Mechanical locking system for floor panels

Information

  • Patent Grant
  • 10180005
  • Patent Number
    10,180,005
  • Date Filed
    Tuesday, June 7, 2016
    8 years ago
  • Date Issued
    Tuesday, January 15, 2019
    6 years ago
Abstract
Floor panels are shown, which are provided with a vertical locking system on short edges including a displaceable tongue that is displaced in one direction into a tongue groove during vertical displacement of two panels. Building panels provided with a locking system for vertical locking of a first and a second building panel by a vertical displacement of the panels relative each other, a displaceable tongue is in a sidewardly open displacement groove provided at an edge of a first panel, said tongue cooperates with a tongue groove provided at an adjacent edge of a second panel for locking the edge and the adjacent edge vertically.
Description
TECHNICAL FIELD

The disclosure generally relates to the field of mechanical locking systems for floor panels and building panels and production methods to insert a tongue into a groove.


FIELD OF APPLICATION

Embodiments of the present disclosure are particularly suitable for use in floating floors, which are formed of floor panels which are joined mechanically with a locking system integrated with the floor panel, i.e. mounted at the factory, are made up of one or more upper layers of wood or wood veneer, decorative laminate, powder based surfaces or decorative plastic material, an intermediate core of wood-fibre-based material or plastic material and preferably a lower balancing layer on the rear side of the core. Floor panels with a surface layer of cork, linoleum, rubber or soft wear layers, for instance needle felt glued to a board, printed and preferably also varnished surface and floors with hard surfaces such as stone, tile and similar materials are included. Embodiments of the disclosure may also be used for joining building panels which preferably contain a board material for instance wall panels, ceilings, furniture components and similar.


The following description of known technique, problems of known systems and objects and features of the disclosure will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular at panels formed as rectangular floor panels with long and shorts edges intended to be mechanically joined to each other on both long and short edges.


The long and short edges are mainly used to simplify the description of embodiments of the disclosure. The panels may be square. Embodiments of the disclosure are preferably used on the short edges. It should be emphasized that embodiments of the disclosure may be used in any floor panel and it may be combined with all types of known locking system formed on the long edges, where the floor panels are intended to be joined using a mechanical locking system connecting the panels in the horizontal and vertical directions on at least two adjacent sides.


BACKGROUND

Laminate flooring usually comprise a core of a 6-12 mm fibre board, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material. A laminate surface comprises melamine-impregnated paper. The most common core material is fibreboard with high density and good stability usually called HDF—High Density Fibreboard. Sometimes also MDF—Medium Density Fibreboard—is used as core.


Laminate floorings are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking means, which lock the panels horizontally and vertically. The mechanical locking systems are usually formed by machining of the core of the panel. Alternatively, parts of the locking system may be formed of a separate material, for instance aluminum or HDF, which is integrated with the floor panel, i.e. joined with the floor panel in connection with the manufacture thereof.


The main advantages of floating floors with mechanical locking systems are that they are easy to install. They may also easily be taken up again and used once more at a different location.


Definition of Some Terms

In the following text, the visible surface of the installed floor panel is called “front side”, while the opposite side of the floor panel, facing the sub floor, is called “rear side”. The edge between the front and rear side is called “joint edge”. By “horizontal plane” is meant a plane, which extends parallel to the outer part of the surface layer. Immediately juxta-posed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane. By “vertical locking” is meant locking parallel to the vertical plan. By “horizontal locking” is meant locking parallel to the horizontal plane.


By “up” is meant towards the front side, by “down” towards the rear side, by “inwardly” mainly horizontally towards an inner and center part of the panel and by “outwardly” mainly horizontally away from the center part of the panel.


By “locking systems” are meant co acting connecting elements, which connect the floor panels vertically and/or horizontally.


Related Art and Problems Thereof

For mechanical joining of long edges as well as short edges in the vertical and in the first horizontal direction perpendicular to the edges several methods may be used. One of the most used methods is the angle-snap method. The long edges are installed by angling. The panel is than displaced in locked position along the long side. The short edges are locked by horizontal snapping. The vertical connection is generally a tongue and a groove. During the horizontal displacement, a strip with a locking element is bent and when the edges are in contact, the strip springs back and a locking element enters a locking groove and locks the panels horizontally. Such a snap connection is complicated since a hammer and a tapping block may need to be used to overcome the friction between the long edges and to bend the strip during the snapping action.


