Mechanical locking system for floor panels

Information

  • Patent Grant
  • 8769905
  • Patent Number
    8,769,905
  • Date Filed
    Tuesday, August 14, 2012
    12 years ago
  • Date Issued
    Tuesday, July 8, 2014
    10 years ago
Abstract
Building panels, especially floor panels are shown, which are provided with a vertical locking system on adjacent edges including a displaceable tongue that has a main tongue body and separate spring parts attached to the body.
Description
TECHNICAL FIELD

The disclosure generally relates to the field of mechanical locking systems for floor panels and building panels. The disclosure shows floorboards, locking systems, installation methods and production methods.


FIELD OF APPLICATION

Embodiments of the present disclosure are particularly suitable for use in floating floors, which are formed of floor panels which are joined mechanically with a locking system integrated with the floor panel, i.e. mounted at the factory, are made up of one or more upper layers of wood or wood veneer, decorative laminate, powder based surfaces or decorative plastic material, an intermediate core of wood-fibre-based material or plastic material and preferably a lower balancing layer on the rear side of the core. Floor panels with a surface layer of cork, linoleum, rubber or soft wear layers, for instance needle felt glued to a board, printed and preferably also varnished surface and floors with hard surfaces such as stone, tile and similar materials are included. Embodiments of the disclosure may also be used for joining building panels which preferably contain a board material for instance wall panels, ceilings, furniture components and similar.


The following description of known technique, problems of known systems and objects and features of the disclosure will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular at panels formed as rectangular floor panels with long and shorts edges intended to be mechanically joined to each other on both long and short edges.


The long and short edges are mainly used to simplify the description of embodiments of the disclosure. The panels may be square. Embodiments of the disclosure are preferably used on the short edges. It should be emphasised that embodiments of the disclosure may be used in any floor panel and it may be combined with all types of known locking system formed on the long edges, where the floor panels are intended to be joined using a mechanical locking system connecting the panels in the horizontal and vertical directions on at least two adjacent sides.


BACKGROUND

Laminate flooring usually comprises a core of a 6-12 mm fibre board, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material. A laminate surface comprises of melamine-impregnated paper. The most common core material is fibreboard with high density and good stability usually called HDF—High Density Fibreboard. Sometimes also MDF—Medium Density Fibreboard—is used as core.


Traditional laminate floor panels of this type have been joined by means of glued tongue-and-groove joints.


In addition to such traditional floors, floor panels have been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking means, which lock the panels horizontally and vertically. The mechanical locking systems are usually formed by machining of the core of the panel. Alternatively, parts of the locking system may be formed of a separate material, for instance aluminum or HDF, which is integrated with the floor panel, i.e. joined with the floor panel in connection with the manufacture thereof.


The main advantages of floating floors with mechanical locking systems are that they are easy to install. They may also easily be taken up again and used once more at a different location.


DEFINITION OF SOME TERMS

In the following text, the visible surface of the installed floor panel is called “front side”, while the opposite side of the floor panel, facing the sub floor, is called “rear side”. The edge between the front and rear side is called “joint edge”. By “horizontal plane” is meant a plane, which extends parallel to the outer part of the surface layer. Immediately juxtaposed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane. By “inner vertical tongue plane” is meant a plane, which is parallel with a vertical plane that intersects the outer and most inner part of the main tongue body. By “vertical locking” is meant locking parallel to the vertical plane. By “horizontal locking” is meant locking parallel to the horizontal plane.


By “up” is meant towards the front side, by “down” towards the rear side, by “inwardly” mainly horizontally towards an inner and centre part of the panel and by “outwardly” mainly horizontally away from the centre part of the panel.


By “locking systems” are meant co acting connecting elements, which connect the floor panels vertically and/or horizontally.


RELATED ART AND PROBLEMS THEREOF

For mechanical joining of long edges as well as short edges in the vertical and in the first horizontal direction perpendicular to the edges several methods may be used. One of the most used methods is the angle-snap method. The long edges are installed by angling. The panel is than displaced in locked position along the long side. The short edges are locked by horizontal snapping. The vertical connection is generally a tongue and a groove. During the horizontal displacement, a strip with a locking element is bent and when the edges are in contact, the strip springs back and a locking element enters a locking groove and locks the panels horizontally. Such a snap connection is complicated since a hammer and a tapping block usually needs to be used to overcome the friction between the long edges and to bend the strip during the snapping action.


Similar locking systems may also be produced with a rigid strip and they are connected with an angling-angling method where both short and long edges are angled into a locked position.


Recently new and very efficient locking systems have been introduced with a separate flexible or displaceable integrated tongue on the short edge that allows installation with only an angling action, generally referred to as “vertical folding”. Such a system is described in WO 03/083234 and WO 2006/043893 (Välinge Innovation AB).


Several versions are used on the market. FIG. 1a-1c show a locking system comprising a displaceable tongue 30 that is displaced inwardly into a displacement groove 21 and outwardly into a tongue groove 20 when the edges of adjacent panels 1,1′ are displaced vertically against each other. Such systems are referred to as vertical snap systems and they provide an automatically locking during the folding action. The displaceable tongue 30 locks the panels vertically parallel to a vertical plane VP perpendicular to a main horizontal plane of the panels. A locking strip 6 with a locking element 8 that cooperates with a locking groove 14 in the adjacent panel 1′ locks the edges horizontally parallel to a main horizontal plane HP.



FIGS. 2
a-2e show one of the most used flexible tongues the so-called bristle tongue, which is formed in one piece. Such a displaceable tongue 30 comprises a main tongue body 31 that is strong and rather rigid, flexible protrusions 38 that provides the necessary flexibility and friction connections 36 that prevents the tongue to fall out from the displacement groove 21 during transport and installation of the floor panels. Bristle tongues are made of high quality plastic material reinforced with glass fibres. The flexibility must be considerable and allow that a flexible tongue is displaced in two directions about 1-2 mm during locking. The tongues are injection moulded and formed into tongue blanks 50 that may comprise up to 32 tongues. The tongues are connected to rails 51 which are used to feed the tongues during production when they are separated from the tongue blank and inserted into an edge of a panel.


Although such locking systems and one-piece bristle tongues are very efficient and provide a strong and reliable locking, there is still a room for improvements.


One disadvantage is that the whole tongue blank 50 is made of a high quality plastic material that is rather costly. Such high quality material is only needed in those parts of the tongue that form the flexible protrusions 36. High quality plastic material reinforced with glass fibres is not required in the parts of the tongue that comprises the main tongue body 31 and the rails 51. About 60% of a tongue blank is made of a material that is of a higher quality than required for its specific function.


A second disadvantage is that each tongue blank 50 must be individually designed for a specific width of a floor panel and this requires a wide range of expensive injection moulding tongues for each width.


A third disadvantage is that glass fibre reinforced plastic material is difficult to recycle and the scrap from the rails has a very low material value.


It would be a major advantage if the tongues could be made in a more cost efficient way regarding material costs and different tongue lengths.


