 A1
20140150369 Hannig Jun 2014 A1
20140190112 Pervan Jul 2014 A1
20140208677 Pervan et al. Jul 2014 A1
20140223852 Pervan Aug 2014 A1
20140237931 Pervan Aug 2014 A1
20140250813 Nygren et al. Sep 2014 A1
20140260060 Pervan et al. Sep 2014 A1
20140283466 Boo Sep 2014 A1
20140290173 Hamberger Oct 2014 A1
20140305065 Pervan Oct 2014 A1
20140366476 Pervan Dec 2014 A1
20140366477 Kell Dec 2014 A1
20140373478 Pervan et al. Dec 2014 A2
20140373480 Pervan et al. Dec 2014 A1
20150000221 Boo Jan 2015 A1
20150013260 Pervan Jan 2015 A1
20150047284 Cappelle Feb 2015 A1
20150059281 Pervan Mar 2015 A1
20150089896 Pervan et al. Apr 2015 A2
20150113908 Ramachandra et al. Apr 2015 A1
20150121796 Pervan May 2015 A1
20150152644 Boo Jun 2015 A1
20150167318 Pervan Jun 2015 A1
20150176619 Baker Jun 2015 A1
20150211239 Pervan Jul 2015 A1
20150233125 Pervan et al. Aug 2015 A1
20150267419 Pervan Sep 2015 A1
20150300029 Pervan Oct 2015 A1
20150330088 Derelov Nov 2015 A1
20150337537 Boo Nov 2015 A1
20150368910 Kell Dec 2015 A1
20160032596 Nygren et al. Feb 2016 A1
20160060879 Pervan Mar 2016 A1
20160069088 Boo et al. Mar 2016 A1
20160076260 Pervan et al. Mar 2016 A1
20160090744 Pervan et al. Mar 2016 A1
20160153200 Pervan Jun 2016 A1
20160168866 Pervan et al. Jun 2016 A1
20160186426 Boo Jun 2016 A1
20160194884 Pervan et al. Jul 2016 A1
20160201336 Pervan Jul 2016 A1
20160251859 Pervan et al. Sep 2016 A1
20160251860 Pervan Sep 2016 A1
20160281368 Pervan et al. Sep 2016 A1
20160281370 Pervan et al. Sep 2016 A1
20160326751 Pervan Nov 2016 A1
20160340913 Derelöv Nov 2016 A1
20170037641 Nygren et al. Feb 2017 A1
20170081860 Boo Mar 2017 A1
20170254096 Pervan Sep 2017 A1
20170321433 Pervan et al. Nov 2017 A1
20170362834 Pervan et al. Dec 2017 A1
20180001509 Myllykangas et al. Jan 2018 A1
20180001510 Fransson Jan 2018 A1
20180001573 Blomgren et al. Jan 2018 A1
20180002933 Pervan Jan 2018 A1
20180016783 Boo Jan 2018 A1
20180030737 Pervan Feb 2018 A1
20180030738 Pervan Feb 2018 A1
20180119431 Pervan et al. May 2018 A1
20180178406 Fransson et al. Jun 2018 A1
20190024387 Pervan et al. Jan 2019 A1
20190048592 Boo Feb 2019 A1
20190048596 Pervan Feb 2019 A1
20190063076 Boo et al. Feb 2019 A1
20190071879 Thiers et al. Mar 2019 A1
20190093370 Pervan et al. Mar 2019 A1
20190093371 Pervan Mar 2019 A1
20190119928 Pervan et al. Apr 2019 A1
20190127989 Kell May 2019 A1
20190127990 Pervan et al. May 2019 A1
20190169859 Pervan et al. Jun 2019 A1
20190232473 Fransson et al. Aug 2019 A1
20190271165 Boo Sep 2019 A1
20190376298 Pervan et al. Dec 2019 A1
20190394314 Pervan et al. Dec 2019 A1
20200102756 Pervan Apr 2020 A1
20200109569 Pervan Apr 2020 A1
20200149289 Pervan May 2020 A1
20200173175 Pervan Jun 2020 A1
20200224430 Ylikangas et al. Jul 2020 A1
