Mechanical locking system for floor panels

Information

  • Patent Grant
  • 11274453
  • Patent Number
    11,274,453
  • Date Filed
    Tuesday, December 10, 2019
    4 years ago
  • Date Issued
    Tuesday, March 15, 2022
    2 years ago
Abstract
Floor panels are shown, which are provided with a mechanical locking system that may be locked with a vertical displacement of a first panel against a second panel. The locking system includes a first rigid and a second flexible joint edge section with different locking functions. The first edge section provides a horizontal locking and the second section provides a vertical locking.
Description
TECHNICAL FIELD

The disclosure generally relates to the field of mechanical locking systems for floor panels and building panels. The disclosure shows floorboards, furniture components, locking systems and production methods.


FIELD OF APPLICATION OF THE INVENTION

Embodiments of the present invention are particularly suitable for use in floating floors, which are formed of floor panels having of one or more upper layers comprising, e.g., thermoplastic or thermosetting material or wood veneer, an intermediate core of wood-fibre-based material or plastic material and preferably a lower balancing layer on the rear side of the core. Embodiments of the invention can also be used for joining building panels which preferably contain a board material for instance wall panels, ceilings, furniture components and similar.


The following description of prior-art technique, problems of known systems and objects and features of the invention will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular at laminate floors comprising an HDF core and formed as rectangular floor panels with long and shorts edges intended to be mechanically joined to each other on both long and short edges.


The long and short edges are mainly used to simplify the description of the invention. The panels may be square. Floor panels are generally produced with the surface layer pointing downwards in order to eliminate thickness tolerances of the core material. Some embodiments and production methods are shown with the surface pointing upwards in order to simplify the description.


It should be emphasized that embodiments of the invention can be used in any floor panel on long and/or short edges and it may be combined with all types of known locking systems on long or short edges that lock the panels in the horizontal and/or vertical direction.


BACKGROUND OF THE INVENTION

Relevant parts of this background description are also a part of embodiments of the disclosed invention.


Several floor panels on the market are installed in a floating manner with mechanical locking systems formed at the long and short edges. These systems comprise locking means, which lock the panels horizontally and vertically. The mechanical locking systems are usually formed by machining of the core of the panel. Alternatively, parts of the locking system can be formed of a separate material, for instance aluminum or plastic material, which is integrated with the floor panel, i.e. joined with the floor panel in connection with the manufacture thereof.


Laminate flooring usually comprise a 6-8 mm wood based core, a 0.2 mm thick upper decorative surface layer of laminate and a 0.1 mm thick lower balancing layer. The laminate surface and the balancing layer comprise melamine-impregnated paper. The most common core material is fibreboard with high density and good stability usually called HDF—High Density Fibreboard. The impregnated surface and balancing papers are laminated to the core with heat and pressure. HDF material is hard and has a low flexibility especially in the vertical direction perpendicular to the fibre orientation.


Recently a new type of powder based laminate floors has been introduced. Impregnated paper is replaced with a dry powder mix comprising wood fibres, melamine particles, aluminum oxide and pigments. The powder is applied on an HDF core and cured under heat and pressure. Generally high quality HDF is used with a high resin content and low water swelling. Advanced decors may be formed with digital printing. Water based ink is injected into the powder prior to pressing.


Luxury vinyl tile, LVT, flooring with a thickness of 3-6 mm usually comprises a transparent wear layer which may be coated with an ultraviolet, UV, cured polyurethane, PU, lacquer and a decorative plastic foil under the transparent foil. The wear layer and the decorative foil are laminated to one or several core layers comprising a mix of thermoplastic material and mineral fillers. The plastic core may be rather soft and flexible but also rather rigid depending on the filler content.


Wood Plastic Composite floors generally referred to as WPC floors are similar to LVT floors. The core comprises thermosetting material mixed with wood fibre fillers and is generally stronger and much more rigid than the mineral based LVT core.


Thermoplastic material such as PVC, PP or PE may be combined with a mix of wood fibres and mineral particles and this may provide a wide variety of floor panels with different densities and flexibilities.


Moisture resistant HDF with a high resin content, and WPC floors comprise stronger and more flexible core materials than conventional HDF based laminate floors and they are generally produced with a lower thickness.


The above mentioned floor types comprise different core materials with different flexibility, density and strengths. Locking systems formed in one piece with the core must be adapted to such different material properties in order to provide a strong and cost efficient locking function.


Definition of Some Terms

In the following text, the visible surface of the installed floor panel is called “front side” or “floor surface”, while the opposite side of the floor panel, facing the sub floor, is called “rear side”. The edge between the front and rear side is called “joint edge”. By “horizontal plane” is meant a plane, which extends parallel to the front side. Immediately juxtaposed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane. By “vertical locking” is meant locking parallel to the vertical plane. By “horizontal locking” is meant locking parallel to the horizontal plane.


By “up” is meant towards the front side, by “down” towards the rear side, by “inwardly” mainly horizontally towards an inner and centre part of the panel and by “outwardly” mainly horizontally away from the centre part of the panel.


Related Art and Problems Thereof

For mechanical joining of long edges as well as short edges in the vertical direction and horizontal direction perpendicular to the edges several methods may be used. One of the most used methods is the angle-snap method. The long edges are installed by angling.


Horizontal snapping locks the short edges. The vertical connection is generally a tongue and a groove and the horizontal connection is a strip with a locking element in one edge that cooperates with a locking groove in the adjacent edge. Locking by snapping is obtained with a flexible strip that during the initial stage of locking bends downwards and during the final stage of locking snaps upwards such that the locking element is inserted into the locking groove.


Similar locking systems may also be produced with a rigid strip and they are connected with an angling-angling method where both short and long edges are angled into a locked position.


Advanced so-called “fold down locking systems” with a separate and flexible tongue on a short edge generally called “5G systems” have been introduced where both the long and short edges are locked with an angling action. A floor panel of this type is presented in WO 2006/043893. It discloses a floor panel with a short edge locking system comprising a locking element cooperating with a locking groove, for horizontal locking, and a flexible bow shaped so called “banana tongue” cooperating with a tongue groove, for locking in a vertical direction. The flexible bow shaped tongue is inserted during production into a displacement groove formed at the edge. The tongue bends horizontally along the edge during connection and makes it possible to install the panels by vertical movement. Long edges are connected with angling and a vertical scissor movement caused by the same angling action connects short edges. The snapping resistance is low and only a low thumb pressure is needed to press the short edges together during the final stage of the angling. Such a locking is generally referred to as “vertical folding”


Similar floor panels are further described in WO 2007/015669. This invention provides a fold down locking system with an improved flexible tongue so called “bristle tongue” comprising a straight outer tongue edge over substantially the whole length of the tongue. An inner part of the tongue comprises bendable protrusions extending horizontally along the tongue body.


The above known fold down “5G system” has been very successful and has captured a major market share of the premium world laminate and wood flooring markets. The locking is strong and reliable mainly due to the flexibility and pretension of the separate flexible tongue that allows a locking with large overlapping essentially horizontal locking surfaces. The locking strength and installation is only to a minor extent dependent on the properties of the core since the strength and flexibility is obtained with a well-defined tongue made of strong plastic material reinforced with long glass fibres.


The 5G system and similar system have been less successful in the low priced market segments. The major reason is that the cost of the separate tongues and investments in special inserting equipment that is needed to insert a flexible tongue into a displacement groove are still regarded as rather high in relation to the rather low price of the floor panels.


Several attempts have been made to provide a fold down locking system based on a vertical snapping function that may be produced in one piece with the core in the same way as the one piece horizontal snap systems. All such attempts have failed especially when a floor panel comprises an HDF core. This is not a coincidence. The failure is based on major problems related to material properties and production methods. Several of the known locking systems are based on theoretical geometries and designs that have not been tested in industrial applications. One of the main reasons behind the failure is that bending of vertically protruding parts that are used for the vertical locking of edges is limited to about 50% of the floor thickness or to about 4 mm in an 8 mm thick laminate floor panel. As comparison it may be mentioned that a protruding strip for horizontal snapping may extend over a substantial distance from the upper edge and may protrude 8-10 mm beyond the upper edge. This may be used to facilitate a downward bending of the strip and the locking element. In addition a small downward bending of the tongue and upward bending of the upper lip are features that are favorable and may be used to facilitate a horizontal snapping action. Other disadvantages compared to horizontal snapping are that HDF comprises a fibre orientation substantially parallel with the floor surface. The material properties are such that bending of horizontally protruding parts is easier to accomplish than bending of vertically protruding parts. Furthermore, lower parts of an HDF board comprise a higher density and a higher resin content than middle parts and such properties are also favorable for the horizontal snapping systems where the strip is formed in the lower part of the core.


Another circumstance that has supported market introduction of the horizontal one piece snap systems is the fact that a hammer and a knocking block may be used to snap the short edges. Fold down systems are so called tool-less systems and the vertical locking must be accomplished with hand pressure only.


Several attempts have been made to copy the basic principles of the 5G tongue that bends horizontally along its length in an displacement groove during locking and that is very stable in the vertical direction where it is supported over the major part of its width by an upper strong and rigid wall of the displacement groove.


The main problem with one-piece systems based on flexible locking means extending along the joint is the fact that it is difficult to combine a high degree of flexibility in the horizontal direction, that is needed for an easy locking, with a low or preferably non-existent flexibility in the vertical direction that is needed for a high locking strength.


WO 2008/116623 describes a locking system comprising a flexible tongue that bends horizontally along its length. The flexible tongue is formed by jumping tools on an outer or inner part of the fold panel. The jumping tools are used to form cavities above and behind the tongue in order to accomplish flexibility in the length direction of the tongue. The main problem is that the tongue is flexible horizontally but also vertically and the vertical locking strength is very low. The jumping tool forms deep cavities and this reduces the locking strength.


WO 2009/033623 describes a locking system having spring elements that lock adjacent panels vertically. The spring elements are located at an outer part of a locking strip and are formed by a vertical slot located in a locking element at an outer part of the locking strip. During vertical displacement the spring elements are displaced horizontally inwardly by projections formed on the adjacent panel and back again to its initial position. The locking element is used to lock vertically, horizontally and to support the panels such that they are aligned with flat upper edges. Such locking system has several disadvantages. The essentially horizontal contact surfaces located on the locking element may increase the risk for squeaking sound when the panels are moving vertically since the outer part of the strip is not strong enough and is generally much more flexible than the inner part. Locking with a flexible part that moves to its original position cannot create a strong locking and cannot eliminate production tolerances. The forming of a slot in the thicker outer part of the strip is a difficult operation since an unnecessary high amount of material must be removed. Two special tooling stations must be used to for the slots on one short edge and the projections on the other opposite short edge.


WO 2011/001326 describes a one piece locking system where the flexible tongue is formed on the strip panel in a middle section of a core. A deep cut is formed vertically as a cavity with a distance that extends over the major part of the core material and this will reduce the strength of the edge section. Only a few tongues may be formed at an edge and the locking strength is low especially in HDF material where the middle parts have a rather low density and flexibility.


WO 2013/032391 describes a one piece locking system comprising a slit formed in the locking strip. The locking system is mainly intended to lock very thin LVT panels. The locking surfaces are located at the lower part of strip. Such locking systems are less suitable for thicker laminate panels since the large slit that is used to accommodate a locking protrusion results in low locking strength especially due to the fact that the flexibility in the vertical direction is generally larger than the flexibility in the horizontal direction.


The locking systems described above are also difficult to form in a cost efficient way with known production methods.


A one-piece fold down locking system designed such that it may be formed with high-speed equipment in a cost efficient way and with a quality and locking function similar to the advanced 5G systems may be a major advantage.


SUMMARY OF THE INVENTION

An objective of embodiments of the present invention is to provide an improved and more cost efficient fold down locking system for vertical and horizontal locking of adjacent panels wherein the locking system is produced in one piece with the core.


A first specific objective is to provide a locking system wherein a horizontally extending flexible strip may be used to accomplish the vertical and horizontal locking.


A second specific objective is to provide a locking system with essentially horizontally extending locking surfaces for the vertical locking such that a strong locking force may be obtained in the vertical direction.


A third specific objective is to prevent upward bending of flexible parts that are used to obtain a vertical locking of the edges.


A fourth specific objective is to provide several embodiments of locking systems that may be used to meet the specific material properties of different core materials that are used to produce floor panels and furniture components.


A fifth specific objective is to provide locking systems that may be produced with cost efficient methods in a double-end tenor comprising a lower chain and an upper belt that displace the panel in relation to several tool stations.


The above objects of the invention may be achieved by embodiments of the invention.


According to a first aspect of the invention a set of essentially identical floor panels are provided with a mechanical locking system comprising a strip extending horizontally from a lower part of a first edge of a first panel and a downwardly open locking groove formed in an adjacent second edge of a second panel. The strip comprises an upwardly protruding locking element which is configured to cooperate with the locking groove for locking the first edge and the second edge in a horizontal direction parallel to a main plane of the panels and in a vertical direction perpendicularly to the horizontal direction. The locking element and the locking groove comprise an upper and a lower locking surface, which are configured to lock the panels vertically. The strip comprises slits located along the first edge and is configured such that a slit wall is bended horizontally inwardly towards an inner part of the first panel during locking.


The slits may be located closer to an upper part of the first panel than the locking element. Thereby, the slits may be located between the upper part of the first panel and the locking element in a horizontal direction. In a non-restrictive example, the slits may be provided in a thinnest part of the strip. In another non-restrictive example, the slits may be provided in a portion of the strip inside of the thinnest part of the strip.


By a first object being located closer to the upper edge than a second object is here and in the following meant that a horizontal distance between the first object and the upper edge is smaller than a horizontal distance between the second object and the upper edge. This is valid in all aspects and principles of the disclosure, in particular when the object is a locking element, a locking groove, or a slit.


The second edge may be displaced vertically downwards towards the first edge during locking. This includes the case when the second edge is displaced towards the first edge by means of a scissor-like movement, wherein the second edge is gradually displaced towards the first edge from one side edge of the second edge to the other.