Similar locking systems may also be produced with a rigid strip and they are connected with an angling-angling method where both short and long edges are angled into a locked position.


Recently new and very efficient locking systems have been introduced with a separate flexible or displaceable integrated tongue on the short edge that allows installation with only an angling action, generally referred to as “vertical folding”. Such a system is described in WO 2006/043893 (Välinge Innovation AB).


Several versions are used on the market. One of the most used versions is shown in FIGS. 1a-1d. A flexible tongue 30 is during locking displaced in a horizontally extending displacement groove 40 and into a tongue groove 20 of an adjacent panel. The displaceable tongue locks the edges vertically and a strip 6 with a locking element that cooperates with a locking groove 14 locks the panels horizontally. The locking is a combination of vertical displacement and turning similar to a scissor action. The tongue is gradually displaced inwardly during locking from one inner edge to an outer edge as shown in FIG. 1d such that the tongue is bent in the length direction. Such systems are referred to as vertical snap systems and they provide an automatically locking during the folding action.


Although such systems are very efficient, there is still a room for improvements.


High locking force can only be accomplished with high snapping resistance when the tongue is pressed inwardly and bent in the length direction. This creates separation forces that tend to push the panels apart during folding. The locking may lose its strength if the flexibility and pressing force of the tongue decreases over time.


The flexibility must be considerable and allow that a flexible tongue is displaced in two directions about 1-2 mm. The material, which is used to produce such tongues, is rather expensive and glass fibres are generally used to reinforce the flexible tongue.


It would be a major advantage if snapping could be eliminated in a system that locks automatically during folding.


SUMMARY AND OBJECTS

An overall objective of embodiments of the present disclosure is to provide a locking system for primarily rectangular floor panels with long and short edges installed in parallel rows, which allows that the short edges may be locked to each other automatically without a snap action that creates a locking resistance and separation forces of the short edges during folding.


A specific objective is to provide a locking system with a separate displaceable tongue that may be bent in length direction with a lower separation force and that comprises means that prevent the tongue to slide back into the groove after locking.


The above objects of embodiments of the disclosure may be achieved wholly or partly by locking systems and floor panels according to the disclosure. Embodiments of the disclosure are evident from the description and drawings.


An aspect of the disclosure is building panels provided with a locking system for vertical locking of a first and a second building panel by a vertical displacement of the panels relative each other. A displaceable tongue is attached into a sidewardly open displacement groove provided at an edge of the first panel. Said tongue cooperates with a tongue groove provided at an adjacent edge of the second panel for locking the edges vertically. A strip protrudes below the displacement groove and outwardly beyond the upper part of the edge or below the tongue groove and outwardly beyond the upper part of the adjacent edge. The displaceable tongue comprises a pulling extension at its outer part configured to cooperate with a pulling protrusion formed at an edge of the adjacent panel such that the displaceable tongue is pulled out from the displacement groove and into the tongue groove when the edges of the panels are displaced vertically against each other.


Said pulling protrusion may be part of the tongue groove.


The pulling extension may be inclined in relation to a main horizontal plane of the panels. The pulling protrusion may be inclined in relation to a main horizontal plane of the panels.


The displaceable tongue may be provided with a locking hook that prevents the tongue to slide back into the displacement groove after locking.


The locking hook may lock against an outer part of the displacement groove.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will in the following be described in connection to exemplary embodiments and in greater detail with reference to the appended exemplary drawings, wherein:



FIGS. 1a-d illustrate locking systems according to known technology;



FIGS. 2a-e illustrate a short edge locking system according to the disclosure;



FIGS. 3a-3c illustrate a short edge locking system according to preferred embodiments of the disclosure;



FIGS. 4a-c illustrate preferred embodiments of short edge locking systems with a separate strip;



FIGS. 5a-e illustrate a locking system according to an embodiment of the disclosure with a locking hook that prevents unlocking;



FIGS. 6a-d illustrate a tongue according to an embodiment of the disclosure with increased flexibility related to bending in length direction;



FIGS. 7a-d illustrate a method according to an embodiment of the disclosure to insert a tongue into a groove; and



FIGS. 8a-c illustrate an embodiment of the disclosure.