20200263437 Pervan Aug 2020 A1
20200284045 Kell Sep 2020 A1
20200318667 Derelöv Oct 2020 A1
20200354969 Pervan et al. Nov 2020 A1
Foreign Referenced Citations (141)
Number Date Country
201588375 Sep 2010 CN
201110035241.6 Jan 2011 CN
138 992 Jul 1901 DE
142 293 Jul 1902 DE
2 159 042 Jun 1973 DE
25 05 489 Aug 1976 DE
33 43 601 Jun 1985 DE
33 43 601 Jun 1985 DE
39 32 980 Nov 1991 DE
42 15 273 Nov 1993 DE
42 42 530 Jun 1994 DE
196 01 322 May 1997 DE
299 22 649 Mar 2000 DE
200 02 744 Aug 2000 DE
199 40 837 Nov 2000 DE
199 58 225 Jun 2001 DE
202 05 774 Aug 2002 DE
10 2004 001 363 Aug 2005 DE
10 2005 002 297 Aug 2005 DE
10 2006 024 184 Nov 2007 DE
10 2007 018 309 Aug 2008 DE
10 2007 016 533 Oct 2008 DE
10 2007 032 885 Jan 2009 DE
10 2007 035 648 Jan 2009 DE
10 2007 049 792 Feb 2009 DE
10 2009 041 297 Mar 2011 DE
0 013 852 Aug 1980 EP
0 871 156 Oct 1998 EP
1 120 515 Aug 2001 EP
1 146 182 Oct 2001 EP
1 251 219 Oct 2002 EP
1 279 778 Jan 2003 EP
1 350 904 Oct 2003 EP
1 350 904 Oct 2003 EP
1 396 593 Mar 2004 EP
1 420 125 May 2004 EP
1 437 457 Jul 2004 EP
1 437 457 Jul 2004 EP
1 640 530 Mar 2006 EP
1 650 375 Apr 2006 EP
1 650 375 Sep 2006 EP
1 980 683 Oct 2008 EP
2 000 610 Dec 2008 EP
2 236 694 Oct 2010 EP
2 270 291 Jan 2011 EP
2 278 091 Jan 2011 EP
2 270 291 May 2011 EP
2 333 195 Jun 2011 EP
2 388 394 Nov 2011 EP
1.138.595 Jun 1957 FR
2 256 807 Aug 1975 FR
2 810 060 Dec 2001 FR
240629 Oct 1925 GB
376352 Jul 1932 GB
1171337 Nov 1969 GB
2 051 916 Jan 1981 GB
H03-110258 May 1991 JP
H05-018028 Jan 1993 JP
H06-146553 May 1994 JP
H06-2880117 Oct 1994 JP
H06-306961 Nov 1994 JP
H06-322848 Nov 1994 JP
H07-300979 Nov 1995 JP
2900115 Jun 1999 JP
2002-047782 Feb 2002 JP
526 688 May 2005 SE
WO 9426999 Nov 1994 WO
WO 9627721 Sep 1996 WO
WO 9747834 Dec 1997 WO
WO 9822677 May 1998 WO
WO 9966151 Dec 1999 WO
WO 9966152 Dec 1999 WO
WO 0043281 Jul 2000 WO
WO 0047841 Aug 2000 WO
WO 0055067 Sep 2000 WO
WO 0102670 Jan 2001 WO
WO 0102672 Jan 2001 WO
WO 0107729 Feb 2001 WO
WO 2011012105 Feb 2001 WO
WO 0138657 May 2001 WO
WO 0144669 Jun 2001 WO
WO 0144669 Jun 2001 WO
WO 0148332 Jul 2001 WO
WO 0151732 Jul 2001 WO
WO 0151733 Jul 2001 WO
WO 0166877 Sep 2001 WO
WO 0175247 Oct 2001 WO
WO 0177461 Oct 2001 WO
WO 02055809 Jul 2002 WO
WO 02055810 Jul 2002 WO
WO 02081843 Oct 2002 WO
WO 02103135 Dec 2002 WO
WO 03012224 Feb 2003 WO
WO 03016654 Feb 2003 WO
WO 03025307 Mar 2003 WO
WO 03038210 May 2003 WO
WO 03044303 May 2003 WO
WO 03074814 Sep 2003 WO
WO 03083234 Oct 2003 WO
WO 03087497 Oct 2003 WO
WO 03089736 Oct 2003 WO
WO 2004003314 Jan 2004 WO
WO 2004020764 Mar 2004 WO
WO 2004048716 Jun 2004 WO
WO 2004050780 Jun 2004 WO
WO 2004079128 Sep 2004 WO
WO 2004079130 Sep 2004 WO
WO 2004083557 Sep 2004 WO
WO 2004085765 Oct 2004 WO