It is known from the above-mentioned publications that a displaceable tongue may be formed from a sheet shaped materials such as HDF. This may decrease the material costs with about 80% compared to high cost plastic materials. The flexibility may be obtained by a flexible rubber strip that is inserted into an inner part of a displacement groove or attached to an inner part of an extruded plastic section. Such a two-piece tongue will not provide sufficient strength and flexibility since the compression takes place outside the displaceable tongue between the inner part of a displacement groove and the inner edge of the tongue body. The groove must be rather deep and this will have a negative effect on the joint stability. It is not shown how the flexible material should be attached to tongues in a tongue blank and how friction connections should be formed that allow the tongue to slide in the groove without the risk that the tongue will fall out from the groove after production. The cost of the flexible material is still rather high since the flexible part extends along the whole tongue length.


SUMMARY AND OBJECTS

An overall objective of embodiments of the present disclosure is to provide an improved and more cost efficient locking system for primarily rectangular floor panels with long and short edges installed in parallel rows, which allows that the short edges may be locked to each other automatically with a vertical snap action caused by a tongue that is displaced in a groove. More specifically the objective is to provide a locking system with a separate displaceable tongue that is formed of different materials such that the cost and function may be optimised.


Another specific objective is to provide a tongue that may be produced in different lengths without the need of individual injection moulding tools specially designed for each tongue length.


The above objects of embodiments of the disclosure may be achieved wholly or partly by locking systems and floor panels according to the disclosure. Embodiments of the disclosure are evident from the description and drawings.


A first aspect of the disclosure is building panels provided with a locking system for vertical locking of a first and a second building panel by a vertical displacement of the panel relative each other. A displaceable tongue is attached into a sidewardly open displacement groove provided at an edge of the first panel. Said tongue cooperates with a tongue groove provided at an adjacent edge of the second panel for locking the edges vertically. A strip protrudes below the displacement groove and outwardly beyond the upper part of the edge or below the tongue groove and outwardly beyond the upper part of the adjacent edge. The displaceable tongue comprises a main tongue body extending along the edge of the first panel and a separate flexible spring part attached to the main tongue body. The separate spring part is located in an inner part of the displacement groove.


The tongue may comprise two or more spring parts that are spaced from each other in the length direction of the main tongue body.


The spring parts may be asymmetric in a direction along the edge.


The main tongue body and the spring parts may be made of different materials.


The tongue may comprise an upwardly or downwardly open fixing groove.


The spring parts may comprise an upwardly or downwardly extending fixing connection part.


The spring part may during locking be displaced or compressed horizontally beyond a vertical tongue plane that comprises an inner part of the tongue body.


The spring part may overlap a part or the tongue body during locking.


The spring part may be located in a vertically open flexing cavity formed in the tongue body.


The building panels are preferably floor panels.


A second aspect of the disclosure is a tongue blank comprising at least two tongues which are each designed to be inserted into a groove of a building panel and lock the building panel to an adjacent building panel. A part of the tongue is configured to be displaced during locking. The tongues are of an elongated shape and each tongue comprises a separate spring part connected to a main body of the tongue.


The separate spring part may be asymmetric in the length direction of the tongue.


Each tongue may comprise two or more spring parts that are spaced from each other in the length direction of the tongue.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will in the following be described in connection to exemplary embodiments and in greater detail with reference to the appended exemplary drawings, wherein:



FIGS. 1
a-c illustrate locking systems according to known technology.



FIGS. 2
a-e illustrate a flexible and displaceable tongue according to known technology.



FIGS. 3
a-3g illustrate a displaceable tongue according to an embodiment of the disclosure.



FIGS. 4
a-d illustrate the function of a spring part according to an embodiment of the disclosure.



FIGS. 5
a-g illustrate forming and separation of a tongue blank according to an embodiment of the disclosure.



FIGS. 6
a-e illustrate preferred embodiments of displaceable tongues.



FIGS. 7
a-c illustrate vertical locking of two panels comprising a displaceable tongue according to an embodiment of the disclosure.



FIGS. 8
a-f illustrate forming and fixing of a displaceable tongue according to an embodiment of the disclosure.



FIGS. 9
a-g illustrate forming of a tongue blank according to an embodiment of the disclosure.



FIGS. 10
a-g illustrate embodiments of the disclosure.



FIGS. 11
a-g illustrate spring parts made of a compressible material according to embodiments of the disclosure.



FIGS. 12
a-i illustrate spring parts connected into cavities according to embodiments of the disclosure.



FIGS. 13
a-f illustrate separate friction connections according to embodiments of the disclosure.



FIGS. 14
a-d illustrate spring parts connected into a groove according to embodiments of the disclosure.



FIGS. 15
a-f illustrate different embodiments of the disclosure.



FIGS. 16
a-g illustrate spring parts connected into a groove according to embodiments of the disclosure.



FIGS. 17
a-g illustrate different embodiments of the disclosure.



FIGS. 18
a-e illustrate different embodiments of the disclosure.





DETAILED DESCRIPTION OF EMBODIMENTS

To facilitate understanding, several locking systems in the figures are shown schematically. It should be emphasised that improved or different functions may be achieved using combinations of the embodiments.


All embodiments may be used separately or in combinations. Angles, dimensions, rounded parts, spaces between surfaces etc. are only examples and may be adjusted within the basic principles of the disclosure.



FIGS. 3
a-3g show a first preferred embodiment of a displaceable tongue 30 which is intended to be used to lock two adjacent edges of two floor panels by a vertical displacement of the panels relative each other.



FIG. 3
a show a displaceable tongue 30 with a main tongue body 31, a length direction L along the joint, a width W perpendicular to the length and parallel to a horizontal plane and a thickness perpendicular to the width. An inner vertical tongue plane Tp1 and an outer vertical tongue plane Tp2 parallel with the length direction of the tongue intersects the outer edges of the tongue.



FIG. 3
b shows a displaceable tongue 30 comprising a separate spring part 40 attached to the main tongue body 31. The spring part comprises a spring part body 41, a friction connection 36, preferably formed as a small local protrusion extending vertically from the spring part body 41 and a fixing connection part 42 that is fixed into a fixing groove 32 formed in the main tongue body 31.



FIG. 3
c shows a spring part blank 60 seen from above comprising several spring parts 40 connected to each other in parallel rows and to spring part rails 61.



FIG. 3
d shows the spring part blank seen from below. Each spring part 40 comprises a fixing connection part 42 that in this embodiment is formed as a protrusion extending vertically from the main spring part body 41 and in opposite direction to the extension of the friction connection 36.



FIG. 3
e shows a main tongue body 31 that in this embodiment is formed as a two dimensional profile with the same cross section along the tongue body. Such a tongue body may be formed by, for example, linear machining, extrusion or by injection moulding where rather simple moulding tools are used.



FIG. 3
f shows a displaceable tongue in an outer locked position, which tongue comprises a main tongue body 31 and two separate spring parts 40,40′ mechanically connected to the tongue body 31 and spaced from each other in the length direction of the tongue 30.