By “during locking” is meant at least during an initial stage of the locking. The bending of the slit wall horizontally inwardly towards an inner part of the first panel may occur during an initial stage of the locking.


The slit wall may be further configured to bend horizontally outwardly away from the inner part. The outward bending may occur after the initial stage of the locking. In particular, the outward bending may occur during a final stage of the locking. The slit wall may be configured to be bended at least partly back to an initial position of the slit wall during a final stage of the locking. The initial position of the slit wall may be a position of the slit wall before bending. In a first example, the slit wall is during the final stage bended partly back to the initial position of the slit wall. In a second example, the slit wall is during the final stage bended completely back to the initial position of the slit wall.


The slit wall may be an outer slit wall of the slit. The slit may further comprise an inner slit wall.


There may be at least one slit located along the first edge. In one example, there is one slit located along the first edge. In another example, there is a plurality of slits located along the first edge. Here and in the following, reference will be made only to “slits”.


The slits may extend entirely through the strip.


Alternatively, some of all of the slits may extend partly through the strip. In this case, the slits may be provided in a front side of the strip, thereby being open upwardly, and/or in a rear side of the strip, thereby being open downwardly.


Each slit may be defined by two sidewalls along the first edge. In a first embodiment, the sidewalls are vertical. This type of slits may be formed by means of cutting, punching or carving. In a second embodiment, the sidewalls are inclined or curved. Thereby, there are transition regions at the side edges of each slit such that a depth of the slit increases from a minimal depth at a centre portion of the slit to a maximal depth at a side edge of the slit. This type of slits may be formed by means of milling.


The inner and/or outer slit walls may be vertical. According to alternative embodiments, the inner and/or outer slit walls are inclined or curved.


According to one embodiment, a height of the slits in a thickness direction of the panel may be between 10% and 40%, more preferably between 20% and 30%, of a maximal thickness of the first panel.


A width of a slit may be constant or vary along the first edge and/or in a vertical direction, i.e. along a thickness direction. By “width of the slit” is here meant a length of the slit in a direction perpendicular to the vertical plane at a given vertical distance from the rear side of the panel and at a given horizontal distance from a side edge of the edge. In a first non-limiting example, the slit may be wider at a centre portion of the slit than at its side edges, close to the sidewalls. In a second non-limiting example, the slit may be tapering in a vertical direction downwards. In a third non-limiting example, the slit may be tapering in a vertical direction upwards. Any of the embodiments of the slit above may be combined.


A cross section of the locking groove or a cross section of the locking element may vary along the first and the second edge.


The locking system may in a locked position and along the edges comprise a first rigid edge section and a second flexible edge section comprising one of the slits. Optionally, the second flexible edge section may comprise at least two of the slits, in particular a plurality of slits.


By rigid or essentially rigid is meant that during locking the locking element is horizontally displaced by a distance that is less than 2%-20%, e.g. 5%, of a maximal width of the locking element. Moreover, by flexible is meant that during locking the locking element is horizontally displaced by a distance that is larger than 2%-20%, e.g. 5%, of a maximal width of the locking element.


The first rigid edge section may be configured such that the locking element is in contact with the locking groove and the second flexible edge section may be configured such that there is a space between an inner surface of the locking element and an outer groove wall of the locking groove. In particular, in the first rigid edge section, an inner surface of the locking element may be in contact with an outer groove wall of the locking groove. The space may be provided between essentially the entire inner surface of the locking element and the outer groove wall of the locking groove in the second flexible edge section. Alternatively, the space may be provided only along a vertical distance that corresponds to the active locking surfaces located at the first edge section and configured to lock the panels horizontally. The locking element may engage with the locking groove in a locked position of the panels.


According to one embodiment, the edges may be locked with vertical pretension between lower and upper support surfaces and between upper and lower locking surfaces. The locking element with its upper locking surface may only partly snap back to its original position, preferably less than about 80% of a first inward displacement, and may in a locked position be displaced upwardly in relation unlocked position due to inclined upper and lower locking surfaces. This may increase the locking strength considerably, even in the case when the locking element in locked position is only pressed inwardly about 0.1-0.2 mm.


According to one embodiment, the upper locking surface is provided in the second flexible edge section. The upper locking surface may be removed in the first rigid edge section. Instead, there may be a vertical wall or an essentially vertical wall.


According to one embodiment, the lower locking surface is provided at least in the second edge section. Alternatively, the lower locking surface may be provided along the entire edge of the second panel.


The edge of the first panel may comprise upper and lower stabilizing surfaces that in locked position overlap each other and prevent an upward bending of the slit wall. By overlap is meant that the stabilizing surfaces form a non-zero overlap at least in a direction perpendicular to the vertical plane and also at least along a portion of the edges. The stabilizing surfaces may engage with each other in the locked position. In particular, the stabilizing surfaces may engage with each other with pretension. Moreover, the lower and/or upper stabilizing surfaces may be provided in the second flexible edge section. According to one embodiment, the upper stabilizing surface is a wall portion of a slit. The wall portion may be an upper wall portion of a slit. According to one embodiment, the lower stabilizing surface is an upper portion of the strip. Optionally, the upper portion of the strip may be arranged in an inner part of the strip.


According to a second aspect of the invention a set of essentially identical floor panels are provided having a mechanical locking system comprising a strip extending horizontally from a lower part of a first edge and a downwardly open locking groove formed in an adjacent second edge. The strip comprises a first and a second upwardly protruding locking element. The first locking element is located closer to the upper edge than the second locking element. The first locking element comprises an upper locking surface at its upper and outer part. The second edge comprises a downwardly extending protrusion comprising a lower locking surface at its outer and lower part. The second locking element cooperates with the locking groove and locks the first and the second edge in a horizontal direction parallel to a main plane of a first and a second panel and the upper and lower locking surfaces lock the adjacent edges in a vertical direction perpendicularly to the horizontal direction. The first and the second edge in comprise in locked position a first edge section and a second edge section along the first and the second edge, wherein a cross section of the first locking element or a cross section of the protrusion varies along the first and/or the second edge. The second edge section comprises a first and a second slit extending side by side along the edge. The first slit is located closer to the upper part of the first edge than the second slit. The second slit is formed between the first and the second locking elements. The locking system is configured to be locked with a vertical displacement of the second edge against the first edge wherein a part of the first locking element and a slit wall of the first and the second slits during an initial stage of the vertical displacement is configured to bend horizontally inwards towards an inner part of the first panel and during a final stage of the vertical displacement is configured to bend outwards towards its initial position.


The upper edge may be an upper edge or upper part of the first edge.


The first edge and the second edge may be an edge of the first panel and an edge of the second panel, respectively.


The first edge may comprise upper and lower stabilizing surfaces that in the locked position overlap each other and prevent an upward bending of one of the slit walls.


Embodiments of the second aspect of the invention are largely analogous to embodiments of the first aspect of the invention, wherein reference is made to the above. In particular, the characteristics of the slits, the upper and lower locking surfaces and the stabilizing surfaces are analogous. In addition, the upper stabilizing surface may be a wall portion of a first slit. The wall portion may be an upper wall portion of a first slit.


There may be one first slit and one second slit. Alternatively, there may be a plurality of first and/or second slits.


According to a third aspect of the invention a set of essentially identical floor panels are provided with a mechanical locking system is provided. The panel edges comprise a strip extending horizontally from a lower part of a first edge and a downwardly open locking groove formed in an adjacent second edge. The strip comprises an upwardly protruding locking element comprising an upper locking surface at its upper and inner part and the locking groove comprises a lower locking surface at its outer and lower part. The locking element cooperates with the locking groove and locks the first and the second edge in a horizontal direction parallel to a main plane of a first and a second panel. The upper and lower locking surfaces lock the adjacent edges in a vertical direction perpendicularly to the horizontal direction. The first and the second edge comprise in locked position a first edge section and a second edge section along the first and the second edge, wherein a cross section of the locking element or a cross section of the locking groove varies along the first and/or the second edge. The strip of the second edge section comprises a slit extending along the first edge. The slit is located between the locking element and an upper edge, wherein the locking system is configured to be locked with a vertical displacement of the second edge against the first edge wherein a part of the locking element and a slit wall during an initial stage of the vertical displacement is configured to bend horizontally outwardly and during a final stage of the vertical displacement is configured to bend inwardly towards its initial position.


The first panel, in particular the first edge, may comprise upper and lower stabilizing surfaces that in locked position overlap each other and prevent an upward bending of a part of the locking element.


Embodiments of the third aspect of the invention are largely analogous to embodiments of the first aspect of the invention, wherein reference is made to the above. In particular, the characteristics of the slits and the stabilizing surfaces are analogous. In addition, the slit may be a first slit and the upper stabilizing surface may be an upper wall of a second slit provided in the strip. The first slit may be provided closer to an upper part of the first edge than the second slit. It is noted, however, that according to the third aspect the direction of the bending is reversed as compared to the first aspect.


Additionally, according to one embodiment, there is a space formed between an inner groove wall of the locking groove and the locking element in a locked position of the panels. The space may allow for a horizontal displacement outwardly of the locking element. The space may extend along essentially the entire edge. Alternatively, however, the space may extend along a part of the edge, preferably at least along the second edge section.


According to one embodiment, the upper locking surface is provided in the second edge section. The upper locking surface may be removed in the first edge section. Instead, there may be a vertical wall.


According to one embodiment, the lower locking surface is provided at least in the second edge section. Alternatively, the lower locking surface may be provided along the entire edge of the second panel.


According to a fourth aspect of the invention a set of essentially identical floor panels are provided with a mechanical locking system comprising a strip extending horizontally from a lower part of a first edge and a downwardly open locking groove formed in an adjacent second edge. The strip comprises an upwardly protruding locking element and the second edge comprises a downwardly extending protrusion comprising a lower locking surface at its lower and outer part. The locking element cooperates with the locking groove and locks the first and the second edge in a horizontal direction parallel to a main plane of a first and a second panel. The first and the second edge in locked position comprise a first edge section and a second edge section along the first and the second edge, wherein a cross section of the protrusion varies along the first and/or the second edge. The second edge section comprises a first and a second slit extending side by side along the edge. The first slit is located closer to the upper part of an edge, in particular the first edge, than the second slit. The second slit is configured to accommodate the protrusion and the lower locking surface such that the lower locking surface locks against an upper locking surface located at a lower and inner part of the second slit and locks the edges in a vertical direction. The locking system is configured to be locked with a vertical displacement of the second edge against the first edge wherein a flexible strip part located between the first and the second slit during an initial stage of the vertical displacement is configured to bend horizontally inwardly and during a final stage of the vertical displacement is configured to bend outwardly towards its initial position.


The edge of the first panel, in particular the first edge, may comprise upper and lower stabilizing surfaces that in locked position overlap each other and prevent an upward bending of the flexible strip part.


There may be one first slit and one second slit. Alternatively, there may be a plurality of first and/or second slits.


Embodiments of the fourth aspect of the invention are largely analogous to embodiments of the first aspect of the invention wherein reference is made to the above. In particular, the characteristics of the slits and the stabilizing surfaces are analogous. In addition, the upper stabilizing surface may be a wall portion of a first slit. The wall portion may be an upper wall portion of a first slit.


Furthermore, the upper locking surface may be located at an outer and lower part of the flexible strip part. The flexible strip part may be configured to bend horizontally inwardly into the first slit.


According to one embodiment, the lower locking surface is provided in the second edge section. The lower locking surface may be removed in the first edge section. Instead, there may be a vertical wall.


According to one embodiment, the upper locking surface is provided at least in the second edge section. Alternatively, the upper locking surface may be provided along the entire edge of the second panel.


According to a fifth aspect of the invention a set of essentially identical floor panels are provided with a mechanical locking system comprising a strip extending horizontally from a lower part of a first edge and a first and a second downwardly open locking groove formed in an adjacent second edge. The first locking groove is located closer to the upper edge than the second locking groove. The strip comprises a first upwardly protruding locking element and a second locking element. The first locking element is located closer to the upper edge than the second locking element. The second edge comprises a downwardly extending protrusion comprising a lower locking surface at its lower and inner part. The first locking element cooperates with the first locking groove and locks the first and the second edge in a horizontal direction parallel to a main plane of a first and a second panel. The first and the second edge comprise in locked position a first edge section and a second edge section along the first and the second edge, wherein a cross section of the protrusion varies along the first and/or the second edge. The second edge section comprises a slit configured to accommodate the protrusion and the lower locking surface such that the lower locking surface locks against an upper locking surface located at a lower and inner part of the second locking element and locks the edges in a vertical direction. The locking system is configured to be locked with a vertical displacement of the second edge against the first edge wherein the second locking element during an initial stage of the vertical displacement is configured to bend horizontally and outwardly and during a final stage of the vertical displacement is configured to bend inwardly towards its initial position.


The first panel, in particular the first edge, may comprise upper and lower stabilizing surfaces that in locked position overlap each other and prevent an upward bending of the second locking element.


Embodiments of the fifth aspect of the invention are largely analogous to embodiments of the first aspect of the invention wherein reference is made to the above. In particular, the characteristics of the slits and the stabilizing surfaces are analogous. In addition, in the second edge section the upper locking surface may be provided in an outer and lower part of the slit. It is noted, however, that in the fifth aspect the direction of the bending is reversed as compared to the first aspect.


According to one embodiment, the slit is a first slit and the second edge section further comprises a second slit, wherein the first and the second slit extend side by side along the first edge, the first slit being located closer to an upper part of the first edge than the second slit. If this embodiment is provided with stabilizing surfaces according to any of the embodiments above, the upper stabilizing surface may be a wall portion of the second slit. The wall portion may be an upper wall portion of the second slit.


There may be one first slit and one second slit. Alternatively, there may be a plurality of first and/or second slits.