DETAILED DESCRIPTION OF EMBODIMENTS

To facilitate understanding, several locking systems in the figures are shown schematically. It should be emphasized that improved or different functions may be achieved using combinations of the embodiments.


All embodiments may be used separately or in combinations. Angles, dimensions, rounded parts, spaces between surfaces etc. are only examples that may be adjusted within the basic principles of the disclosure.



FIGS. 2a-2e show a first preferred embodiment of a short edge locking system provided with a flexible and displaceable tongue 30 in an edge of a first panel 1 inserted in a horizontally extending displacement groove 40. The displaceable tongue 30 has a pulling extension 31 comprising a tongue pulling surface 32 and tongue locking surface 33. The second adjacent panel 1′ has a pulling protrusion 21 with a groove pulling surface 22 that is also a part of a tongue groove 20 comprising a groove locking surface 23. The pulling surfaces 22, 32 cooperate during the vertical displacement and pull the displaceable tongue 30 into a tongue groove 20. The pulling extension 31 comprises a tongue locking surface 33 that locks against a groove locking surface 23 and prevents vertical displacement of the edges in a first vertical direction. A locking strip 6 and a lower part 39 of the adjacent panel locks the edges in a second vertical direction. A locking element 8 and a locking groove 14 locks the edges horizontally together with the upper edges. The vertical connection may be used without the horizontal locking as shown by FIG. 2e. Short edges may be locked horizontally by, for example, friction between long edges.


The tongue may be attached into a displacement groove 40 formed on the panel comprising the strip 6, the strip panel, or on the panel comprising the locking groove, the groove panel, as shown in FIGS. 3a-3c. The pulling protrusion 21 may extend upwardly or downwardly and the displacement groove may be inclined against the horizontal plane HP.



FIGS. 4a-4c show that the strip 6 may be formed as a separate material. The pulling protrusion 21 may be flexible and this may eliminate production tolerances and facilitate the displacement of the tongue 30 into the tongue groove 20 during folding.



FIGS. 5a-5e show that the displaceable tongue 30 may comprise a locking hook 34 that may serve as a friction connection to prevent the tongue 30 from falling out from the groove 40 but also to prevent the tongue from sliding back after locking. The locking angle A1 is preferably about 45 degrees or higher. A higher angle facilitates displacement into the tongue groove 20 but also backward displacement. This may be prevented by a hook connection 34 that preferably locks against an upper or lower part of the displacement groove 40. The hook connection is pressed into the groove by a hammer that inserts the tongue 30 into the groove 40 during production. The hook 34 slides against a bevel formed at the displacement groove 40 as shown in FIG. 5c. The upper part of the locking element 8 is preferably located vertically below the tongue locking surface 33 as shown in FIG. 5d. This gives a stronger locking. The locking system may have a geometry that allows locking and unlocking with angling.



FIGS. 6a-6c show that the displaceable tongue 30 turns and bends in the length direction during folding when an inner short edge of the tongue, as shown in FIG. 6b is in locked position and an outer short edge of the tongue 30 is in unlocked position as shown in FIG. 6d. The locking function may be improved if cavities 35 are formed on the displaceable tongue 30. Locking may also be improved if the locking surface 32 at an edge has a lower angle than at an inner part as shown in FIGS. 6b and 6c. The cavities 35 may be formed at tongue section where the locking hooks 34 are formed. The displaceable tongue 30 comprises preferably a polymer material and is preferably formed by injection molding.



FIGS. 7a-7d show that the locking hook 34 may comprise a hook part 34a that is used to press the hook connection upwards by inserting rails 36 during the insertion of the tongue 30 into the displacement groove 40.



FIGS. 8a-8c show that the locking hook 34 may be used to prevent unlocking in any locking system where a tongue is displace in a groove from an inner position to an outer position. The shown locking system comprises pushing protrusions 38 located in pushing cavities 37. The pushing protrusions slide against the locking element 8 and push the tongue 30 into a tongue groove 20. The locking element 8 is preferably located vertically below the cooperating locking surfaces 23,33 of the tongue 30 and the tongue groove 20.