FIG. 3
g shows the displaceable tongue in an inner unlocked position when the tongue 30 is pressed into a sidewardly open displacement groove 21. The spring part is displaced inwardly beyond the first vertical tongue plane Tp1 but also above a part of the main tongue body 31. The thickness of the spring part is smaller than the thickness of the tongue body 31. This embodiment offers the advantage that the spring part may be easily connected to a tongue body that has a rather simple cross section and that the depth of the displacement groove may be reduced since the main tongue body 31 and the spring part body 41 may overlap each other in locked and unlocked position.


Any type of polymer materials may be used to form spring parts such as PA (nylon), POM, PC, PP, PET or PE or similar having the properties described above in the different embodiments. These plastic materials may be, when injection moulding is used, reinforced with for instance glass fibre, Kevlar fibre, carbon fibre or talk or chalk. A preferred material is glass fibre, preferably extra long, reinforced PP or POM. Such materials may also be used to form the main tongue body.


The tongue body preferably comprises a low cost material that preferably may be machined. Suitable materials are wood fibre based materials combined with thermoplastic or thermosetting binders.



FIG. 4
a shows a part of a displaceable tongue 30 comprising a spring part 40 connected to an upper part of a main tongue body 31. FIG. 4b shows the spring part 40 from below with a fixing connection part 42 that is flexible and adapted to be connected vertically into a vertically open fixing groove 32 formed on the upper part of the tongue body 31. The fixing connection part 42 comprises a horizontal friction protrusion 43 that presses against a vertical wall of the fixing groove 32.



FIG. 4
c shows the flexible tongue 30 in outer position and FIG. 4d shows the flexible tongue 30 in an inner position. A-A shows the cross section of a middle part of the main tongue body. B-B shows the cross section of an outer part of the main tongue body. The figures show that a part of the spring part body 41 is located above an upper part of the tongue body 31 and displaced beyond the first vertical tongue plane Tp1 during locking such that it overlaps the main tongue body.



FIG. 5
a shows a cross section of a tongue blank 50 comprising several displaceable tongues that comprise of a main tongue body 31 and separate flexible parts 40 connected to the tongue body. FIG. 5b shows a tongue body blank 70 comprising several tongue bodies 31 that are connected with tongue body rails 71. Such rails may, for example, be formed by punching away material from the tongue bodies. FIG. 5f shows a spring part blank 60 where the spring parts are positioned with essentially the same distance D between each other as the distance between the tongue bodies 31. This facilitates the fixing of the spring parts to the tongue bodies since the spring parts may be displaced after separation, shown in FIG. 5g, mainly parallel with the tongue bodies over the tongue bodies and pressed vertically such that the fixing connection part 42 enters the fixing groove 32. A tongue blank 50 may be formed as shown in FIG. 5c. Such forming may be made as a separate operation and tongue blanks are delivered as integrated blanks. The connection may also be made in line with the inserting of the tongue into the displacement groove. The tongues 30 are separated from the blank as shown in FIG. 5d and inserted into the displacement groove 21 as shown in FIG. 5e. The tongues may be inserted in a groove of the strip panel comprising the strip or into a groove formed in the other adjacent panel.



FIG. 6
a-6d shows alternative methods to connect the spring parts 40 to a main tongue body 31. One or several holes 34a or cavities 34b may be formed. FIG. 6e shows that different lengths of the displaceable tongues may be formed by combining several spring parts that are positioned along the main tongue body 31.



FIGS. 7
a-7c show locking of two panels 1,1′. FIG. 7a shows that the tongue 30 tilts downwards during locking and FIG. 7c shows that the tongue 30 tilts upwards in locked position such that an outer part of the rigid tongue body forms an upper contact surface 22 with the displacement groove 21 and that an inner part forms a lower contact surface 23. This means that it is an advantage to connect the spring part to an upper part of the main tongue body. The spring part may of course be connected to a lower part into a fixing groove that is open downwards.



FIGS. 8
a-8e shows a method to form and insert displaceable tongues into an edge of a panel that may be used, for example, when tongue bodies are delivered as loose element or as extruded sections that are cut into defined lengths. The tongue bodies 31 are displaced, for example, parallel with their lengths and spring part blanks 60 are displaced towards the tongue bodies where the spring parts 40 are separated and connected to the tongue body when the tongue body 31 is displaced in its length direction. The displaceable tongues 30 are thereafter inserted into the displacement groove 21.



FIGS. 9
a-9c show that a tongue body blank may be formed as an extruded section, FIG. 9a,b, or by, for example, machining a panel from a machined wood, wood/plastic or plastic panel, FIG. 9b, or by injection moulding, FIG. 9c.



FIGS. 9
d and 9f show that tongue blanks may be formed by displaceable tongues that are connected with rails that may be comprise extrudes section, FIG. 9e, or moulded parts, FIG. 9g.



FIGS. 10
a-10d show preferred embodiments of displaceable tongues 30. FIG. 10a shows overlapping spring parts 40. FIG. 10b shows a spring part that is glued to a tongue body. FIG. 10c show spring parts with a spring part body that is only flexible at one edge. FIG. 10d shows spring parts that are connected to each other.



FIG. 10
e shows a tongue 30 with a spring part that is connected into an inclined displacement groove 21 in the strip panel comprising the locking strip 6. FIG. 10f shows a displaceable tongue 30 inserted into an edge of a groove panel comprising the locking groove 14. FIG. 10g shows a locking system that only locks vertically. The strip 6 has no locking element. The horizontal locking may be accomplished with, for example, friction between the long edges.



FIGS. 11
a-11g shows that the spring part may also be formed from a flexible material such as, for example, rubber. The flexible parts are even in this embodiment positioned with a distance between each other along the main tongue body and the separate parts may be compressed and displaced beyond the first vertical tongue plane Tp1 as shown in FIG. 11c. Preferably flexing cavities 33 are formed in the main tongue body to allow such compression. The spring parts 40 are preferably asymmetric in the length direction of the displaceable tongue 30.



FIGS. 12
a-12i show that several fixing cavities 33 and flexing cavities 34 may be formed in the main tongue body 31 in order to fix spring parts and to allow compression or flexing displacement within beyond the vertical tongue plane Tp1. The figures show that the tongue bodies 31 and the spring parts 40 are asymmetric in the length direction of the tongue.



FIGS. 13
a-13f show that also other parts of the displaceable tongue may be connected as separate parts, for example, friction connection 36 that may be attached to a main tongue body 31 as shown in FIG. 13d. FIG. 13e shows that a friction connection 36 may be formed and attached to the main tongue body 31 such that it may be displaced with a turning. Such turning device may be used as a link in order to displace a tongue outwardly from the displacement groove when the tongue is pushed sideways along the joint with a side pressure.



FIGS. 14
a-14d show an alternative method to form a displaceable tongue that comprises separate spring parts 40. The spring parts are inserted into the displacement groove 21. A main tongue body 31 is thereafter inserted into the displacement groove and connected to the spring parts 40.