According to one embodiment, the lower locking surface is provided in the second edge section. The lower locking surface may be removed in the first edge section. Instead, there may be a vertical wall.


According to one embodiment, the upper locking surface is provided at least in the second edge section. Alternatively, the upper locking surface may be provided along the entire edge of the second panel.


According to a sixth aspect of the invention, there is provided a set of essentially identical furniture components provided with a mechanical locking system for locking a first edge of a first furniture component and a second edge of a second furniture component essentially perpendicularly to each other. The first edge comprises a strip extending from the first edge, wherein the strip comprises a locking element. The second edge comprises a locking groove. The locking element is configured to cooperate with the locking groove for locking the first edge and the second edge in a vertical direction perpendicular to an outer surface of the first furniture component and in a horizontal direction perpendicular to an outer surface of the second furniture component. The locking element and the locking groove comprise an upper and a lower locking surface that are configured to lock the furniture components in the vertical direction. The strip comprises a slit located along the first edge, wherein a slit wall of the slit is configured to be bended horizontally inwardly towards an inner part of the first furniture component during locking. The locking system comprises a first rigid edge section and a second flexible edge section along the first and second edges. The second flexible edge section comprises the slit. In a locked position, the first rigid edge section is configured such that the locking element is in contact with the locking groove and the second flexible edge section is configured such that there is a space between an inner surface of the locking element and a groove wall of the locking groove.


The edge of the first furniture component may comprise upper and lower stabilizing surfaces that in locked position overlap each other and prevent an upward bending of the slit wall.


Embodiments of the sixth aspect of the invention are largely analogous to embodiments of the first aspect of the invention wherein reference is made to the above. In particular, the characteristics of the slits, upper and lower locking surfaces, and the stabilizing surfaces are analogous. It is noted, however, that the sixth aspect is directed to furniture components.


According to a seventh aspect of the invention, there is provided a set of essentially identical floor panels provided with a mechanical locking system comprising a strip formed in one piece with a core of a first panel and extending horizontally from a lower part of a first edge of the first panel. The locking system further comprises a downwardly open locking groove formed in an adjacent second edge of a second panel, the strip comprising an upwardly protruding locking element which is configured to cooperate with the locking groove for locking the first edge and the second edge in a horizontal direction parallel to a main plane of the panels and in a vertical direction perpendicularly to the horizontal direction. The locking element and the locking groove comprise an upper and a lower locking surface that are configured to lock the panels vertically. The strip comprises slits located along the first edge, and a slit wall is configured to be bended horizontally inwardly towards an inner part of the first panel during locking. The core has a higher content of cured resins at a lower and outer part than at a lower and inner part.


The resin may be a thermosetting resin.


The lower and outer part may comprise at least a portion of the strip. Alternatively, or additionally, the lower and outer part may comprise a portion of the second panel located inside of and/or below an outer part of the lower locking surface.


The core may have a higher content of cured resins at an upper and outer part than at an upper and inner part.


The upper and outer part may comprise a portion inside of an upper edge of the first panel. Alternatively, or additionally, the upper and outer part may comprise a portion inside of an upper edge of the second panel.


Embodiments of the seventh aspect of the invention are largely analogous to embodiments of the first aspect of the invention wherein reference is made to the above. In particular, the characteristics of the slits, upper and lower locking surfaces, and the stabilizing surfaces are analogous. Additionally, it is emphasized that the feature of having a higher content of cured resins at lower/upper and outer parts than at lower/upper and inner parts may be combined with locking systems according to any of the other aspects of the invention described above.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will in the following be described in connection to exemplary embodiments and in greater detail with reference to the appended exemplary drawings, wherein:



FIGS. 1a-d illustrates main principles according to an embodiment of the invention.



FIGS. 2a-e illustrate production methods to form locking systems.



FIGS. 3a-b illustrate production methods to form locking systems.



FIGS. 4a-b illustrate production methods to form locking systems.



FIGS. 5a-b illustrates punching and carving of core material.



FIGS. 6a-e illustrate an embodiment of a first principle of the invention.



FIGS. 7a-f illustrate locking according to a first principle.



FIGS. 8a-h illustrate forming a locking system designed according to the first principle.



FIGS. 9a-d illustrate forming a locking system designed according to the first principle.



FIGS. 10a-d illustrate an edge of a panel comprising a locking system according to an embodiment of the first principle.



FIGS. 11a-d illustrate an edge of a panel comprising a locking system according to an embodiment of the first principle.



FIGS. 12a-c illustrate an edge of a panel comprising a locking system according to an embodiment of the first principle.



FIGS. 13a-c illustrate an edge of a panel comprising a locking system according to an embodiment of the first principle that is formed with punching.



FIGS. 14a-g illustrate an embodiment of a locking system according to a second principle of the invention.



FIGS. 15a-b illustrate embodiments with increased locking strength and reduced friction.



FIGS. 16a-f illustrate an embodiment of a locking system according to a third principle of the invention.



FIGS. 17a-g illustrate an embodiment of a locking system according to the third principle of the invention.



FIGS. 18a-d illustrate an embodiment of a locking system according to a fourth principle of the invention.



FIGS. 19a-b illustrate an embodiment of a locking system according to the fourth principle of the invention.



FIGS. 20a-f illustrate an embodiment of a locking of a locking system according to the fourth principle of the invention.



FIGS. 21a-d illustrate an embodiment of a locking system according to a fifth principle of the invention.



FIGS. 22a-h illustrate a locking and a forming of a locking system according to the fifth principle of the invention.



FIGS. 23a-h illustrate embodiments according to the fifth principle of the invention.



FIGS. 24a-f illustrate an embodiment of a locking system according to a sixth principle of the invention.



FIGS. 25a-f illustrate an embodiment a locking system according to a seventh principle of the invention.



FIGS. 26a-d illustrate forming of locking systems with screw cutters, jumping tools, rotating tools and carving according to an embodiment of the invention.



FIGS. 27a-b illustrate an embodiment of a locking system for furniture components according to an eighth principle of the invention.



FIGS. 28a-d illustrate a method to strengthen edge portions according to an embodiment.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The embodiments in FIGS. 1a-1d are used to explain some main problems related to flexible locking elements made in one piece with a core and some basic principles of the inventive concept.


Locking systems comprising flexible and bendable parts formed in one piece with the core are to a major extent dependent of the material properties and thickness of the core that may vary between various core materials and between the same type of core materials. Each locking system must be formed with a specific geometry that is optimized in relation to the properties and thickness of the specific floor panel. This means that a locking system must provide a variety of alternative geometries and principles that could be combined in order to meet the requirements of normal tolerances used in a cost efficient high speed production, locking strength, easy and reliable installation. The inventive concept provides several principles that may be combined and may be used to form a locking system in a specific floor panel.



FIG. 1a is a plan view of an edge of a first 1 and a second 1′ panel according to an embodiment. A cutting tool, for example a jumping tool head, a rotating carving tool or a punch, may be used to cut an upwardly and downwardly open slit 20 in the core material 5 and a flexible tongue 10 comprising a locking surface 11 may be formed adjacent to the slit 20. The flexible tongue 10 is provided outwardly of the slit 20. The slit 20 comprises an outer slit wall 20a, an inner slit wall 20b and two slit sidewalls 20c, 20d. The slit and the tongue have a length direction L along the joint and a thickness T in the vertical direction as shown in FIG. 1c. The flexible tongue 10 has a width W in a horizontal direction that is perpendicular to the length direction and to the thickness direction. According to the present embodiment, the width W varies along the first edge in an unlocked position of the panels 1, 1′. Indeed, the width W is larger at a location of the locking surface 11, which protrudes outwardly in the horizontal direction, than at a location along the edge next to the locking surface 11. Moreover, the open slit 20 has a width W′ in a horizontal direction which is perpendicular to the length direction and to the thickness direction. According to the present embodiment, in an unlocked position the width W′ is constant along the first edge as well as in the thickness direction.



FIG. 1b shows the flexible tongue 10 in FIG. 1a in a bended position when an edge of the second panel 1′ presses the flexible tongue 10 and the outer slit wall 20a inwardly during locking. During locking the locking surface 11 engages with the edge of the second panel 1′. Tests of various core materials, especially wood based core materials such as HDF, show that the tongue 10 generally comprises three tongue portions P1, P2, P3 with essentially different properties that will be described next in non-limiting embodiments. The two end portions P1 located close to the slit sidewalls 20c, 20d are only possible to bend slightly inwardly and cannot be used to accommodate a locking surface 11 that must be displaced over a specific distance in order to provide a sufficient locking strength. The middle section P3 may accommodate a locking surface but such tongue part is very easy to bend inwardly but also upwardly as shown in the embodiments in FIGS. 1c and 1d and the locking strength in this part of the flexible tongue is generally not sufficient. According to the present embodiment, only the two active portions P2 located between the end portions P1 and the middle portion P3 comprises sufficient flexibility and sufficient locking strengths. Known flexible tongues are such that only about 20% of the length L of the flexible tongue may be used for a vertical locking of adjacent edges. The major part of the tongue 10 is either not possible to bend or is too weak to provide a sufficient locking strength.


One solution to this problem would be to form a lot of small flexible tongues along the edge configured such that they are rather easy to bend horizontally inwardly during the vertical folding but hard to bend vertically upwards in locked position. This may be accomplished with several small flexible tongues that are not possible to form with the known production methods and especially not tongues which must be formed by rotating tools that form deep cavities in a core material and that are only open in one direction vertically or horizontally. One solution is to form the small tongues with a thickness T that is larger than the width W and this provides a horizontal flexibility that exceeds the vertical flexibility. Removal of material that may be accomplished by forming an open slit 20 or just by removing material from an edge provides major advantages related to forming of an appropriate joint geometry.


Another solution to this problem would be to form a locking system comprising a stabilizing edge section 17 as shown in FIG. 1c that may be used to prevent upward bending of the flexible tongue 10 in locked position. This may be accomplished with a locking system comprising a flexible tongue 10 that in a final locked position is slightly bended such that a part of the tongue 10 overlaps a stabilizing part 17 located above a part of the tongue. An advantage is that the stabilizing part will be most active at the weak middle portion P3 that may be most bended in locked position. Such geometry makes it possible to form flexible tongues 10 comprising sufficient locking strengths and flexibility along 50% or more of the tongue length L.


The locking system according to embodiments of the invention is three dimensional and comprises preferably a first rigid edge section 7a having a vertically protruding locking element 8 for horizontal locking and a second flexible edge section 7b comprising a flexible slit 20 that may be bended inwardly such that a distance between the outer 20a and inner 20b slit walls decreases during bending and/or outwardly such that the distance between the slit walls 20a, 20b increases during bending. The distance may be a minimal distance between the outer 20a and inner 20b slit walls. The first rigid edge section 7a and the second flexible edge section 7b are provided along the edges of the first 1 and second 1′ panels. In FIGS. 1a-d the second flexible edge section 7b is provided in a centre section of the edges of the panels 1, 1′ and first rigid edge sections 7a are provided on both sides of the second flexible edge section 7b. The first rigid edge sections 7a may be provided at corner sections of the edges. According to the present embodiment, there is no locking element 8 provided in the second flexible edge section 7b.



FIGS. 2-5 show production methods that may be used to form three-dimensional locking systems according to embodiments of the invention. In particular, the production methods may be used for producing cavities, protrusions, grooves and slits according to any of the principles of the present disclosure. FIG. 2a shows a tool comprising several rotating saw blades 40 that are displaced against a panel edge 1 and back again. Alternatively, the panel 1 may be displaced against the saw blades 40 and back again. This production method may be used to form cavities 37 or protrusions 36 as shown in FIGS. 2b and 2c.



FIG. 2d shows a top view of a so-called screw cutter 41. This is an advanced production technology that allows high precision and cost efficient forming of protrusions 36 and cavities 37 perpendicular to a panel edge 1 that is displaced in high speed against the screw cutter. WO 2010/087752 provides a detailed description of the screw cutter principle. The resulting protrusions 36 and cavities 37 are shown in FIG. 2e.



FIGS. 3a and 3b show a panel 1 with a surface 2 pointing downwards and carving tool 44 that may be used to formed an undercut groove 38 that is not possible to form with large rotating tools since a tangent line TL to a part of the undercut groove intersects the panel edge. The carving tool is fixed and the panel 1 is displaced against the carving tool. A more detailed description of carving may be found in WO 2013/191632.



FIG. 4a shows a so-called rotating jumping tool head 43 that may be displaced vertically or horizontally against a moving panel edge 1 and that may be used to form a slit 20. FIG. 4b is a side view of a jumping tool head that is displaced vertically up and down but also along the feeding direction of a panel 1. The jumping tool head may move horizontally parallel with the panel edge and with a speed that is somewhat lower than the speed of the panel. Several slits 20 may be formed one after each other in the feeding direction and at high speed. Several jumping tools may also be used. One jumping tool may form a first, a third and a fifth slit 20 and another jumping tool may form a second and a fourth slit.



FIG. 5a shows a rotating punching tool set 45 comprising a punching wheel 45a and a die wheel 45b. Such tools may be used to punch slits 20 or to remove material from a panel 1 comprising for example LVT, WPC or HDF material. The punching process produces residual material 21 that may be recycled. The punched slits may have various shapes, for example oval, circular or rectangular and the walls are preferably vertical. FIG. 5b shows another cost efficient method to form slits 20 with a rotating carving tool 48. The tool rotation is synchronized with the displacement of the panel 1 and each tooth 49 forms one slit at a predetermined position and with a predetermined horizontal extension along an edge of a panel 1. It is not necessary to displace the carving tool vertically. A carving tool 48 may have several sets of teeth 49 and each set may be used to form one cavity. The cavities may have different cross sections depending on the geometry of the teeth. The panel 1 may be displaced along or against the tool rotation.