WO 2005003488 Jan 2005 WO
WO 2005003489 Jan 2005 WO
WO 2005054599 Jun 2005 WO
WO 2006043893 Apr 2006 WO
WO 2006050928 May 2006 WO
WO 2006104436 Oct 2006 WO
WO 2006123988 Nov 2006 WO
WO 2006125646 Nov 2006 WO
WO 2007015669 Feb 2007 WO
WO 2007015669 Feb 2007 WO
WO 2007142589 Dec 2007 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008017281 Feb 2008 WO
WO 2008060232 May 2008 WO
WO 2009066153 May 2009 WO
WO 2009116926 Sep 2009 WO
WO 2010070472 Jun 2010 WO
WO 2010070472 Jun 2010 WO
WO 2010070605 Jun 2010 WO
WO 2010087752 Aug 2010 WO
WO 2011001326 Jan 2011 WO
WO 2011012104 Feb 2011 WO
WO 2011012104 Feb 2011 WO
WO 2011032540 Mar 2011 WO
WO 2011038709 Apr 2011 WO
WO 2011108812 Sep 2011 WO
WO 2011151758 Dec 2011 WO
WO 2011151758 Dec 2011 WO
WO 2012059093 May 2012 WO
WO 2013012386 Jan 2013 WO
Non-Patent Literature Citations (44)
Entry
U.S. Appl. No. 14/503,780, Darko Pervan, filed Oct. 1, 2014, (Cited herein as US Patent Application Publication No. 2015/0013260 A1 of Jan. 15, 2015).
U.S. Appl. No. 15/172,926, Darko Pervan and Agne Pålsson, filed Jun. 3, 2016, (Cited herein as US Patent Application Publication No. 2016/0281368 A1 of Sep. 29, 2016).
U.S. Appl. No. 15/896,571, Darko Pervan, Niclas Håkansson and Per Nygren, filed Feb. 14, 2018, (Cited herein as US Patent Application Publication No. 2019/0093370 A1 of Mar. 28, 2019).
U.S. Appl. No. 16/143,610, Darko Pervan, filed Sep. 27, 2018, (Cited herein as US Patent Application Publication No. 2019/0024387 A1 of Jan. 24, 2019).
U.S. Appl. No. 16/163,088, Darko Pervan, filed Oct. 17, 2018, (Cited herein as US Patent Application Publication No. 2019/0048596 A1 of Feb. 14, 2019).
U.S. Appl. No. 16/224,951, Darko Pervan and Tony Pervan, filed Dec. 19, 2018, (Cited herein as US Patent Application Publication No. 2019/0119928 A1 of Apr. 25, 2019).
U.S. Appl. No. 16/269,806, Darko Pervan and Tony Pervan, filed Feb. 7, 2019, (Cited herein as US Patent Application Publication No. 2019/0169859 A1 of Jun. 6, 2019).
U.S. Appl. No. 16/419,660, Christian Boo, filed May 22, 2019, (Cited herein as US Patent Application Publication No. 2019/0271165 A1 of Sep. 5, 2019).
U.S. Appl. No. 16/439,827, Darko Pervan, filed Jun. 13, 2019, (Cited herein as US Patent Publication No. 2020/0102756 A1 of Apr. 2, 2020).
U.S. Appl. No. 16/581,990, Darko Pervan, filed Sep. 25, 2019.
U.S. Appl. No. 16/713,373, Roger Ylikangas, Karl Quist, Anders Nilsson and Caroline Landgård, filed Dec. 13, 2019.
U.S. Appl. No. 16/781,301, Darko Pervan, filed Feb. 4, 2020.
U.S. Appl. No. 16/581,990, Pervan.
U.S. Appl. No. 16/713,373, Ylikangas et al.
U.S. Appl. No. 16/781,301, Pervan.
International Search Report dated Oct. 1, 2012 in PCT/SE2012/050817, Swedish Patent Office, Stockholm, Sweden, 9 pages.