FIGS. 15
a-15f shows a preferred embodiment of a spring part that is suitable to be inserted into a displacements groove 21. FIG. 15a shows the spring part 40 from above and FIG. 15b is a side view. The spring part comprises a frictions connection 36, a snapping connection 44 and a holding connection 45 located vertically at opposite upsides of the spring part. The snapping and holding connections are displaced along the spring part body 41. The main tongue body 31 is automatically snapped to the spring part that is connected with the friction connection to the displacement groove. FIGS. 15e and 15f shows cross sections during locking. The snapping connection 44 is fixed to the main tongue body and the holding connections slides against the tongue body 31 during locking. The spring part 41 may of course also be attached to the main tongue body prior to the fixing into the displacement groove 21.



FIGS. 16
a-g shows a spring part 40 that is only possible to snap to a main tongue body 31 when the spring part is already in the displacement groove 21 since the spring part only comprises a snapping connection 44 and no holding connection. FIG. 16a shows the spring part seen from above and FIG. 16b shows a side view. It is preferred that the snapping connection 44 is located on the upper part of the spring part 40.



FIGS. 17
a-g shows that a flexing cavity 33 may be formed in the main tongue body 31 and this embodiment allows that a major part of the spring part body 41 may be displaced beyond the vertical tongue plane Tp1



FIG. 18
a-18e shows that tongue body 31 may be formed as a three-dimensional moulded component and optimized to be snapped to a spring part. The material savings are mainly obtained due to the fact that the plastic material of the tongue body 31 may be less costly since no flexibility is required. FIG. 18e is a side view of FIG. 18d. The spring part protrusions 46, 46′, are during locking displaced in the displacement cavities 33, 33′.


The described tongues are mainly intended to be used on short edges of panels comprising locking systems on long edges that may be locked by angling. However, the tongues may be used on short and/or long edges.


The principles of the disclosure may also be used to form two-piece tongues that are not flexible and that are, for example, used to be displaced along the joint during locking. Separate parts may be used as, for example, wedges that during displacement create a movement of the tongue perpendicular to the edge.

Claims
  • 1. Building panels including at least a first building panel and a second building panel that are provided with a locking system for vertical locking of the first building panel and the second building panel by a vertical displacement of the first and second building panels relative each other, the locking system comprising a displaceable tongue attached into a sidewardly open displacement groove provided at an edge of the first building panel, said displaceable tongue cooperates with a tongue groove provided at an adjacent edge of the second building panel for locking the edge and the adjacent edge vertically, and the locking system further comprising a strip that protrudes from the edge or the adjacent edge: below the displacement groove and outwardly beyond an upper part of the edge; orbelow the tongue groove and outwardly beyond an upper part of the adjacent edge,wherein the displaceable tongue comprises a main tongue body extending along the edge of the first building panel and separate flexible spring parts that are detachably attached to the main tongue body, andthe separate spring parts are located in an inner part of the displacement groove and spaced from each other in an length direction of the main tongue body.
  • 2. The building panels as claimed in claim 1, wherein the spring parts are asymmetric in a direction along the edge.
  • 3. The building panels as claimed in claim 1, wherein the separate flexible spring parts are mechanically attached to the main tongue body.
  • 4. The building panels as claimed in claim 1, wherein said main tongue body comprises an upwardly open fixing groove or a downwardly open fixing groove.
  • 5. The building panels as claimed in claim 1, wherein said separate spring parts comprise an upwardly extending fixing connection part or a downwardly extending fixing connection part.
  • 6. The building panels as claimed in claim 1, wherein said spring parts during locking are displaced or compressed horizontally beyond a vertical tongue plane that comprises an inner part of the main tongue body before locking of the first and second building panels.
  • 7. The building panels as claimed in claim 1, wherein said spring parts overlap a part of the tongue body during locking.
  • 8. The building panels as claimed in claim 1, wherein said spring parts are located in a vertically open flexing cavity formed in the main tongue body.
  • 9. The building panels as claimed in claim 1, wherein said building panels are floor panels.
  • 10. The building panels as claimed in claim 1, wherein each of the separate flexible spring parts is detachably attached to the main tongue body via a friction protrusion that presses against an inner wall of the main tongue body.
  • 11. A tongue blank comprising at least two tongues, which are each designed to be inserted into a groove of a building panel and lock the building panel to an adjacent building panel, a part of each tongue is configured to be displaced during locking wherein the tongues are of an elongated shape and wherein each tongue comprises a separate spring part that is configured to be detachably attached to a main body of the tongue.
  • 12. The tongue blank as claimed in claim 11, wherein the spring part is asymmetric in the length direction of the tongue.
  • 13. The tongue blank as claimed in claim 11, wherein each tongue comprises two or more spring parts that are spaced from each other in a length direction of the tongue.
  • 14. Building panels including at least a first building panel and a second building panel that are provided with a locking system for vertical locking of the first building panel and the second building panel by a vertical displacement of the first and second building panels relative each other, the locking system comprising a displaceable tongue attached into a sidewardly open displacement groove provided at an edge of the first building panel, said displaceable tongue cooperates with a tongue groove provided at an adjacent edge of the second building panel for locking the edge and the adjacent edge vertically, and the locking system further comprising a strip that protrudes from the edge or the adjacent edge: below the displacement groove and outwardly beyond an upper part of the edge; orbelow the tongue groove and outwardly beyond an upper part of the adjacent edge,wherein the displaceable tongue comprises a main tongue body extending along the edge of the first building panel and separate flexible spring parts attached to the main tongue body,the separate spring parts are located in an inner part of the displacement groove and spaced from each other in an length direction of the main tongue body, andthe main tongue body and the spring parts are made of different materials.
  • 15. Building panels including at least a first building panel and a second building panel that are provided with a locking system for vertical locking of the first building panel and the second building panel by a vertical displacement of the first and second building panels relative each other, the locking system comprising a displaceable tongue attached into a sidewardly open displacement groove provided at an edge of the first building panel, said displaceable tongue cooperates with a tongue groove provided at an adjacent edge of the second building panel for locking the edge and the adjacent edge vertically, and the locking system further comprising a strip that protrudes from the edge or the adjacent edge: below the displacement groove and outwardly beyond an upper part of the edge; orbelow the tongue groove and outwardly beyond an upper part of the adjacent edge,wherein the displaceable tongue comprises a main tongue body extending along the edge of the first building panel and separate flexible spring parts that are adapted to be attached to the main tongue body, andthe separate spring parts are located in an inner part of the displacement groove and spaced from each other in an length direction of the main tongue body.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 61/523,571 filed on Aug. 15, 2011. The disclosure of the prior application is hereby incorporated by reference herein in its entirety.