FIG. 6a shows vertical folding of a second panel 1′ that is angled against a previously installed panel 1″ in a previous row and wherein this angling action also connect a short edge of the second panel 1′ to a short edge of a first panel 1. The short edges of the first 1 and the second 1′ panels are locked with a scissor like movement wherein the short edges are gradually locked from one long edge to the other long edge. The adjacent short edges of the first and the second panels 1, 1′ have along its edges a first joint edge section 7a that preferably becomes active during a first initial step of the folding action and a second joint edge 7b section that becomes active during a second stage of the folding action. It is clear that there may be additional joint edge sections 7a, 7b that subsequently become active. For example, the first joint edge section 7a and the second joint edge section 7b may be arranged alternately, e.g. as {7a, 7b, 7a, . . . , 7a, 7b, 7a} with first joint edge sections 7a at corner sections of the edges. As will be described below, the first joint edge section may be a first rigid edge section 7a and the second joint edge section may be a second flexible edge section 7b.



FIGS. 6b-6e show an embodiment according to a first principle of the invention. A set of similar floor panels 1, 1′ is provided wherein each floor panel preferably comprises a surface layer 2, a core 5, a balancing layer 3 and a first and a second short edge. As shown in FIG. 6b, the adjacent edges are initially formed with a geometry that only allows a locking with a sideways sliding action where the panel edges are inserted into each other with a horizontal displacement along the short edges. The panels are not possible to lock with angling, horizontal snapping or vertical snapping.


The edges are in a second step adjusted and a part of the material at the edges is removed as shown in FIGS. 6c and 6d such that a first short edge of a first floor panel 1 may be locked to an adjacent second edge of a similar second floor panel 1′ with a vertical displacement of the second edge against the first edge. The vertical displacement is a vertical scissor movement caused by the same angling action that is used to connect the long edges of the panels. The first edge comprises a horizontally protruding strip 6 with a vertically protruding locking element 8 at its outer part that cooperates with a downwardly open locking groove 14 formed in the adjacent second edge.


The locking element comprises an inner surface 8a, an outer surface 8b and an upper surface 8c. The inner surface 8a is closer to the upper edge 25 of the first panel 1 than the outer surface 8b. By upper edge 25 of the first panel 1 is meant an upper part of the first edge of the first floor panel 1. The locking groove 14 comprises an outer groove wall 14a, an inner groove wall 14b and an upper groove wall 14c. The outer groove 14a wall is closer to the upper edge 25′ of the second panel 1′ than the inner groove wall 14b. By upper edge 25′ of the second panel 1′ is meant an upper part of the second edge of the second floor panel 1′. The locking element 8 comprises an upper locking surface 11a formed in the outer surface 8b of the locking element 8 that in a locked position of the panels 1, 1′ cooperates with a lower locking surface 11b formed in the inner groove wall 14b and that locks the adjacent edges in a vertical direction. According to the present embodiment, the upper 11a and lower 11b locking surfaces are inclined against a horizontal plane. In non-limiting examples, the inclination angle may be between 0° and 45°, more preferably between 5° and 25°, e.g. 20°. The locking element 8 comprises a first locking surface 12a formed in the inner surface 8a of the locking element 8 that in a locked position cooperates with a second locking surface 12b formed in the outer groove wall 14a and that locks the adjacent edges in a horizontal direction. According to the present embodiment, the first 12a and second 12b locking surfaces are essentially vertical walls. The second edge comprises a projection 26 that is adapted to engage with an indentation 28 in the first edge in a locked position. The edges comprise lower and upper support surfaces 15, 16 that in a locked position cooperate with the upper and lower locking surfaces 11a, 11b and prevent the edges to be displaced vertically downwards and vertically upwards. According to the present embodiment, the lower support surface 15 is provided in the first panel 1 between the upper edge 25 and an inner surface 28a of the indentation 28, and the upper support surface 16 is provided in the second panel 1′ between the upper edge 25′ and an outer surface 26a of the projection 26. Moreover, the lower support surface 15 is provided adjacent to the upper edge 25 and the upper support surface 16 is provided adjacent to the upper edge 25′. According to the present embodiment, the lower and upper support surfaces 15, 16 are horizontal but it is understood that inclined lower and upper support surfaces are equally conceivable.


Adjacent edges comprise in locked position a first essentially rigid edge section 7a and a second flexible edge section 7b as shown in FIGS. 6c and 6d, respectively. The edge sections are characterized in that a cross section of the locking groove 14 and/or a cross section of the locking element 8 varies at a horizontal plane H along the adjacent edges 1, 1′ which are formed with a basic geometry as shown in FIG. 6b that is thereafter modified such that the first 7a and the second 7b cooperating edge sections are formed with different geometries and different locking functions as shown in FIGS. 6c and 6d.


It is understood that according to alternative embodiments the geometries according to FIGS. 6c and 6d may be formed directly without first forming a basic geometry as in FIG. 6b.


The first edge section 7a is preferably a start section that becomes active during a first initial step of the folding action and the second edge section 7b is preferably a section that becomes active during a second step of the folding action.



FIG. 6c shows a first cooperating edge section 7a that is used to prevent edge separation during locking and to lock adjacent edges horizontally in the locked position. The first edge section 7a has no vertical locking function since one of the locking surfaces, the upper 11a or as shown in this preferred embodiment the lower locking surface 11a, has been removed. The first 12a and the second 12b locking surfaces are preferably vertical and they are used to guide the second panel 1′ during the vertical displacement along a vertical plane VP that intersects the upper and outer edge of the first panel 1.



FIG. 6d shows the second edge section 7b that is used to lock the adjacent edges vertically. The second edge 7b section cannot prevent horizontal edge separation and has no horizontal locking function since a part of the locking element 8 and/or the locking groove 14 has been removed in order to form a space S along a horizontal plane H and a slit 20 adjacent to the locking element allows the locking element 8 to be displaced inwardly during locking. The slit 20 is preferably located closer to the upper edge 25 of the first panel 1 than the locking element 8. This inward displacement enables the upper 11a and lower 11b locking surfaces to overlap and lock against each other when the second edge 1′ is displaced vertically along the vertical plane VP until a final position where lower 15 and upper 16 support surfaces are in contact with each other. All shown and described locking systems are primarily intended to be used on the short edges. However, it is not excluded that the disclosed embodiments of locking systems may be used on short and/or long edges and the panels may be locked with a vertical displacement of long and/or short edges.


In FIGS. 6c and 6d the cross section in the first rigid edge section 7a is different from the cross section in the second flexible edge section 7b due to the space S and/or the slit 20 and therefore the cross section varies along the edges.


The panel edges may also comprise a second horizontally extending tongue 50 and a tongue groove 51 formed in the upper part of the panels as shown in FIG. 6d and inclined first and second locking surfaces 12a, 12b (not shown) such that they may be locked with an angling action wherein the upper and lower locking surfaces 11a, 11b may prevent the strip to bend down when a horizontal separation force is applied after locking. This may be used to increase the locking strength at for example at the long and/or short edges, especially in soft LVT material.



FIG. 6e shows that it may be a major advantage to lock the edges with vertical pretension between lower and upper support surfaces 15, 16 and between upper and lower locking surfaces 11a, 11b. The locking element 8 with its upper locking surface 11a at the second edge section 7b will only partly snap back to its original position, preferably less than about 80% of the first inward displacement, and will in locked position be displaced upwardly in relation to an unlocked position due to the inclined upper and lower locking surfaces 11a, 11b. This may increase the locking strength considerably, even in the case when the locking element in locked position is only pressed inwardly about 0.1-0.2 mm.



FIGS. 7a-7c show locking of the first adjacent edge sections 7a. The second panel 1′ is displaced essentially along a vertical plane VP until the first and second locking surface 12a, 12b are in contact with each other and a horizontal edge separation is prevented until the edges are in a final locked position.



FIGS. 7d-7f show locking of the second edge section 7b. A lower part of the second panel slides against a sliding surface 27 formed on the outer surface 8b, which is an outer part of the locking element 8. The separation forces are prevented by the first edge section 7a that is in a locking stage with overlapping first and second locking surfaces 12a, 12b. The locking element 8 adjacent to the slit 20 is pressed inwardly by the lower part of the second panel 1′ until the edges are in a final locking position when the locking element 8 snaps back towards its initial position such that the upper 11a and the lower 11b locking surfaces lock against each other and prevent vertical separation of the adjacent panel edges 1, 1′.



FIGS. 8a-8c show that a screw cutter 41 may be used to remove the outer part of the locking element 8 from a first panel edge 1 in order to form a part of first edge section 7a.



FIGS. 8d-8f show that a jumping tool 43 may be used to form the second flexible section 7b by removing a part of the inner surface 8a of the locking element 8 and a part of the strip 6 in in order to create a space S and to form a slit 20. The jumping tool is initially positioned above the strip 6.



FIGS. 8g and 8h show that similar removal may be obtained with a jumping tool 43 that initially is positioned below the strip. The difference between these two production methods is mainly the fact that more material is removed at the entrance side where the tool initially is positioned than at the exit side. This may be used to form locking systems with a geometry that may be suitable for a strong vertical locking or a strong horizontal locking and the locking system may be adapted to various material properties of the core material. FIG. 8h shows that the thickness T of the flexible locking element 8 may be larger than the width W and such a locking element is easier to bend horizontally inwardly than vertically upwards. Low locking resistance during vertical folding may be combined with a strong vertical locking force in locked position.



FIGS. 9a-9d show that the first rigid edge section 7a may be formed with a jumping tool 43 or a screw cutter 41 that removes a lower part of the locking groove 14 and the lower locking surface 11b.



FIGS. 10a-10b show an embodiment of a first panel 1 comprising two long edges 4a, 4b and a short edge 4c. The panel may be a laminate floor panel comprising an HDF core with a thickness of 6-9 mm. FIG. 10a is a plan view of the panel 1. The short edge 4c may have a width of about 18-20 cm. Four slits 20-1, 20-2, 20-3, 20-4 may be formed in the strip 6 with a jumping tool head comprising a rotating cutting tool with a diameter of for example 4-10 cm. Such rotating cutting tools may have a sufficient capacity to form slits in high speed especially if the vertical displacement of the cutting tool may be as small as about 3-5 mm. FIG. 10b shows a cross section of a part of the first rigid edge section 7a that is located between the slits 20-1, 20-2, 20-3, 20-4 along the edge and preferably at the end portions of the strip 6 adjacent to the long edges 4a, 4c. The outer part of the locking element 8 is removed by a screw cutter 41. FIG. 10c shows a cross section of the second flexible edge section 7b that comprises a slit 20 and an upper locking surface 11a. The shown embodiment comprises five rigid first edge sections 7a and four flexible second edge sections 7b and this is sufficient to provide a strong vertical and horizontal locking especially when the locking element 8 preferably has a thickness that exceeds the width. It is clear, however, that any number of rigid first edge sections 7a and flexible second edge sections 7b may be used. FIGS. 10c and 10d shows that the slit 20-3 may be formed with a jumping tool head 43 that initially is located above the strip 6. According to the present embodiment, a length L2 of an upper part of the slit 20 is larger than a length L1 of the lower part of the slit 20 and a length L3 of the space S. Such joint geometry may be favorable in some core materials and some core thicknesses.



FIGS. 11a-11d show the same basic embodiment as FIGS. 10a-10d. The only difference is that the jumping tool 43 is initially located below the strip 6. The length L2 of the upper part of the slit 20 is smaller than the length L1 of the lower part of the slit 20 and the length L3 of the space S.


A slit 20 that may be formed from above and/or from below provides the advantages that relationships between vertical and horizontal locking surfaces and the flexibility of the flexible edge section may be adjusted in an easy way and adapted to the properties of the core material.



FIGS. 12a-12c show a panel that may be a LVT or WPC floor panel having a core comprising thermoplastic material and fillers with a thickness of about 3-5 mm. The short edge 4c may have a width of about 18-20 cm. The small thickness makes it possible to form more than four slits in the strip 6 with a jumping tool head, for example six slits as shown in FIG. 12a. The shown non-limiting embodiment may comprise preferably up to seven rigid first edge sections 7a and up to six flexible second edge sections 7b and this is sufficient to provide a strong vertical and horizontal locking over essentially the whole short edge 4c in thin core material.



FIGS. 13a-13c show that the number of sections 7a, 7b may be increased further if a punching wheel 45 is used that may remove material such that the slits 20 and protrusions 36 may be formed with essentially vertical walls and with advanced geometries. Such forming is especially suitable for floor panels comprising a core of thermoplastic material such as LVT and WPC core material. Such a locking system may comprise a slit 20 with a length L that is smaller than 2-3 times the floor thickness FT. A short edge may comprise more than ten slits 20.



FIGS. 14a-14g show a second principle of the invention. A locking system is initially formed with a geometry that is not possible to lock even when the edges are displaced sideways along the joint since the horizontal distance from the vertical plane VP to the upper locking surface 11a is larger than the distance from the vertical plane VP to the lower locking surface 11b as shown in FIG. 14a. Material is thereafter removed from the locking element 8 as in the first principle. According to the present embodiment, the outer surface 8b in the first edge section 7a has a concave shape so that a horizontal extension of an upper and a lower portion of the locking element from the vertical plane VP is larger than a horizontal extension of a middle portion of the locking element between the upper and lower portion. Alternatively, however, the outer surface 8b may be planar in a vertical direction. Moreover, a slit 20 is formed in the second edge section 7b, preferably with a very small opening 20e that may be as small as for example 0.05-0.5 mm, e.g. 0.1 mm, or practically even non-existent as long as material above the slit may be separated. FIGS. 14d, 14f show that the first edge section 7a is locked in a similar way as shown in FIGS. 7a-7c. The upper part of the slit 20 comprises an upper stabilizing surface 18 and the upper part of the strip 6 comprises a lower stabilizing surface 19 as shown in FIG. 14e. In an unlocked position of the panels 1, 1′, the upper stabilizing surface 18 is provided inwardly of the lower stabilizing surface 19. The flexible part of the strip 6 is during locking displaced inwardly and the stabilizing surfaces 18, 19 will overlap each other horizontally as shown in FIG. 14e. The flexible part of the strip 6 will during the final stage of the vertical displacement slide back partly towards its initial position but not completely until the upper 11a and lower 11b locking surfaces are in contact with each other and the locking system will be locked with a horizontal pretension and with overlapping upper 18 and lower 19 stabilizing surfaces. There is a space S provided in the second flexible edge section 7b into which the locking element is displaced during locking. In a locked position of the panels 1, 1′, the space is provided between an inner surface 8a of the locking element 8 and an outer groove wall 14a of the locking groove 14. For example, the space S may be formed by removal of material.