Extended European Search Report dated Apr. 30, 2015 in EP 12811602.7, European Patent Office, Munich, DE, 4 pages.
Extended European Search report dated Oct. 9, 2019 in EP 19183301.1, European Patent Office, Munich, DE, 12 pages.
Välinge Innovation AB, Technical Disclosure entitled “Mechanical locking for floor panels with a flexible bristle tongue,” IP.com No. IPCOM000145262D, Jan. 12, 2007, IP.com PriorArtDatabase, 57 pages (VA033).
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA-038 Mechanical Locking of Floor Panels With Vertical Folding,” IP com No. IPCOM000179246D, Feb. 10, 2009, IP.com Prior Art Database, 59 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA043 5G Linear Slide Tongue,” IP com No. IPCOM000179015D, Feb. 4, 2009, IP.com Prior Art Database, 126 pages.
Engstrand, Ola (Owner)/Välinge Innovation AB, Technical Disclosure entitled “VA043b PCT Mechanical Locking of Floor Panels,” IP com No. IPCOM000189420D, Nov. 9, 2009, IP.com Prior Art Database, 62 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA055 Mechanical locking system for floor panels,” IP com No. IPCOM000206454D, Apr. 27, 2011, IP.com Prior Art Database, 25 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA058 Rocker Tongue,” IP com No. IPCOM000203832D, Feb. 4, 2011, IP.com Prior Art Database, 22 pages.
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA066b Glued Tongue,” IP com No. IPCOM000210865D, Sep. 13, 2011, IP.com Prior Art Database, 19 pages.
Pervan, Darko (Inventor)/Välinge Flooring Technology AB, Technical Disclosure entitled “VA067 Fold Slide Loc,” IP com No. IPCOM000208542D, Jul. 12, 2011, IP.com Prior Art Database, 37 pages.
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA068 Press Lock VFT,” IP com No. IPCOM000208854D, Jul. 20, 2011, IP.com Prior Art Database, 25 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA069 Combi Tongue,” IP com No. IPCOM000210866D, Sep. 13, 2011, IP.com Prior Art Database, 41 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA070 Strip Part,” IP com No. IPCOM000210867D, Sep. 13, 2011, IP.com Prior Art Database, 43 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA071 Pull Lock,” IP com No. IPCOM000210868D, Sep. 13, 2011, IP.com Prior Art Database, 22 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA073a Zip Loc,” IP com No. IPCOM000210869D, Sep. 13, 2011, IP.com Prior Art Database, 36 pages.
LifeTips, “Laminate Flooring Tips,” available at (http://flooring.lifetips.com/cat/61734/laminate-flooring-tips/index.html), 2000, 12 pages.
Pervan, Darko, U.S. Appl. No. 16/581,990 entitled “Mechanical Locking System for Floor Panels,” filed Sep. 25, 2019.
Ylikangas, Roger, et al., U.S. Appl. No. 16/713,373 entitled “Unlocking System for Panels,” filed Dec. 13, 2019.
Pervan, Darko, U.S. Appl. No. 16/781,301 entitled “Mechanical Locking of Floor Panels,” filed Feb. 4, 2020.
U.S. Appl. No. 16/861,666, Darko Pervan, filed Apr. 29, 2020.
U.S. Appl. No. 16/861,686, Darko Pervan and Agne Pålsson, filed Apr. 29, 2020.
U.S. Appl. No. 16/908,902, Darko Pervan, filed Jun. 23, 2020.
U.S. Appl. No. 16/861,666, Pervan.
U.S. Appl. No. 16/861,686, Perven et al.
U.S. Appl. No. 16/908,902, Pervan.
Pervan, Darko, U.S. Appl. No. 16/861,666 entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed Apr. 29, 2020.
Pervan, Darko, et al., U.S. Appl. No. 16/861,686 entitled “Mechanical Locking of Floor Panels with a Flexible Bristle Tongue,” filed Apr. 29, 2020
Pervan, Darko, U.S. Appl. No. 16/908,902 entitled “Mechanical Locking System for Floor Panels,” filed Jun. 23, 2020.
Related Publications (1)
Number Date Country
20200087927 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
61506282 Jul 2011 US
Continuations (2)
Number Date Country
Parent 15603913 May 2017 US
Child 16692104 US
Parent 13544281 Jul 2012 US
Child 15603913 US