US Referenced Citations (331)
Number Name Date Kind
87853 Kappes Mar 1869 A
108068 Utley Oct 1870 A
124228 Stuart Mar 1872 A
213740 Conner Apr 1879 A
274354 McCarthy et al. Mar 1883 A
316176 Ransom Apr 1885 A
634581 Miller Oct 1899 A
861911 Stewart Jul 1907 A
1194636 Joy Aug 1916 A
1723306 Sipe Aug 1929 A
1743492 Sipe Jan 1930 A
1809393 Rockwell Jun 1931 A
1902716 Newton Mar 1933 A
2026511 Storm Dec 1935 A
2204675 Grunert Jun 1940 A
2277758 Hawkins Mar 1942 A
2430200 Wilson Nov 1947 A
2497837 Nelson Feb 1950 A
2596280 Nystrom May 1952 A
2732706 Friedman Jan 1956 A
2740167 Rowley Apr 1956 A
2863185 Riedi Dec 1958 A
2865058 Andersson Dec 1958 A
2872712 Brown et al. Feb 1959 A
2889016 Warren Jun 1959 A
3023681 Worson Mar 1962 A
3077703 Bergstrom Feb 1963 A
3099110 Spaight Jul 1963 A
3147522 Schumm Sep 1964 A
3271787 Clary Sep 1966 A
3325585 Brenneman Jun 1967 A
3378958 Parks et al. Apr 1968 A
3396640 Fujihara Aug 1968 A
3512324 Reed May 1970 A
3517927 Kennel Jun 1970 A
3526071 Watanabe Sep 1970 A
3535844 Glaros Oct 1970 A
3572224 Perry Mar 1971 A
3579941 Tibbals May 1971 A
3720027 Christensen Mar 1973 A
3722379 Koester Mar 1973 A
3742669 Mansfeld Jul 1973 A
3760547 Brenneman Sep 1973 A
3760548 Sauer et al. Sep 1973 A
3778954 Meserole Dec 1973 A
3849235 Gwynne Nov 1974 A
3919820 Green Nov 1975 A
3950915 Cole Apr 1976 A
4007994 Brown Feb 1977 A
4030852 Hein Jun 1977 A
4037377 Howell et al. Jul 1977 A
4064571 Phipps Dec 1977 A
4080086 Watson Mar 1978 A
4082129 Morelock Apr 1978 A
4100710 Kowallik Jul 1978 A
4107892 Bellem Aug 1978 A
4113399 Hansen, Sr. et al. Sep 1978 A
4169688 Toshio Oct 1979 A
4196554 Anderson Apr 1980 A
4227430 Janssen et al. Oct 1980 A
4299070 Oltmanns Nov 1981 A
4304083 Anderson Dec 1981 A
4426820 Terbrack Jan 1984 A
4447172 Galbreath May 1984 A
4512131 Laramore Apr 1985 A
4599841 Haid Jul 1986 A
4648165 Whitehorne Mar 1987 A
5007222 Raymond Apr 1991 A
5071282 Brown Dec 1991 A
5148850 Urbanick Sep 1992 A
5173012 Ortwein et al. Dec 1992 A
5182892 Chase Feb 1993 A
5247773 Weir Sep 1993 A
5272850 Mysliwiec et al. Dec 1993 A
5344700 McGath et al. Sep 1994 A
5348778 Knipp et al. Sep 1994 A
5465546 Buse Nov 1995 A
5485702 Sholton Jan 1996 A
5502939 Zadok et al. Apr 1996 A
5548937 Shimonohara Aug 1996 A
5598682 Haughian Feb 1997 A
5618602 Nelson Apr 1997 A
5634309 Polen Jun 1997 A
5658086 Brokaw et al. Aug 1997 A
5671575 Wu Sep 1997 A
5694730 Del Rincon et al. Dec 1997 A
5755068 Ormiston May 1998 A
5899038 Stroppiana May 1999 A
5950389 Porter Sep 1999 A
5970675 Schray Oct 1999 A
6006486 Moriau Dec 1999 A
6029416 Andersson Feb 2000 A
6052960 Yonemura Apr 2000 A
6065262 Motta May 2000 A
6173548 Hamar et al. Jan 2001 B1
6182410 Pervan Feb 2001 B1
6216409 Roy et al. Apr 2001 B1
6314701 Meyerson Nov 2001 B1
6345481 Nelson Feb 2002 B1
6363677 Chen et al. Apr 2002 B1
6385936 Schneider May 2002 B1
6418683 Martensson et al. Jul 2002 B1
6446413 Gruber Sep 2002 B1
6449918 Nelson Sep 2002 B1
6490836 Moriau et al. Dec 2002 B1
6505452 Hannig et al. Jan 2003 B1
6553724 Bigler Apr 2003 B1
6591568 Pålsson Jul 2003 B1
6601359 Olofsson Aug 2003 B2
6617009 Chen et al. Sep 2003 B1
6647689 Pletzer et al. Nov 2003 B2
6647690 Martensson Nov 2003 B1
6651400 Murphy Nov 2003 B1
6670019 Andersson Dec 2003 B2
6685391 Gideon Feb 2004 B1
6763643 Martensson Jul 2004 B1
6766622 Thiers Jul 2004 B1
6769219 Schwitte et al. Aug 2004 B2
6769835 Stridsman Aug 2004 B2
6804926 Eisermann Oct 2004 B1
6808777 Andersson et al. Oct 2004 B2
6854235 Martensson Feb 2005 B2
6862857 Tychsen Mar 2005 B2
6865855 Knauseder Mar 2005 B2
6874291 Weber Apr 2005 B1
6880307 Schwitte et al. Apr 2005 B2
6948716 Drouin Sep 2005 B2
7021019 Knauseder Apr 2006 B2
7040068 Moriau et al. May 2006 B2
7051486 Pervan May 2006 B2
7108031 Secrest Sep 2006 B1
7121058 Palsson et al. Oct 2006 B2
7137229 Pervan Nov 2006 B2
7152383 Wilkinson et al. Dec 2006 B1
7188456 Knauseder Mar 2007 B2
7219392 Mullet et al. May 2007 B2
7251916 Konzelmann et al. Aug 2007 B2
7257926 Kirby Aug 2007 B1
7337588 Moebus Mar 2008 B1
7377081 Ruhdorfer May 2008 B2
7451578 Hannig Nov 2008 B2
7454875 Pervan et al. Nov 2008 B2
7516588 Pervan Apr 2009 B2
7533500 Morton et al. May 2009 B2
7556849 Thompson et al. Jul 2009 B2
7568322 Pervan Aug 2009 B2
7584583 Bergelin et al. Sep 2009 B2
7614197 Nelson Nov 2009 B2
7617651 Grafenauer Nov 2009 B2
7621092 Groeke et al. Nov 2009 B2
7634884 Pervan et al. Dec 2009 B2
7637068 Pervan Dec 2009 B2
7654055 Ricker Feb 2010 B2
7677005 Pervan Mar 2010 B2
7716889 Pervan May 2010 B2
7721503 Pervan et al. May 2010 B2
7726088 Muehlebach Jun 2010 B2
7757452 Pervan Jul 2010 B2
7802411 Pervan Sep 2010 B2
7806624 McLean et al. Oct 2010 B2
7841144 Pervan et al. Nov 2010 B2
7841145 Pervan et al. Nov 2010 B2
7856789 Eisermann Dec 2010 B2
7861482 Pervan et al. Jan 2011 B2
7866110 Pervan Jan 2011 B2
7908815 Pervan et al. Mar 2011 B2
7930862 Bergelin et al. Apr 2011 B2
7980039 Groeke Jul 2011 B2
7980041 Pervan Jul 2011 B2
8033074 Pervan Oct 2011 B2
8042311 Pervan Oct 2011 B2
8061104 Pervan Nov 2011 B2
8079196 Pervan Dec 2011 B2
8112967 Pervan et al. Feb 2012 B2
8171692 Pervan May 2012 B2
8181416 Pervan et al. May 2012 B2
8191334 Braun Jun 2012 B2
8234830 Pervan et al. Aug 2012 B2