As shown in FIG. 1b the bending of a flexible tongue is at its maximum position in the middle portion P3 where the vertical locking strength is low and this middle section may be stabilized with stabilizing surfaces that may overlap each other with for example 0.1-0.5 mm. This is sufficient to stabilize a flexible part formed by a slit 20.


Stabilizing surfaces allow that the length of the slit may be increased and in some applications only one or two slits may be sufficient.



FIGS. 15a and 15b show that a wax layer 22 may be applied on all parts that are in contact with each other, especially on surfaces adjacent to the upper 11a and lower 11b locking surfaces for example the sliding surface 27 and on first 12a and second 12b locking surfaces. This may reduce friction forces during locking. Core material adjacent to the upper and lower locking surfaces 11a, 11b may also be reinforced with for example resins that are injected into the core or applied on the contact surfaces. The present embodiment may be combined with all principles in the disclosure.



FIG. 16a-16f show an embodiment of a locking system according to a third principle of the invention. Such a locking system may be used when a high horizontal strength is needed for example in a floating floor that is installed in a large commercial area. The slit 20 may be formed in the locking element 8 and the first and the second edge section 7a, 7b may comprise a rigid locking element 8′ that is continuous and that extends essentially along the whole edge. FIG. 16c shows a slit 20 that is formed with a jumping tool from above and FIG. 16f shows a slit 20 that is formed from below. Punching may also be used. The present embodiment may be combined with all principles in the disclosure.



FIGS. 17a-17c show that a preformed groove 30 may be formed along essentially the whole locking element 8 and a slit 20 may be formed from below in the second edge section. FIGS. 17d-17f show that the preformed groove may be formed in the lower part of the strip 6 and the slit 20 may be formed from above the locking element. FIG. 17g shows an edge of a first panel 1 comprising a continuous locking element 8′ located between the slit 20 and the upper edge 25 of the first panel 1. According to alternative embodiments (not shown) the preformed groove 30 may extend along a part of the locking element 8. In a first non-limiting example, an extension of the preformed groove 30 is the same or larger than an extension of the slit 20. In a second non-limiting example, the preformed groove 30 extends side by side with the slit 20. The present embodiment may be combined with all principles in the disclosure.



FIGS. 18a-18d show a locking system according to a fourth principle of the invention. The strip 6 in the first panel 1 comprises a first 8 and a second 8′ upwardly protruding locking element. The first locking element 8 is located closer to the upper edge 25 of the first panel 1 than the second locking element 8′. The edge of the second panel 1′ comprises a downwardly extending protrusion 36a. The downwardly extending protrusion 36a is provided outside of a locking groove 14 provided in the second panel 1′. The locking groove 14 is configured to engage with the second locking element 8′ in a locked position of the panels 1, 1′. An upper locking surface 11a is formed in an upper and outer part of the first locking element 8 and a lower locking surface 11b is formed at a lower and outer part of the protrusion 36a.


There is provided a first rigid edge section 7a and a second flexible edge section 7b along the edges of the first 1 and second 1′ panels. The first 7a and second 7b edge sections may be arranged according to any of the embodiments described in the above. FIG. 18b shows that the first rigid edge section 7a may be formed such that the upper 11a or the lower 11b locking surface is removed. The second edge section 7b may be formed with a jumping tool 43 or punching. FIGS. 18c and 18d show the second edge section 7b that comprises a first and a second slit 20, 20′ located horizontally side-by-side. The first slit 20 is located closer to the upper edge 25 of the first panel 1 than the second slit 20′. The slits allow the first locking element 8 and the upper locking surface 11a to be displaced inwardly during locking. The locking system is configured to be locked with a vertical displacement of the second edge against the first edge wherein a part of the first locking element 8 and a slit wall of the first and the second slits during an initial stage of the vertical displacement is configured to bend horizontally inwards towards an inner part of the first panel 1 and during a final stage of the vertical displacement is configured to bend outwards towards an initial position of the part of the first locking element 8.


Preferably, a preformed groove 30 is formed adjacent to the vertical plane VP that intersects the upper edge 25 of the first panel edge 1.



FIGS. 19a, 19b show a plan and perspective view of a short edge of a first panel 1 comprising a locking system according to the fourth principle of the invention. According to this embodiment, there are a five first rigid edge sections 7a and four second flexible edge sections 7b provided alternately along the edge of the first panel 1. The first 7a and second 7b edge sections are illustrated in cross-section along a line A-A and a line B-B, respectively, in the enlargements in FIG. 19a. FIG. 19b illustrates a perspective view of a second edge section 7b. The first 20 and the second 20′ slits are provided along portions of the edge of the first panel 1. According to the present embodiment, the first 20 and the second 20′ slits are provided side by side and have substantially the same extension along the edge, but it is understood that according to alternative embodiments they may have different extensions. In a first example, the first slit 20 has a longer extension than the second slit 20′ along the edge. In a second example, the first slit 20 has a smaller extension than the second slit 20′ along the edge.



FIGS. 20a-20f show that the principles of the invention may be combined, for example the fourth and the second principle. The upper locking surface 11a is formed in an edge of a first panel 1 and is located above the strip 6 and between the locking element 8 and the upper edge 25 of the first panel 1 and the lower locking surface 11b is formed in an edge of a second panel 1′ between the locking groove 14 and the upper edge 25′ of the second panel 1′. There is provided at least one first rigid edge section 7a and at least one second flexible edge section 7b along the edges of the first 1 and second 1′ panels in accordance with any of the embodiment of the disclosure. The second flexible edge section 7b comprises a strip 6 having two slits 20, 20′ and the locking is made with pretension and overlapping upper and lower stabilizing surfaces 18, 19 as described above in relation to the second principle of the invention.



FIGS. 21a-21d show a locking system of edges of a first 1 and a second 1′ panel according to a fifth principle. There is provided at least one first rigid edge section 7a and at least one second flexible edge section 7b along the edges of the first 1 and second 1′ panels in accordance with any of the embodiment of the disclosure. The upper locking surface 11a is formed on the inner surface of the locking element 8 in the second flexible edge section 7b and the lower locking surface 11b is formed on the outer groove wall 14a of the locking groove 14 along the entire edge of the second panel 1′. As shown in FIG. 21b, the first rigid edge section 7a does not comprise any upper locking surface 11a and provides horizontal locking of the panels since the edge of the second panel 1′ comprises a projection 26 that is adapted to engage with an indentation 28 in the edge of the first panel 1 in a locked position. More specifically, a first locking surface 12a in an inner surface 8a of the locking element 8, which is a vertical wall in the first rigid edge section 7a, engages with a second locking surface 12b in an outer groove wall 14a of the locking groove 14, and an upper edge 25 of the first panel 1 engages with an upper edge 25′ of the second panel 1′ for providing horizontal locking. The upper 11a and lower 11b locking surfaces provide vertical locking of the panels 1, 1′. A part of the locking element 8 and a slit wall of the slit 20 is during an initial stage of a vertical displacement of the panels 1, 1′ configured to bend horizontally outwardly and during a final stage of the vertical displacement configured to bend inwardly towards an initial position of the part of the locking element 8. A space S and a slit 20 are provided in the second flexible edge section(s) 7b as shown in FIG. 21c. The space S that preferably extends along essentially the whole edge and that allows a horizontal displacement outwardly of the locking element 8 is formed between an inner groove wall 14b of the locking groove 14 and the locking element 8 in a locked position of the panels 1, 1′. FIG. 21d illustrates a perspective view of the first panel 1 in the first rigid edge section 7a and the second flexible edge section 7b. The upper 11a and lower 11b locking surfaces are preferably essentially horizontal and comprises a locking angle against the horizontal plane that is less than 45 degrees, e.g. 10, 15, 20 or 25 degrees. Such locking surfaces are preferably formed with carving tools.



FIGS. 22a-22c show locking of the first rigid edge section 7a and FIGS. 22d-22f show locking of the flexible second edge section 7b when the locking element 8 is initially displaced outwardly, and inwardly during the final stage of the vertical displacement of the edge of the second panel 1′ against the edge of the first panel 1. As shown in FIG. 22e, the locking element 8 is horizontally displaced outwardly into the space S during locking. FIGS. 22g and 22h show that the slit 20 may be formed with a jumping tool head from above or below, respectively.



FIGS. 23a-23h show embodiments of the invention. FIGS. 23a-23d show that the fifth principle may be combined with the second principle and that a crack 23 in the core material may be used to form upper and lower 18, 19 stabilizing surfaces. In a non-limiting example, the core material may comprise an HDF board that comprises an essentially horizontal fibre orientation. Due to the crack 23, an inner and an outer portion of the strip 6 which initially are joined may be separated during locking when the locking element 8 is displaced outwardly. FIGS. 23e and 23f show that two slits 20, 20′ may be formed in a locking system according to the fifth principle. FIGS. 23g and 23h show that as an alternative the lower locking surfaces 11b may be removed with a jumping tool 43 or a screw cutter 41 in a locking system according to the fifth principle in order to form the rigid first edge section 7a. More generally, it is emphasized that embodiments of all the principles of the invention may be combined.



FIGS. 24a-24f show a sixth principle of the invention. An edge of a first panel 1 comprises a strip 6 with a locking element 8 and an edge of a second panel 1′ comprises a downwardly open locking groove 14. The locking element 8 is configured to engage with the downwardly open locking groove 14 in a locked position. Upper 11a and lower 11b locking surfaces that lock the edge of the first panel 1 to the edge of the second panel 1′ vertically are located at a lower part of the strip 6 and at an outer and lower part 32 of an downwardly extending protrusion 36a, respectively, wherein the protrusion 36a is formed between the locking groove 14 and the upper edge 25′ of the second panel 1′ as shown in FIG. 24a. A part of the protrusion 36a and the lower locking surface 11b is removed by for example a screw cutter or jumping saw blades and a first rigid edge section 7a is formed as shown in FIG. 24b. A second flexible edge section 7b comprises a first slit 20 and a second slit 20′. The first slit 20 is located closer to the upper edge 25 of the first panel 1 than the second slit 20′. The first slit 20 and the second slit 20′ extend along the edge of the second panel 1′. The first 20 and second 20′ slit may extend side by side along the edge. An extension of the first slit 20 may be the same as an extension of the second slit 20′. However, it is equally conceivable that the slits have different extensions along the edge as has been explained above in relation to other principles. The upper locking surface 11a is located at a lower and inner part of the second slit 20′. The first slit 20 provides flexibility such that a flexible strip part 31 located between the first and the second slit may be displaced horizontally inwardly and back again during locking as shown in FIGS. 24d and 24e. The second slit 20′ is used to accommodate the protrusion 36a that during a vertical displacement of the edge of the second panel 1′ towards the edge of the first panel 1 is inserted into the second slit such that the upper 11a and the lower 11b locking surfaces overlap each other and lock the edges of the first 1 and the second 1′ panel vertically. FIG. 24f show that the sixth principle may be combined with the second principle and that the locking system may comprise a flexible strip part 31 that is locked with pretension and upper and lower stabilizing surfaces 18, 19 that stabilize the flexible strip part 31 and prevent upward bending. The locking system is particularly suitable for thin LVT and WPC floors but may also be used in HDF floors and other floor types. An advantage is that the protrusion 36a and the locking element 8 may be strong and rigid since no flexibility of such parts is required to lock the edges with a vertical displacement.



FIGS. 25a-25f show a seventh principle of the invention that is a modification of the sixth principle. An edge of a first panel 1 comprises a strip 6 with a first 8 and a second 8′ locking element 8. The first locking element 8 is located closer to the upper edge 25 of the first panel 1 than the second locking element 8′. An edge of a second panel 1′ comprises a first downwardly open locking groove 14 and a second downwardly open locking groove 14′. The first locking groove 14 is located closer to the upper edge 25′ of the second panel 1′ than the second locking groove 14′. The first locking element 8 and the first locking groove 14 lock the edges horizontally in a locked position of the panels 1, 1′. An upper locking surface 11a is located at a lower and inner part of the second locking element 8′ and a lower 11b locking surface is located at a lower and inner part 33 of a downwardly extending protrusion 36a formed on an edge of the second panel 1′ between the first 14 and the second 14′ locking groove. The upper 11a and lower 11b locking surfaces lock the edges vertically in a locked position of the panels 1, 1′. A part of the protrusion 36a and the lower locking surface 11b is removed by for example a screw cutter or jumping saw blades and a first rigid edge section 7a is formed as shown in FIG. 25b. A second flexible edge section 7b comprises a slit 20 that provides flexibility such that the second locking element 8′ may be displaced horizontally outwardly and at least partly back again during locking as shown in FIGS. 25d and 25e. The slit 20 is used to provide flexibility and to accommodate the protrusion 36a that during a vertical displacement of the edge of the second panel 1′ towards the edge of the first panel 1 is inserted into the slit 20 such that the upper 11a and the lower 11b locking surfaces overlap each other and lock the edges of the first 1 and the second 1′ panel vertically. FIG. 25f shows that the seventh principle may be combined with the second principle as shown in FIG. 23e and the locking system may comprise a flexible outer stabilizing strip part 34 and a second locking element 8′ that is locked with pretension against the protrusion 36a such that upper and lower stabilizing surfaces 18, 19 overlap each other.