8281549 Du Oct 2012 B2
8302367 Schulte Nov 2012 B2
8336272 Prager et al. Dec 2012 B2
8341914 Pervan et al. Jan 2013 B2
8341915 Pervan et al. Jan 2013 B2
8353140 Pervan et al. Jan 2013 B2
8359805 Pervan et al. Jan 2013 B2
8381477 Pervan et al. Feb 2013 B2
8387327 Pervan Mar 2013 B2
8448402 Pervan et al. May 2013 B2
20010024707 Andersson et al. Sep 2001 A1
20020031646 Chen et al. Mar 2002 A1
20020046433 Sellman, Jr. et al. Apr 2002 A1
20020069611 Leopolder Jun 2002 A1
20020092263 Schulte Jul 2002 A1
20020100231 Miller et al. Aug 2002 A1
20020170258 Schwitte et al. Nov 2002 A1
20020170259 Ferris Nov 2002 A1
20020178674 Pervan Dec 2002 A1
20020178680 Martensson Dec 2002 A1
20030009971 Palmberg Jan 2003 A1
20030024199 Pervan et al. Feb 2003 A1
20030037504 Schwitte et al. Feb 2003 A1
20030084636 Pervan May 2003 A1
20030094230 Sjoberg May 2003 A1
20030101681 Tychsen Jun 2003 A1
20030154676 Schwartz Aug 2003 A1
20030180091 Stridsman Sep 2003 A1
20030188504 Ralf Oct 2003 A1
20030196405 Pervan Oct 2003 A1
20040031227 Knauseder Feb 2004 A1
20040049999 Krieger Mar 2004 A1
20040060255 Knauseder Apr 2004 A1
20040068954 Martensson Apr 2004 A1
20040107659 Glockl Jun 2004 A1
20040123548 Gimpel et al. Jul 2004 A1
20040128934 Hecht Jul 2004 A1
20040139676 Knauseder Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040159066 Thiers et al. Aug 2004 A1
20040168392 Konzelmann et al. Sep 2004 A1
20040177584 Pervan Sep 2004 A1
20040182033 Wernersson Sep 2004 A1
20040182036 Sjoberg et al. Sep 2004 A1
20040200175 Weber Oct 2004 A1
20040211143 Hannig Oct 2004 A1
20040250492 Becker Dec 2004 A1
20040255541 Thiers Dec 2004 A1
20040261348 Vulin Dec 2004 A1
20050003132 Blix et al. Jan 2005 A1
20050028474 Kim Feb 2005 A1
20050050827 Schitter Mar 2005 A1
20050138881 Pervan Jun 2005 A1
20050160694 Pervan Jul 2005 A1
20050166514 Pervan Aug 2005 A1
20050205161 Lewark Sep 2005 A1
20050210810 Pervan Sep 2005 A1
20050235593 Hecht Oct 2005 A1
20060053724 Braun et al. Mar 2006 A1
20060070333 Pervan Apr 2006 A1
20060099386 Smith May 2006 A1
20060101769 Pervan et al. May 2006 A1
20060156670 Knauseder Jul 2006 A1
20060236642 Pervan Oct 2006 A1
20060260254 Pervan Nov 2006 A1
20070006543 Engstrom Jan 2007 A1
20070011981 Eisermann Jan 2007 A1
20070028547 Grafenauer Feb 2007 A1
20070065293 Hannig Mar 2007 A1
20070108679 Grothaus May 2007 A1
20070151189 Yang Jul 2007 A1
20070175143 Pervan et al. Aug 2007 A1
20070175156 Pervan et al. Aug 2007 A1
20070193178 Groeke et al. Aug 2007 A1
20070209736 Deringor et al. Sep 2007 A1
20070214741 Llorens Miravet Sep 2007 A1
20080000185 Duernberger Jan 2008 A1
20080005989 Pervan et al. Jan 2008 A1
20080010931 Pervan et al. Jan 2008 A1
20080010937 Pervan et al. Jan 2008 A1
20080028707 Pervan Feb 2008 A1
20080034708 Pervan Feb 2008 A1
20080041008 Pervan Feb 2008 A1
20080066415 Pervan Mar 2008 A1
20080104921 Pervan et al. May 2008 A1
20080110125 Pervan May 2008 A1
20080134607 Pervan et al. Jun 2008 A1
20080134613 Pervan Jun 2008 A1
20080155930 Pervan et al. Jul 2008 A1
20080172971 Pervan Jul 2008 A1
20080216434 Pervan Sep 2008 A1
20080216920 Pervan Sep 2008 A1
20080236088 Hannig Oct 2008 A1
20080263975 Mead Oct 2008 A1
20080295432 Pervan et al. Dec 2008 A1
20090019806 Muehlebach Jan 2009 A1
20090100782 Groeke et al. Apr 2009 A1
20090133353 Pervan et al. May 2009 A1
20090151290 Liu Jun 2009 A1
20090155612 Pervan et al. Jun 2009 A1
20090193741 Cappelle Aug 2009 A1
20090193748 Boo et al. Aug 2009 A1
20090193753 Schitter Aug 2009 A1
20090308014 Muehlebach Dec 2009 A1
20100043333 Hannig Feb 2010 A1
20100083603 Goodwin Apr 2010 A1
20100173122 Susnjara Jul 2010 A1
20100281803 Cappelle Nov 2010 A1
20100293879 Pervan et al. Nov 2010 A1
20100300029 Braun et al. Dec 2010 A1
20100300030 Pervan et al. Dec 2010 A1
20100300031 Pervan et al. Dec 2010 A1
20100319291 Pervan et al. Dec 2010 A1
20110016815 Yang Jan 2011 A1
20110030303 Pervan et al. Feb 2011 A1
20110041996 Pervan Feb 2011 A1
20110088344 Pervan et al. Apr 2011 A1
20110088345 Pervan Apr 2011 A1
20110131916 Chen Jun 2011 A1
20110154763 Bergelin et al. Jun 2011 A1
20110167750 Pervan Jul 2011 A1
20110167751 Engstrom Jul 2011 A1
20110197535 Baker et al. Aug 2011 A1
20110225922 Pervan et al. Sep 2011 A1
20110252733 Pervan et al. Oct 2011 A1
20110271632 Cappelle et al. Nov 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20120017533 Pervan et al. Jan 2012 A1
20120031029 Pervan et al. Feb 2012 A1
20120036804 Pervan Feb 2012 A1
20120096801 Cappelle Apr 2012 A1
20120124932 Schulte et al. May 2012 A1
20120151865 Pervan et al. Jun 2012 A1
20120174515 Pervan et al. Jul 2012 A1
20120174520 Pervan Jul 2012 A1
20120174521 Schulte et al. Jul 2012 A1
20120192521 Schulte Aug 2012 A1
20120279161 Håkansson et al. Nov 2012 A1
20130008117 Pervan Jan 2013 A1
20130014463 Pervan Jan 2013 A1
20130019555 Pervan Jan 2013 A1
20130036695 Durnberger Feb 2013 A1
20130042562 Pervan Feb 2013 A1
20130042563 Pervan Feb 2013 A1
20130042564 Pervan et al. Feb 2013 A1
20130047536 Pervan Feb 2013 A1
20130055950 Pervan et al. Mar 2013 A1
20130081349 Pervan et al. Apr 2013 A1
20130111845 Pervan May 2013 A1
20130145708 Pervan Jun 2013 A1
20130160390 Stockl Jun 2013 A1
20130160391 Pervan et al. Jun 2013 A1