FIG. 26a shows an edge of a first panel 1 that is positioned between a chain 46 and a belt 47 of a double-end tenor with its surface 2 pointing downwards. A screw cutter 41 may be used to remove material at an outer part of a strip 6. FIG. 26b shows a jumping tool 43 that is used to form slits 20. FIG. 26c shows rotating tools 42 that are used to form vertical grooves from above and below and FIG. 26d shows that essentially horizontal upper 11a and lower 11b locking surfaces may be formed with carving tools 44 in the vertical grooves formed by rotating tools.



FIGS. 27a and 27b show that all embodiments of the invention disclosed in the above may be used to lock for example furniture components where a second panel 1′ comprising a locking groove 14 is locked vertically and perpendicularly to a first panel 1 comprising a strip 6 and with a locking element 8. The locking groove 8 is configured to engage with the locking groove 14 in a locked position of the panels 1, 1′. The panels 1, 1′ may have a first rigid edge section 7a providing horizontal locking of the panels 1, 1′ and a second flexible edge section 7b comprising a slit 20 and upper 11a and lower 11b locking surfaces as described in the embodiments above. According to the embodiment in FIGS. 27a-b there is a space S provided in the second flexible edge section 7b between an inner surface 8a of the locking element 8 and a groove wall 14a of the locking groove 14. In a locked position, a horizontal distance between the groove wall 14a and an upper part 25 of the first panel 1 is smaller than a horizontal distance between an outer surface 8b of the locking element 8 and the upper part 25 of the first panel 1. Stabilizing surfaces may also be formed according to the embodiments in the above-described principles. An edge of second panel 1′ is preferably covered in an edge banding equipment with an edge material prior to the forming of the locking system such that the lower and outer edge 35 of the second panel is covered with an edge material. Such edges may be used in all embodiments of this disclosure but also in other locking system, which are intended to lock a second panel 1′ perpendicularly to a first panel 1. It is stressed that any, or any combination, of the principles above which mainly have been described in relation to floor panels also are applicable to furniture components or furniture panels. One difference, however, is that front surfaces of the first 1 and the second 1′ panels do not necessarily have to be flush or aligned with each other in a locked position of the panels 1, 1′, as preferably is the case in the case of floor panels. Rather, in the case of furniture components, outer surfaces 52, 52′ as well as inner surfaces 53, 53′ of the panels 1, 1′ are preferably arranged perpendicularly to each other in a locked position. In a non-limiting embodiment, a first and a second pair of furniture components are configured to be locked to each other by means of a locking system according to any or any combination of the principles of the invention. The furniture components of each pair may be parallel to each other. The first and the second pair may be arranged perpendicularly to each other in a locked position of the panels. It is equally conceivable, however, that according to alternative embodiments, the first and the second pair are arranged at an angle to each other in a locked position.



FIGS. 28a-28d show that a core material 5 of a panel 1 may be locally modified such that it becomes more suitable to form flexible and strong edges portions of a locking system.



FIG. 28a shows that a resin, for example a thermosetting resin 24 such as for example melamine formaldehyde, urea formaldehyde or phenol formaldehyde resin, may be applied in liquid or dry powder form on for example a melamine formaldehyde impregnated balancing paper 3 or directly on a core material 5. The resin may also be locally injected into the core with high pressure. The resin may also be applied on the upper part of the core 5 in order to improve moisture properties of the upper edges. FIG. 28b shows that a core material 5, preferably a wood based panel for example a HDF board or a particle board, may be applied on the impregnated paper 3 with the added resin 24 prior to lamination. Alternatively, a powder layer may be applied on the resin 24. FIG. 28c shows a floor board after lamination when the surface layers 2 and the balancing layer 3 have been laminated to the core 5. The resins 24 have penetrated into the core 5 and cured during lamination under heat and pressure. FIG. 28d shows an edge of a first panel 1 and a second panel 1′ with upper and lower parts that are locally strengthened with increased resin content. The first edge 1 comprises a strip 6 formed in one piece with the core 5. The material of the strip 6 is more flexible and comprises a higher resin content than other parts of the core 5. The increased resin content provides a material that is suitable to form a strong and flexible edge parts. A locking system according to one embodiment of the invention comprises a core 5 having a higher content of cured resins, preferably thermosetting resins, at a lower and outer part than at a lower and inner part. A locking system according to another embodiment of the invention comprises a core 5 having a higher content of cured resins, preferably thermosetting resins, at an upper and outer part than at an upper and inner part. These methods may be used also in other locking systems, preferably locking systems that comprise a horizontally protruding strip with a locking element at a lower part of a panel edge. In particular, the locking systems according to any of the principles in this disclosure may be provided with a higher content of cured resins according to the above.


EMBODIMENTS

1. A set of essentially identical floor panels (1, 1′) provided with a mechanical locking system comprising a strip (6) extending horizontally from a lower part of a first edge of a first panel (1) and a downwardly open locking groove (14) formed in an adjacent second edge of a second panel (1′), the strip (6) comprising an upwardly protruding locking element (8) which is configured to cooperate with the locking groove (14) for locking the first edge and the second edge in a horizontal direction parallel to a main plane of the panels and in a vertical direction perpendicularly to the horizontal direction, wherein the locking element (8) and the locking groove (14) comprise an upper (11a) and a lower (11b) locking surface which are configured to lock the panels vertically, wherein

    • the strip (6) comprises slits (20) located along the first edge, and
    • a slit wall (20a) is configured to be bended horizontally inwardly towards an inner part of the first panel (1) during locking, characterized in that
    • the locking system in a locked position and along the edges comprises a first rigid edge section (7a) and a second flexible edge section (7b) comprising one of the slits (20), and that
    • the first rigid edge section (7a) is configured such that the locking element (8) is in contact with the locking groove (14) and the second flexible edge section (7b) is configured such that there is a space (S) between an inner surface (8a) of the locking element (8) and an outer groove wall (14a) of the locking groove (14).


2. The set as in embodiment 1, wherein a cross section of the locking groove (14) or a cross section of the locking element (8) varies along the first and the second edge.


3. The set as in embodiment 1 or 2, wherein the slit wall (20a) is further configured to be bended at least partly back to an initial position of the slit wall (20a) during a final stage of the locking.


4. The set as in any one of the preceding embodiments 1-3, wherein the edge of the first panel (1) comprises upper (18) and lower (19) stabilizing surfaces that in the locked position overlap each other and prevent an upward bending of the slit wall (20a).


5. The set as in any of the preceding embodiments, wherein the first edge and the second edge are locked with vertical pretension between upper (16) and lower (15) support surfaces and between the upper (11a) and lower (11b) locking surfaces.


6. A set of essentially identical floor panels (1, 1′) provided with a mechanical locking system comprising a strip (6) extending horizontally from a lower part of a first edge and a downwardly open locking groove (14) formed in an adjacent second edge, wherein the strip (6) comprises a first (8) and a second (8′) upwardly protruding locking element, the first locking element (8) being located closer to an upper edge (25) of the first edge than the second locking element (8′), wherein the first locking element (8) comprises an upper locking surface (11a) at its upper and outer part, wherein the second edge comprises a downwardly extending protrusion (36a) comprising a lower locking surface (11b) at its outer and lower part, the second locking element (8′) being configured to cooperate with the locking groove (14) and to lock the first and the second edge in a horizontal direction parallel to a main plane of a first and a second panel (1, 1′) and the upper and lower locking surfaces (11a, 11b) being configured to lock the adjacent edges in a vertical direction perpendicularly to the horizontal direction, wherein

    • the first and the second edge in a locked position comprise a first edge section (7a) and a second edge section (7b) along the first and the second edge,
    • a cross section of the first locking element (8) or a cross section of the protrusion (36a) varies along the first and/or the second edge,
    • the second edge section (7b) comprises a first (20) and a second (20′) slit extending side by side along the edge,
    • the first slit (20) is located closer to the upper part (25) of the first edge than the second slit (20),
    • the second slit (20) is formed between the first (8) and the second locking elements (8′),
    • the locking system is configured to be locked with a vertical displacement of the second edge against the first edge, and
    • a part of the first locking element (8) and a slit wall of the first (20) and the second (20′) slits during an initial stage of the vertical displacement is configured to bend horizontally inwards towards an inner part of the first panel (1) and during a final stage of the vertical displacement is configured to bend outwards towards an initial position of said part.


7. The set as in embodiment 6, wherein the first edge comprises upper (18) and lower (19) stabilizing surfaces that in the locked position overlap each other and prevent an upward bending of one of the slit walls.


8. A set of essentially identical floor panels (1, 1′) provided with a mechanical locking system comprising a strip (6) extending horizontally from a lower part of a first edge and a downwardly open locking groove (14) formed in an adjacent second edge, wherein the strip (6) comprises an upwardly protruding locking element (8) comprising an upper locking surface (11a) at its upper and inner part and the locking groove (14) comprises a lower locking surface (11b) at its outer and lower part, the locking element (8) being configured to cooperate with the locking groove (14) and to lock the first and the second edge in a horizontal direction parallel to a main plane of a first and a second panel (1, 1′), the upper and lower locking surfaces (11a, 11b) being configured to lock the adjacent edges in a vertical direction perpendicularly to the horizontal direction, wherein

    • the first and the second edge in a locked position comprise a first edge section (7a) and a second edge section (7b) along the first and the second edge,
    • that a cross section of the locking element (8) or a cross section of the locking groove (14) varies along the first and/or the second edge,
    • the strip (6) of the second edge section (7b) comprises a slit (20) extending along at least a part of the first edge, the slit (20) being located between the locking element (8) and an upper edge (25) of the first edge,
    • the locking system is configured to be locked with a vertical displacement of the second edge against the first edge, and
    • a part of the locking element (8) and a slit wall during an initial stage of the vertical displacement is configured to bend horizontally outwardly and during a final stage of the vertical displacement is configured to bend inwardly towards an initial position of said part.


9. The set as in embodiment 8, wherein the first edge comprises upper (18) and lower (19) stabilizing surfaces that in the locked position overlap each other and prevent an upward bending of a part of the locking element (8).


10. A set of essentially identical floor panels (1, 1′) provided with a mechanical locking system comprising a strip (6) extending horizontally from a lower part of a first edge and a downwardly open locking groove (14) formed in an adjacent second edge, wherein the strip (6) comprises an upwardly protruding locking element (8) and the second edge comprises a downwardly extending protrusion (36a) comprising a lower locking surface (11b) at its lower and outer part (32), the locking element (8) being configured to cooperate with the locking groove (14) and to lock the first and the second edge in a horizontal direction parallel to a main plane of a first and a second panel (1, 1′), wherein

    • the first and the second edge in a locked position comprise a first edge section (7a) and a second edge section (7b) along the first and the second edge,
    • a cross section of the protrusion (36a) varies along the first and/or the second edge,
    • the second edge section comprises a first (20) and a second (20′) slit extending side by side along the first edge, the first slit (20) being located closer to an upper part (25) of the first edge than the second slit (20′),
    • the second slit (20′) is configured to accommodate the protrusion (36a) and the lower locking surface (11b) such that the lower locking surface locks against an upper locking surface (11a) located at a lower and inner part of the second slit (20′) and locks the first and second edges in a vertical direction,
    • the locking system is configured to be locked with a vertical displacement of the second edge against the first edge, and
    • a flexible strip part (31) located between the first (20) and the second (20′) slit during an initial stage of the vertical displacement is configured to bend horizontally inwardly and during a final stage of the vertical displacement is configured to bend outwardly towards an initial position of the flexible strip part (31).


11. The set as in embodiment 10 wherein the first edge comprises upper (18) and lower (19) stabilizing surfaces that in locked position overlap each other and prevent an upward bending of the flexible strip part (31).


12. A set of essentially identical floor panels (1, 1′) provided with a mechanical locking system comprising a strip (6) extending horizontally from a lower part of a first edge and a first (14) and a second (14′) downwardly open locking grooves formed in an adjacent second edge, wherein the first locking groove (14) is located closer to an upper edge (25) of the first edge than the second locking groove (14′), wherein the strip (6) comprises a first upwardly protruding locking element (8) and a second locking element (8′), the first locking element (8) being located closer to the upper edge (25) than the second locking element (8′), wherein the second edge comprises a downwardly extending protrusion (36a) comprising a lower locking surface (11b) at its lower and inner part (33), the first locking element (8) being configured to cooperate with the first locking groove (14) and to lock the first and the second edge in a horizontal direction parallel to a main plane of a first and a second panel (1, 1′), wherein

    • the first and the second edge in a locked position comprise a first edge section (7a) and a second edge section (7b) along the first and the second edge,
    • a cross section of the protrusion (36a) varies along the first and/or the second edge,
    • the second edge section comprises a slit (20) configured to accommodate the protrusion (36a) and the lower locking surface (11b) such that the lower locking surface locks against an upper locking surface (11a) located at a lower and inner part of the second locking element (8′) and locks the edges in a vertical direction,
    • the locking system is configured to be locked with a vertical displacement of the second edge against the first edge, and
    • the second locking element (8′) during an initial stage of the vertical displacement is configured to bend horizontally and outwardly and during a final stage of the vertical displacement is configured to bend inwardly towards an initial position of the second locking element (8′).


13. The set as in embodiment 12, wherein the first edge comprises upper (18) and lower (19) stabilizing surfaces that in locked position overlap each other and prevent an upward bending of the second locking element (8′).


14. A set of essentially identical floor panels (1, 1′) provided with a mechanical locking system comprising a strip (6) formed in one piece with a core (5) of a first panel (1) and extending horizontally from a lower part of a first edge of the first panel (1) and a downwardly open locking groove (14) formed in an adjacent second edge of a second panel (1′), the strip (6) comprising an upwardly protruding locking element (8) which is configured to cooperate with the locking groove (14) for locking the first edge and the second edge in a horizontal direction parallel to a main plane of the panels and in a vertical direction perpendicularly to the horizontal direction, wherein the locking element (8) and the locking groove (14) comprise an upper (11a) and a lower (11b) locking surface which are configured to lock the panels vertically, wherein

    • the strip (6) comprises slits (20) located along the first edge, and
    • a slit wall (20a) is configured to be bended horizontally inwardly towards an inner part of the first panel (1) during locking,
    • the core (5) has a higher content of cured resins at a lower and outer part than at a lower and inner part.


15. The set as in embodiment 14, wherein the resin is a thermosetting resin.

Claims
  • 1. A set of essentially identical floor panels provided with a mechanical locking system comprising a strip extending horizontally from a lower part of a first edge and a downwardly open locking groove formed in an adjacent second edge, the strip comprising a first locking element and a second locking element protruding upwardly, the first locking element being located closer to an upper edge of the first edge than the second locking element, wherein the second locking element is configured to cooperate with the locking groove and to lock the first and the second edge in a horizontal direction parallel to a main plane of a first and a second panel,the first locking element comprises an upper locking surface at its upper and outer part and the second edge comprises a downwardly extending protrusion comprising a lower locking surface at its outer and lower part, the upper and lower locking surfaces being configured to lock the adjacent edges in a vertical direction perpendicularly to the horizontal direction,the first edge and the second edge in a locked position comprise a first edge section and a second edge section along the first and the second edge, a cross section of the first locking element or a cross section of the protrusion varying along the first and/or the second edge, andthe second edge section comprises a first slit and a second slit, the first slit being located closer to the upper edge of the first edge than the second slit.
  • 2. The set according to claim 1, wherein the locking system is configured to be locked with a vertical displacement of the second edge against the first edge.
  • 3. The set according to claim 2, wherein a part of the first locking element and a slit wall of the first and the second slits are configured to bend horizontally inwards towards an inner part of the first panel during an initial stage of the vertical displacement and configured to bend outwards towards an initial position of said part during a final stage of the vertical displacement.
  • 4. The set according to claim 1, wherein the first edge comprises upper and lower stabilizing surfaces that in the locked position overlap each other and prevent an upward bending of one of the slit walls.
  • 5. The set according to claim 4, wherein the upper stabilizing surface is a wall portion of the first slit.
  • 6. The set according to claim 5, wherein the wall portion is an upper wall portion of the first slit.
  • 7. The set according to claim 1, wherein the first edge section is formed such that the upper or the lower locking surface is removed.
  • 8. The set according to claim 1, wherein a preformed groove is formed adjacent to vertical plane that intersects the upper edge of the first panel edge.
  • 9. The set according to claim 1, wherein the first slit is at least partially formed horizontally between the first locking element and upper edge.
  • 10. The set according to claim 1, wherein the second slit is formed between the first and the second locking elements.
  • 11. The set according to claim 1, wherein the first slit and the second slit extend side-by-side along the edge.
Priority Claims (1)
Number Date Country Kind
1550033-3 Jan 2015 SE national
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 15/841,909, filed on Jul. 6, 2017, which is a U.S. national stage of International Application No. PCT/SE2016/050019, filed on Jan. 15, 2016, which claims the benefit of Swedish Application No. 1550033-3, filed on Jan. 16, 2015. The entire contents of each of U.S. application Ser. No. 15/841,909, International Application No. PCT/SE2016/050019, and Swedish Application No. 1550033-3 are hereby incorporated herein by reference in their entirety.