20130232905 Pervan Sep 2013 A2
Foreign Referenced Citations (119)
Number Date Country
2456513 Feb 2003 CA
201588375 Sep 2010 CN
39 32 980 Nov 1991 DE
299 22 649 Apr 2000 DE
200 01 788 Jun 2000 DE
199 40 837 Nov 2000 DE
199 58 225 Jun 2001 DE
202 06 460 Jul 2002 DE
202 05 774 Aug 2002 DE
10 2004 001 363 Aug 2004 DE
202 20 799 Apr 2005 DE
10 2004 055 951 Jul 2005 DE
10 2004 054 368 May 2006 DE
10 2005 024 366 Nov 2006 DE
10 2006 024 184 Nov 2007 DE
10 2006 037 614 Dec 2007 DE
10 2006 057 491 Jun 2008 DE
10 2007 018 309 Aug 2008 DE
10 2007 016 533 Oct 2008 DE
10 2007 032 885 Jan 2009 DE
10 2007 035 648 Jan 2009 DE
10 2007 049 792 Feb 2009 DE
10 2009 048 050 Jan 2011 DE
0 013 852 Aug 1980 EP
0 871 156 Oct 1998 EP
0 974 713 Jan 2000 EP
1 308 577 May 2003 EP
1 350 904 Oct 2003 EP
1 350 904 Oct 2003 EP
1 357 239 Oct 2003 EP
1 357 239 Oct 2003 EP
1 420 125 May 2004 EP
1 437 457 Jul 2004 EP
1 640 530 Mar 2006 EP
1 650 375 Apr 2006 EP
1 650 375 Sep 2006 EP
1 980 683 Oct 2008 EP
2 017 403 Jan 2009 EP
1.138.595 Jun 1957 FR
2 256 807 Aug 1975 FR
2 810 060 Dec 2001 FR
240629 Oct 1925 GB
376352 Jul 1932 GB
1171337 Nov 1969 GB
2 051 916 Jan 1981 GB
03-110258 May 1991 JP
05-018028 Jan 1993 JP
6-288017 Oct 1994 JP
6-306961 Nov 1994 JP
6-322848 Nov 1994 JP
7-300979 Nov 1995 JP
8-086080 Apr 1996 JP
WO 9426999 Nov 1994 WO
WO 9747834 Dec 1997 WO
WO 9822677 May 1998 WO
WO 0020705 Apr 2000 WO
WO 0043281 Jul 2000 WO
WO 0047841 Aug 2000 WO
WO 0055067 Sep 2000 WO
WO 0102669 Jan 2001 WO
WO 0102670 Jan 2001 WO
WO 0102671 Jan 2001 WO
WO 0102672 Jan 2001 WO
WO 0148332 Jul 2001 WO
WO 0151732 Jul 2001 WO
WO 0151733 Jul 2001 WO
WO 0166877 Sep 2001 WO
WO 0175247 Oct 2001 WO
WO 0177461 Oct 2001 WO
WO 0198604 Dec 2001 WO
WO 0248127 Jun 2002 WO
WO 03012224 Feb 2003 WO
WO 03016654 Feb 2003 WO
WO 03025307 Mar 2003 WO
WO 03074814 Sep 2003 WO
WO 03078761 Sep 2003 WO
WO 03083234 Oct 2003 WO
WO 03087497 Oct 2003 WO
WO 03089736 Oct 2003 WO
WO 2004016877 Feb 2004 WO
WO 2004020764 Mar 2004 WO
WO 2004048716 Jun 2004 WO
WO 2004050780 Jun 2004 WO
WO 2004053257 Jun 2004 WO
WO 2004053257 Jun 2004 WO
WO 2004079130 Sep 2004 WO
WO 2004083557 Sep 2004 WO
WO 2004085765 Oct 2004 WO
WO 2005003488 Jan 2005 WO
WO 2005054599 Jun 2005 WO
WO 2006043893 Apr 2006 WO
WO 2006050928 May 2006 WO
WO 2006104436 Oct 2006 WO
WO 2006123988 Nov 2006 WO
WO 2007015669 Feb 2007 WO
WO 2007079845 Jul 2007 WO
WO 2007089186 Aug 2007 WO
WO 2007118352 Oct 2007 WO
WO 2007141605 Dec 2007 WO
WO 2007142589 Dec 2007 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008017281 Feb 2008 WO
WO 2008017301 Feb 2008 WO
WO 2008017301 Feb 2008 WO
WO 2008060232 May 2008 WO
WO 2008068245 Jun 2008 WO
WO 2009116926 Sep 2009 WO
WO 210006684 Jan 2010 WO
WO 2010070472 Jun 2010 WO
WO 2010070605 Jun 2010 WO
WO 2010087752 Aug 2010 WO
WO 2010108980 Sep 2010 WO
WO 201013617 Dec 2010 WO
WO 2011001326 Jan 2011 WO
WO 2011012104 Feb 2011 WO
WO 2011032540 Mar 2011 WO
WO 2011127981 Oct 2011 WO
WO 2011151758 Dec 2011 WO
Non-Patent Literature Citations (58)
Entry
U.S. Appl. No. 13/577,042, Pervan.
U.S. Appl. No. 13/540,107, Pervan.
U.S. Appl. No. 13/544,281, Pervan.
U.S. Appl. No. 13/546,569, Pervan.
U.S. Appl. No. 13/585,485, Pervan.
U.S. Appl. No. 13/585,179, Pervan.
U.S. Appl. No. 13/569,988, Pervan.
U.S. Appl. No. 13/660,538, Pervan et al.
U.S. Appl. No. 13/670,039, Pervan et al.
U.S. Appl. No. 13/728,121, Pervan et al.
U.S. Appl. No. 61/620,233, Boo.
U.S. Appl. No. 61/620,246, Boo.
Pervan, Darko, et al., U.S. Appl. No. 13/577,042, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Aug. 3, 2012.
Pervan, Darko, U.S. Appl. No. 13/540,107, entitled “Mechanical Locking of Floor Panels with a Glued Tongue,” filed in the U.S. Patent and Trademark Office on Jul. 2, 2012.
Pervan, Darko, U.S. Appl. No. 13/544,281, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Jul. 9, 2012.
Pervan, Darko, et al., U.S. Appl. No. 13/546,569, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Jul. 11, 2012.
Pervan, Darko, et al., U.S. Appl. No. 13/585,485, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Aug. 14, 2012.
Pervan, Darko, et al., U.S. Appl. No. 13/585,179, entitled, “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Aug. 14, 2012.
Pervan, Darko, et al., U.S. Appl. No. 13/596,988, entitled, “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Aug. 28, 2012.
Pervan, Darko, et al., U.S. Appl. No. 13/660,538, entitled “Mechanical Locking of Floor Panels with Vertical Snap Folding,” filed in the U.S. Patent and Trademark Office on Oct. 25, 2012.
Pervan, Darko, et al., U.S. Appl. No. 13/670,039, entitled “Mechanical Locking of Floor Panels with a Flexible Tongue,” filed in the U.S. Patent and Trademark Office on Nov. 6, 2012.
Pervan, Darko, et al., U.S. Appl. No. 13/728,121, entitled “Mechanical Locking of Floor Panels with a Flexible Tongue,” filed in the U.S. Patent and Trademark Office on Dec. 27, 2012.
Boo, Christian, U.S. Appl. No. 61/620,233, entitled “Building Panel with a Mechanical Locking System,” filed in the U.S. Patent and Trademark Office on Apr. 4, 2012.
Boo, Christian, U.S. Appl. No. 61/620,246, entitled “Method for Producing a Mechanical Locking System for Building Panels,” filed in the U.S. Patent and Trademark Office on Apr. 4, 2012.