US Referenced Citations (424)
Number Name Date Kind
753791 Fulghum Mar 1904 A
1581345 Healy Apr 1926 A
3077703 Bergstrom Feb 1963 A
3619961 Sterrett et al. Nov 1971 A
3720027 Christensen Mar 1973 A
3889736 Firks Jun 1975 A
3998015 Scott et al. Dec 1976 A
4123885 Scott Nov 1978 A
4426820 Terbrack Jan 1984 A
4698945 Munn Oct 1987 A
4953341 Joos Sep 1990 A
5182892 Chase Feb 1993 A
5274979 Tsai Jan 1994 A
5456053 Fischer Oct 1995 A
5616389 Blatz Apr 1997 A
5735097 Cheyne Apr 1998 A
5845548 Nelson Dec 1998 A
6006486 Moriau et al. Dec 1999 A
6209278 Tychsen Apr 2001 B1
6385936 Schneider May 2002 B1
6490836 Moriau et al. Dec 2002 B1
6505452 Hannig Jan 2003 B1
6715253 Pervan Apr 2004 B2
6769219 Schwitte et al. Aug 2004 B2
6772568 Thiers et al. Aug 2004 B2
6808777 Andersson Oct 2004 B2
6880307 Schwitte et al. Apr 2005 B2
6918220 Pervan Jul 2005 B2
6968664 Thiers Nov 2005 B2
7051486 Pervan May 2006 B2
7081300 Laurence Jul 2006 B2
7121058 Pålsson Oct 2006 B2
7127860 Pervan et al. Oct 2006 B2
7454875 Pervan et al. Nov 2008 B2
7484338 Pervan et al. Feb 2009 B2
7550192 Dempsey Jun 2009 B2
7568322 Pervan Aug 2009 B2
7584583 Bergelin et al. Sep 2009 B2
7617651 Grafenauer Nov 2009 B2
7634884 Pervan Dec 2009 B2
7637068 Pervan Dec 2009 B2
7641963 Grafenauer Jan 2010 B2
7677005 Pervan Mar 2010 B2
7721503 Pervan et al. May 2010 B2
7757452 Pervan Jul 2010 B2
7793471 Hill Sep 2010 B2
7802411 Pervan Sep 2010 B2
7832161 Ligabue Nov 2010 B2
7841144 Pervan et al. Nov 2010 B2
7841145 Pervan et al. Nov 2010 B2
7841150 Pervan Nov 2010 B2
7861482 Pervan et al. Jan 2011 B2
7866110 Pervan Jan 2011 B2
7874118 Schitter Jan 2011 B2
7886497 Pervan Feb 2011 B2
7886785 Young Feb 2011 B2
7896571 Hannig et al. Mar 2011 B1
7900416 Yokubison et al. Mar 2011 B1
7908815 Pervan et al. Mar 2011 B2
7908816 Grafenauer Mar 2011 B2
7930862 Bergelin et al. Apr 2011 B2
7980041 Pervan Jul 2011 B2
8011163 Bazzano Sep 2011 B2
8033074 Pervan Oct 2011 B2
8042311 Pervan Oct 2011 B2
8061104 Pervan Nov 2011 B2
8079196 Pervan Dec 2011 B2
8099924 Braun Jan 2012 B2
8112967 Pervan et al. Feb 2012 B2
8122670 Matthee Feb 2012 B2
8171692 Pervan May 2012 B2
8181416 Pervan et al. May 2012 B2
8220217 Muehlebach Jul 2012 B2
8234830 Pervan et al. Aug 2012 B2
8266849 Bravo et al. Sep 2012 B2
8281529 Cluff Oct 2012 B2
8302361 Braun et al. Nov 2012 B2
8341914 Pervan et al. Jan 2013 B2
8341915 Pervan et al. Jan 2013 B2
8353140 Pervan et al. Jan 2013 B2
8359805 Pervan et al. Jan 2013 B2
8365499 Nilsson et al. Feb 2013 B2
8381477 Pervan et al. Feb 2013 B2
8387327 Pervan Mar 2013 B2
8438814 Thiers et al. May 2013 B2
8448402 Pervan et al. May 2013 B2
8499521 Pervan et al. Aug 2013 B2
8505257 Boo et al. Aug 2013 B2
8511040 Braun et al. Aug 2013 B2
8528289 Pervan et al. Sep 2013 B2
8544230 Pervan Oct 2013 B2
8544231 Hannig Oct 2013 B2
8544234 Pervan et al. Oct 2013 B2
8572922 Pervan Nov 2013 B2
8596013 Boo Dec 2013 B2
8601909 Gelormino Dec 2013 B2
8627862 Pervan et al. Jan 2014 B2
8640424 Pervan et al. Feb 2014 B2
8650826 Pervan et al. Feb 2014 B2
8677714 Pervan Mar 2014 B2
8689512 Pervan Apr 2014 B2
8707650 Pervan Apr 2014 B2
8713886 Boo et al. May 2014 B2
8733065 Pervan May 2014 B2
8733410 Pervan May 2014 B2
8756899 Nilsson et al. Jun 2014 B2
8763341 Pervan Jul 2014 B2
8769905 Pervan Jul 2014 B2
8776473 Pervan et al. Jul 2014 B2
8806832 Kell Aug 2014 B2
8844236 Pervan et al. Sep 2014 B2
8857126 Pervan et al. Oct 2014 B2
8863473 Weber Oct 2014 B2
8869485 Pervan Oct 2014 B2
8898988 Pervan Dec 2014 B2
8925264 Thrush et al. Jan 2015 B2
8925274 Pervan et al. Jan 2015 B2
8959866 Pervan Feb 2015 B2
8973331 Boo Mar 2015 B2
9003741 D'Agostino Apr 2015 B2
9027306 Pervan May 2015 B2
9051738 Pervan et al. Jun 2015 B2
9068360 Pervan Jun 2015 B2
9091077 Boo Jul 2015 B2
9103126 Kell Aug 2015 B2
9194134 Nygren et al. Nov 2015 B2
9212492 Pervan et al. Dec 2015 B2
9216541 Boo et al. Dec 2015 B2
9238917 Pervan et al. Jan 2016 B2
9249581 Nilsson et al. Feb 2016 B2
9260870 Vermeulen Feb 2016 B2
9284737 Pervan et al. Mar 2016 B2
9309679 Pervan et al. Apr 2016 B2
9316002 Boo Apr 2016 B2
9322162 Olofsson et al. Apr 2016 B2
9340974 Pervan et al. May 2016 B2
9347469 Pervan May 2016 B2
9359774 Pervan Jun 2016 B2
9366036 Pervan Jun 2016 B2
9376821 Pervan Jun 2016 B2
9382716 Pervan et al. Jul 2016 B2
9388584 Pervan et al. Jul 2016 B2
9428919 Pervan et al. Aug 2016 B2
9453347 Pervan Sep 2016 B2
9458634 Derelov Oct 2016 B2
9482012 Nygren et al. Nov 2016 B2
9540826 Pervan et al. Jan 2017 B2
9663940 Boo May 2017 B2
9725912 Pervan Aug 2017 B2
9771723 Pervan Sep 2017 B2
9777487 Pervan et al. Oct 2017 B2
9803374 Pervan Oct 2017 B2
9803375 Pervan Oct 2017 B2
9856656 Pervan Jan 2018 B2
9856657 Thiers Jan 2018 B2
9874027 Pervan Jan 2018 B2
9945130 Nygren et al. Apr 2018 B2
9951526 Boo et al. Apr 2018 B2
10000935 Kell Jun 2018 B2
10006210 Pervan et al. Jun 2018 B2
10017948 Boo Jul 2018 B2
10047527 Nilsson et al. Aug 2018 B2
10113319 Pervan Oct 2018 B2
10125488 Boo Nov 2018 B2
10138636 Pervan Nov 2018 B2
10161139 Pervan Dec 2018 B2
10180005 Pervan et al. Jan 2019 B2
10214915 Pervan et al. Feb 2019 B2
10214917 Pervan et al. Feb 2019 B2
10240348 Pervan et al. Mar 2019 B2
10240349 Pervan et al. Mar 2019 B2
10246883 Derelöv Apr 2019 B2
10352049 Boo Jul 2019 B2
10358830 Pervan Jul 2019 B2
10378217 Pervan Aug 2019 B2
10458125 Pervan Oct 2019 B2
10480196 Boo Nov 2019 B2
10519676 Pervan Dec 2019 B2
10526792 Pervan et al. Jan 2020 B2
10526793 Nilsson et al. Jan 2020 B2
10538922 Pervan Jan 2020 B2
10570625 Pervan Feb 2020 B2
10640989 Pervan May 2020 B2
10655339 Pervan May 2020 B2
10669723 Pervan et al. Jun 2020 B2
10724251 Kell Jul 2020 B2
10731358 Pervan Aug 2020 B2
10794065 Boo et al. Oct 2020 B2
10828798 Fransson Nov 2020 B2
10933592 Blomgren et al. Mar 2021 B2
10934721 Pervan et al. Mar 2021 B2
10953566 Fransson et al. Mar 2021 B2
10968639 Pervan et al. Apr 2021 B2
10975577 Pervan et al. Apr 2021 B2
10995501 Pervan May 2021 B2
11045933 Fransson et al. Jun 2021 B2
11053691 Pervan Jul 2021 B2
11053692 Pervan Jul 2021 B2
11060302 Ylikangas et al. Jul 2021 B2
11066835 Boo Jul 2021 B2
11078673 Pervan et al. Aug 2021 B2
11174646 Pervan Nov 2021 B2
20020112433 Pervan Aug 2002 A1
20030024199 Pervan Feb 2003 A1
20030084636 Pervan May 2003 A1
20030101681 Tychsen Jun 2003 A1
20040016196 Pervan Jan 2004 A1
20040068954 Martensson Apr 2004 A1
20040128934 Hecht Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040182036 Sjoberg et al. Sep 2004 A1
20040211143 Hannig Oct 2004 A1
20040250492 Becker Dec 2004 A1
20050160694 Pervan Jul 2005 A1
20050166514 Pervan Aug 2005 A1
20050021081 Pervan Sep 2005 A1
20060070333 Pervan Apr 2006 A1
20060101769 Pervan May 2006 A1
20060101773 Turner et al. May 2006 A1
20060156670 Knauseder Jul 2006 A1
20060236642 Pervan Oct 2006 A1
20060260254 Pervan et al. Nov 2006 A1
20070006543 Engström Jan 2007 A1
20070028547 Grafenauer Feb 2007 A1
20070062148 Nienhuis et al. Mar 2007 A1
20070193178 Groeke et al. Aug 2007 A1
20080000186 Pervan et al. Jan 2008 A1
20080000187 Pervan et al. Jan 2008 A1
20080010931 Pervan et al. Jan 2008 A1
20080010937 Pervan et al. Jan 2008 A1
20080028707 Pervan Feb 2008 A1
20080034708 Pervan Feb 2008 A1
20080041008 Pervan Feb 2008 A1
20080066415 Pervan Mar 2008 A1
20080104921 Pervan et al. May 2008 A1
20080110125 Pervan May 2008 A1
20080134607 Pervan Jun 2008 A1
20080134613 Pervan Jun 2008 A1
20080134614 Pervan Jun 2008 A1
20080155930 Pervan et al. Jul 2008 A1
20080216434 Pervan Sep 2008 A1
20080216920 Pervan Sep 2008 A1
20080236088 Hannig Oct 2008 A1
20080241440 Bauer et al. Oct 2008 A1
20080295432 Pervan et al. Dec 2008 A1
20090019808 Palsson et al. Jan 2009 A1
20090049787 Hannig Feb 2009 A1
20090133353 Pervan et al. May 2009 A1
20090193741 Cappelle Aug 2009 A1
20090193748 Boo et al. Aug 2009 A1
20090193753 Schitter Aug 2009 A1
20090249733 Moebus Oct 2009 A1
20100031594 Liu et al. Feb 2010 A1
20100037550 Braun Feb 2010 A1
20100058590 Braun Mar 2010 A1
20100083603 Goodwin Apr 2010 A1
20100218450 Braun et al. Sep 2010 A1
20100257809 Thiers et al. Oct 2010 A1
20100293879 Pervan et al. Nov 2010 A1
20100300029 Braun et al. Dec 2010 A1
20100300031 Pervan et al. Dec 2010 A1
20100319290 Pervan Dec 2010 A1
20100319291 Pervan et al. Dec 2010 A1
20110011020 Shen Jan 2011 A1
20110016822 Braun Jan 2011 A1
20110023303 Pervan Feb 2011 A1
20110030300 Liu Feb 2011 A1
20110030303 Pervan et al. Feb 2011 A1
20110041996 Pervan Feb 2011 A1
20110056167 Nilsson et al. Mar 2011 A1
20110088344 Pervan et al. Apr 2011 A1
20110088345 Pervan Apr 2011 A1
20110088346 Hannig Apr 2011 A1
20110094178 Braun Apr 2011 A1
20110131909 Hannig Jun 2011 A1
20110154763 Bergelin et al. Jun 2011 A1
20110167750 Pervan Jul 2011 A1
20110167751 Engstrom Jul 2011 A1
20110225922 Pervan et al. Sep 2011 A1
20110252733 Pervan Oct 2011 A1
20110258959 Braun Oct 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20120017533 Pervan et al. Jan 2012 A1
20120031029 Pervan et al. Feb 2012 A1
20120036804 Pervan Feb 2012 A1
20120067461 Braun Mar 2012 A1
20120096801 Cappelle Apr 2012 A1
20120151865 Pervan et al. Jun 2012 A1
20120174515 Pervan Jul 2012 A1
20120174520 Pervan Jul 2012 A1
20120180408 Harris et al. Jul 2012 A1
20120192521 Schulte Aug 2012 A1
20120279161 Håkansson et al. Nov 2012 A1
20120317916 Oh Dec 2012 A1
20130008117 Pervan Jan 2013 A1
20130008127 Braun et al. Jan 2013 A1
20130014463 Pervan Jan 2013 A1
20130019555 Pervan Jan 2013 A1
20130042562 Pervan Feb 2013 A1
20130042563 Pervan Feb 2013 A1
20130042564 Pervan et al. Feb 2013 A1
20130042565 Pervan Feb 2013 A1
20130047536 Pervan Feb 2013 A1
20130081349 Pervan et al. Apr 2013 A1
20130111758 Nilsson et al. May 2013 A1
20130111845 Pervan May 2013 A1
20130145708 Pervan Jun 2013 A1
20130160391 Pervan et al. Jun 2013 A1
20130167458 Cerny et al. Jul 2013 A1
20130192158 Cappelle et al. Aug 2013 A1
20130232905 Pervan Sep 2013 A2
20130239508 Pervan et al. Sep 2013 A1
20130247501 Thiers et al. Sep 2013 A1
20130263454 Boo et al. Oct 2013 A1
20130263547 Boo Oct 2013 A1
20130318906 Pervan et al. Dec 2013 A1
20130333182 Pervan Dec 2013 A1
20140007539 Pervan et al. Jan 2014 A1
20140020324 Pervan Jan 2014 A1
20140033633 Kell Feb 2014 A1
20140033634 Pervan Feb 2014 A1
20140053497 Pervan et al. Feb 2014 A1
20140059966 Boo Mar 2014 A1
20140069043 Pervan Mar 2014 A1
20140090335 Pervan et al. Apr 2014 A1
20140109501 Pervan Apr 2014 A1
20140109506 Pervan et al. Apr 2014 A1
20140123586 Pervan et al. May 2014 A1
20140190112 Pervan Jul 2014 A1
20140208677 Pervan et al. Jul 2014 A1
20140223852 Pervan Aug 2014 A1
20140237924 Nilsson et al. Aug 2014 A1
20140237931 Pervan Aug 2014 A1
20140250813 Nygren et al. Sep 2014 A1
20140260060 Pervan et al. Sep 2014 A1
20140283477 Hannig Sep 2014 A1
20140305065 Pervan Oct 2014 A1
20140366476 Pervan Dec 2014 A1
20140366477 Kell Dec 2014 A1
20140373478 Pervan et al. Dec 2014 A2
20140373480 Pervan et al. Dec 2014 A1
20150000221 Boo Jan 2015 A1
20150013260 Pervan Jan 2015 A1
20150059281 Pervan Mar 2015 A1
20150089896 Pervan et al. Apr 2015 A2
20150121796 Pervan May 2015 A1
20150152644 Boo Jun 2015 A1
20150167318 Pervan Jun 2015 A1
20150211239 Pervan Jul 2015 A1
20150233125 Pervan et al. Aug 2015 A1
20150267418 Vermeulen et al. Sep 2015 A1
20150267419 Pervan Sep 2015 A1
20150300029 Pervan Oct 2015 A1
20150330088 Derelov Nov 2015 A1
20150337537 Boo Nov 2015 A1
20150368910 Kell Dec 2015 A1
20160032596 Nygren et al. Feb 2016 A1
20160060879 Pervan Mar 2016 A1
20160069088 Boo et al. Mar 2016 A1
20160076260 Pervan et al. Mar 2016 A1
20160090744 Pervan et al. Mar 2016 A1
20160108624 Nilsson et al. Apr 2016 A1
20160153200 Pervan Jun 2016 A1
20160168866 Pervan et al. Jun 2016 A1
20160186426 Boo Jun 2016 A1
20160194884 Pervan et al. Jul 2016 A1
20160201336 Pervan Jul 2016 A1
20160251859 Pervan et al. Sep 2016 A1
20160251860 Pervan Sep 2016 A1
20160281368 Pervan et al. Sep 2016 A1
20160281370 Pervan et al. Sep 2016 A1
20160326751 Pervan Nov 2016 A1
20160340913 Derelöv Nov 2016 A1
20170037641 Nygren et al. Feb 2017 A1
20170081860 Boo Mar 2017 A1
20170254096 Pervan Sep 2017 A1
20170321433 Pervan et al. Nov 2017 A1
20170362834 Pervan et al. Dec 2017 A1
20180000151 Fransson Jan 2018 A1
20180001509 Myllykangas et al. Jan 2018 A1
20180001573 Blomgren et al. Jan 2018 A1
20180002933 Pervan Jan 2018 A1
20180016783 Boo Jan 2018 A1
20180030737 Pervan Feb 2018 A1
20180030738 Pervan Feb 2018 A1
20180119431 Pervan et al. May 2018 A1
20180178406 Fransson et al. Jun 2018 A1
20180313093 Nilsson et al. Nov 2018 A1
20190024387 Pervan Jan 2019 A1
20190048592 Boo Feb 2019 A1
20190048596 Pervan Feb 2019 A1
20190063076 Boo et al. Feb 2019 A1
20190093370 Pervan et al. Mar 2019 A1
20190093371 Pervan Mar 2019 A1
20190119928 Pervan et al. Apr 2019 A1
20190127989 Kell May 2019 A1
20190127990 Pervan et al. May 2019 A1
20190169859 Pervan et al. Jun 2019 A1
20190232473 Fransson et al. Aug 2019 A1
20190271165 Boo Sep 2019 A1
20190376298 Pervan et al. Dec 2019 A1
20190394314 Pervan et al. Dec 2019 A1
20200087927 Pervan Mar 2020 A1
20200102756 Pervan Apr 2020 A1
20200109569 Pervan Apr 2020 A1
20200149289 Pervan May 2020 A1
20200173175 Pervan Jun 2020 A1
20200224430 Ylikangas et al. Jul 2020 A1
20200263437 Pervan Aug 2020 A1
20200284045 Kell Sep 2020 A1
20200318667 Derelöv Oct 2020 A1
20200354969 Pervan et al. Nov 2020 A1
20200362567 Nilsson et al. Nov 2020 A1
20200412852 Pervan et al. Dec 2020 A9
20210016465 Fransson Jan 2021 A1
20210047840 Pervan Feb 2021 A1
20210047841 Pervan et al. Feb 2021 A1
20210071428 Pervan Mar 2021 A1
20210087831 Nilsson et al. Mar 2021 A1
20210087832 Boo Mar 2021 A1
20210087833 Ylikangas et al. Mar 2021 A1
20210087834 Ylikangas et al. Mar 2021 A1
20210310257 Boo Oct 2021 A1
20210348396 Pervan et al. Nov 2021 A1
Foreign Referenced Citations (55)
Number Date Country
2456513 Feb 2003 CA
201 261 936 Jun 2009 CN
201665978 Dec 2010 CN
25 16 843 Oct 1976 DE
103 05 695 Sep 2004 DE
10 2004 001 363 Aug 2005 DE
10 2005 028 072 Dec 2006 DE
10 2007 020 271 Aug 2008 DE
10 2007 062 430 Jul 2009 DE
10 2008 031 167 Jan 2010 DE
10 2009 048 050 Jan 2011 DE
20 2010 010 620 Nov 2011 DE
0 085 196 Aug 1983 EP
1 350 904 Oct 2003 EP
1 350 904 Oct 2003 EP
1 396 593 Mar 2004 EP
1 420 125 May 2004 EP
1 437 457 Jul 2004 EP
1 437 457 Jul 2004 EP
1 512 808 Mar 2005 EP
1 640 530 Mar 2006 EP
1 980 683 Oct 2008 EP
2 436 570 Oct 2007 GB
WO 0020705 Apr 2000 WO
WO 0153628 Jul 2001 WO
WO 0175247 Oct 2001 WO
WO 0188306 Nov 2001 WO
WO 0198603 Dec 2001 WO
WO 0198603 Dec 2001 WO
WO 0198604 Dec 2001 WO
WO 03012224 Feb 2003 WO
WO 03016654 Feb 2003 WO
WO 03025307 Mar 2003 WO
WO 03089736 Oct 2003 WO
WO 2004016876 Feb 2004 WO
WO 2004053258 Jun 2004 WO
WO 2007015669 Feb 2007 WO
WO 2007015669 Feb 2007 WO
WO 2007141605 Dec 2007 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008116623 Oct 2008 WO
WO 2009033623 Mar 2009 WO
WO 2010015516 Feb 2010 WO
WO 2010015516 Feb 2010 WO
WO 2010081532 Jul 2010 WO
WO 2010086084 Aug 2010 WO
WO 2010087752 Aug 2010 WO
WO 2010100046 Sep 2010 WO
WO 2010143962 Dec 2010 WO
WO 2011038709 Apr 2011 WO
WO 2012084604 Jun 2012 WO
WO 2013030686 Mar 2013 WO
WO 2014209213 Dec 2014 WO
Non-Patent Literature Citations (15)
Entry
U.S. Appl. No. 16/881,129, Kell.
International Search Report and Written Opinion dated May 10, 2016 in PCT/SE2016/050019, Patent-och registreringsverket, Stockholm, SE, 22 pages.
Extended European Search Report dated Jun. 28, 2018 in EP 16737615.1, European Patent Office, Munich, DE, 9 pages.
Välinge Innovation AB, Technical Disclosure entitled “Mechanical locking for floor panels with Vertical Folding,” ip.com No. IPCOM000179246D, Feb. 10, 2009, ip.com PriorArtDatabase, 59 pp.
Välinge Innovation AB, Technical Disclosure entitled “Mechanical locking for floor panels with a flexible bristle tongue,” ip.com No. IPCOM000145262D, Jan. 12, 2007, ip.com PriorArtDatabase, 57 pages.
Kell, William, U.S. Appl. No. 16/881,129 entitled “Vertical Joint System and Associated Surface Covering System,” filed May 22, 2020.
Kell, Richard William, U.S. Appl. No. 17/368,075 entitled “Vertical Joint System and Associated Surface Covering System,” filed Jul. 6, 2021.
U.S. Appl. No. 17/029,658, Nilsson et al.
U.S. Appl. No. 17/030,923, Boo.
U.S. Appl. No. 17/030,966, Ylikangas et al.
U.S. Appl. No. 17/031,166, Ylikangas et al.
Nilsson, Anders, et al., U.S. Appl. No. 17/029,658 entitled “Set of Panels,” filed Sep. 23, 2020.
Boo, Christian, U.S. Appl. No. 17/030,923 entitled “Panel With Locking Device,” filed Sep. 24, 2020.
Ylikangas, Roger, et al., U.S. Appl. No. 17/030,966 entitled “Panel With Locking Device,” filed Sep. 24, 2020.
Ylikangas, Roger, et al., U.S. Appl. No. 17/031,166 entitled “Panel With Locking Device,” filed Sep. 24, 2020.
Related Publications (1)
Number Date Country
20200109569 A1 Apr 2020 US
Divisions (1)
Number Date Country
Parent 15541909 US
Child 16708719 US