Välinge Innovation AB, Technical Disclosure entitled “Mechanical locking for floor panels with a flexible bristle tongue,” IP.com number: IPCOM000145262D, Jan. 12, 2007, IP.com PriorArtDatabase, 57 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA-038 Mechanical Locking of Floor Panels With Vertical Folding,” IP com No. IPCOM000179246D, Feb. 10, 2009, IP.com Prior Art Database, 59 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA043 5G Linear Slide Tongue,” IP com No. IPCOM000179015D, Feb. 4, 2009, IP.com Prior Art Database, 126 pages.
Engstrand, Ola (Owner)/Välinge Innovation AB, Technical Disclosure entitled “VA043b PCT Mechanical Locking of Floor Panels,” IP com No. IPCOM000189420D, Nov. 9, 2009, IP.com Prior Art Database, 62 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA055 Mechanical locking system for floor panels,” IP com No. IPCOM000206454D, Apr. 27, 2011, IP.com Prior Art Database, 25 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA058 Rocker Tongue,” IP com No. IPCOM000203832D, Feb. 4, 2011, IP.com Prior Art Database, 22 pages.
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA066b Glued Tongue,” IP com No. IPCOM000210865D, Sep. 13, 2011, IP.com Prior Art Database, 19 pages.
Pervan, Darko (Inventor)/Välinge Flooring Technology AB, Technical Disclosure entitled “VA067 Fold Slide Loc,” IP com No. IPCOM000208542D, Jul. 12, 2011, IP.com Prior Art Database, 37 pages.
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA068 Press Lock VFT,” IP com No. IPCOM000208854D, Jul. 20, 2011, IP.com Prior Art Database, 25 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA069 Combi Tongue,” IP com No. IPCOM000210866D, Sep. 13, 2011, IP.com Prior Art Database, 41 pages.
Pervan, Darko(Author), Technical Disclosure entitled “VA070 Strip Part,” IP com No. IPCOM000210867D, Sep. 13, 2011, IP.com Prior Art Database, 43 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA071 Pull Lock,” IP com No. IPCOM000210868D, Sep. 13, 2011, IP.com Prior Art Database, 22 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA073a Zip Loc,” IP com No. IPCOM000210869D, Sep. 13, 2011, IP.com Prior Art Database, 36 pages.
Pervan, Darko, et al., U.S. Appl. No. 13/758,603, entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed in the U.S. Patent and Trademark Office Feb. 4, 2013.
U.S. Appl. No. 13/855,966, Boo.
U.S. Appl. No. 13/855,979, Boo et al.
Boo, Christian, U.S. Appl. No. 13/855,966, entitled “Building Panel with a Mechanical Locking System,” filed in the U.S. Patent and Trademark Office on Apr. 3, 2013.
Boo, Christian, et al., U.S. Appl. No. 13/855,979, entitled “Method for Producing a Mechanical Locking System for Building Panels,” filed in the U.S. Patent and Trademark Office on Apr. 3, 2013.
International Search Report mailed Dec. 13, 2012 in PCT/SE2012/050871, Swedish Patent Office, Stockholm, Sweden, 8 pages.
U.S. Appl. No. 13/886,916, Pervan et al.
Pervan, Darko, et al., U.S. Appl. No. 13/886,916, entitled “Mechanical Locking of Building Panels,” filed in the U.S. Patent and Trademark Office on May 3, 2013.
Pervan, Darko, U.S. Appl. No. 14/042,887 entitled “Mechanical Locking of Floor Panels with a Glued Tongue,” filed in the U.S. Patent and Trademark Office on Oct. 1, 2013.
Pervan, Darko, et al., U.S. Appl. No. 14/046,235 entitled “Mechanical Locking of Floor Panels with a Flexible Tongue,” filed in the U.S. Patent and Trademark Office on Oct. 4, 2013.
Nygren, Per, et al., U.S. Appl. No. 61/774,749, entitled “Building panels provided with a Mechanical Locking System,” filed in the U.S. Patent and Trademark Office on Mar. 8, 2013.
Pervan, Darko, et al., U.S. Appl. No. 13/962,446, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Aug. 8, 2013.
Pervan, Darko, U.S. Appl. No. 14/011,042 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Aug. 27, 2013.
Pervan, Darko, et al., U.S. Appl. No. 14/011,121 entitled “Mechanical Locking System for Floor Panels with Vertical Snap Folding,” filed in the U.S. Patent and Trademark Office on Aug. 27, 2013.
Pervan, Darko, U.S. Appl. No. 14/080,105 entitled “Mechanical Locking of Floor Panels with Vertical Folding,” filed in the U.S. Patent and Trademark Office on Nov. 14, 2013.
Pervan, Darko, et al., U.S. Appl. No. 14/095,052, entitled “Mechanical Locking of Floor Panels,” filed in the U.S. Patent and Trademark Office on Dec. 3, 2013.
Pervan, Darko, et al., U.S. Appl. No. 14/138,330 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Dec. 23, 2013.
Pervan, Darko, U.S. Appl. No. 14/138,385 entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed in the U.S. Patent and Trademark Office on Dec. 23, 2013.
Pervan, Darko, et al., U.S. Appl. No. 14/152,402 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Jan. 10, 2014.
Pervan, Darko, et al., U.S. Appl. No. 14/206,286, entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed in the U.S. Patent and Trademark Office on Mar. 12, 2014.
Pervan, Darko, U.S. Appl. No. 14/270,711, entitled “Mechanical Locking System for Floor Panels,” filed May 6, 2014.
Related Publications (1)
Number Date Country
20130042565 A1 Feb 2013 US
Provisional Applications (1)
Number Date Country
61523571 Aug 2011 US