Claims
  • 1. Building panels, comprising a first building panel,a second building panel, anda displaceable tongue arranged in a sidewardly open displacement groove provided at an edge of the first building panel,wherein the displaceable tongue comprises a pulling extension configured to cooperate with a pulling protrusion formed at an adjacent edge of the second building panel such that the displaceable tongue is linearly pulled out from the sidewardly open displacement groove and into a tongue groove provided at the adjacent edge of the second building panel when the edge of the first building panel and the adjacent edge of the second building panel are displaced vertically relative to each other, andwherein the displaceable tongue comprises a locking hook.
  • 2. Building panels as claimed in claim 1, wherein the locking hook is configured to serve as a friction connection.
  • 3. Building panels as claimed in claim 1, wherein the locking hook is configured to prevent the displaceable tongue from falling out from the displacement groove after locking of the first and second building panels.
  • 4. Building panels as claimed in claim 1, wherein the locking hook is configured to prevent the displaceable tongue from sliding back into the displacement groove after locking of the first and second building panels.
  • 5. Building panels as claimed in claim 1, wherein the locking hook is configured to lock against an upper part or lower part of the displacement groove.
  • 6. Building panels as claimed in claim 1, wherein the locking hook is configured to slide against a bevel formed at the displacement groove.
  • 7. Building panels as claimed in claim 1, wherein cavities are formed on the displaceable tongue.
  • 8. Building panels as claimed in claim 7, wherein the cavities are formed at a tongue section where locking hooks including the locking hook are formed.
  • 9. Building panels as claimed in claim 1, wherein the locking hook comprises a hook part that is configured to press the hook connection upwards by rails during insertion of the displaceable tongue into the displaceable groove.
  • 10. Building panels as claimed in claim 1, wherein the displaceable tongue is configured to cooperate with the tongue groove for locking the edge of the first building panel and the adjacent edge of the second building panel vertically.
  • 11. Building panels as claimed claim 1, further comprising a strip that protrudes: below the displacement groove and outwardly beyond an upper part of the edge of the first building panel; orbelow the tongue groove and outwardly beyond an upper part of the adjacent edge of the second building panel,wherein a locking element provided on the strip is configured to cooperate with a locking groove of the second building panel for horizontal locking of the first and second building panels.
  • 12. Building panels as claimed in claim 11, wherein an upper part of the locking element of the first building panel is located vertically below a tongue-locking surface of the pulling extension in a locked state of the building panels.
  • 13. Building panels as claimed in claim 1, wherein the pulling extension is provided at an outer part of the displaceable tongue.
  • 14. Building panels as claimed in claim 1, wherein the displaceable tongue is separate from the panels.
  • 15. Building panels as claimed in claim 1, wherein the displaceable tongue is formed by injection moulding.
  • 16. Building panels as claimed in claim 1, wherein a part of said pulling protrusion forms a part wall of the tongue groove.
  • 17. Building panels as claimed in claim 1, wherein the pulling extension and the pulling protrusion are inclined in relation to a main horizontal plane of the first and second building panels.
  • 18. Building panels as claimed in claim 1, wherein the locking hook locks against an outer part of the sidewardly open displacement groove.
  • 19. Building panels as claimed in claim 1, wherein the first and second building panels are floor panels.
  • 20. Building panels, comprising a first building panel,a second building panel, anda displaceable tongue arranged in a sidewardly open displacement groove provided at an edge of the first building panel,wherein the displaceable tongue comprises a pulling extension configured to cooperate with a pulling protrusion formed at an adjacent edge of the second building panel such that the displaceable tongue is pulled out from the sidewardly open displacement groove and the pulling extension is pulled into a tongue groove provided at the adjacent edge of the second building panel when the edge of the first building panel and the adjacent edge of the second building panel are displaced vertically relative to each other, andwherein the displaceable tongue comprises a locking hook.
  • 21. Building panels, comprising a first building panel,a second building panel, anda displaceable tongue arranged in a sidewardly open displacement groove provided at an edge of the first building panel,wherein the displaceable tongue comprises a pulling extension configured to cooperate with a pulling protrusion formed at an adjacent edge of the second building panel such that the displaceable tongue is pulled out from the sidewardly open displacement groove and into a tongue groove provided at the adjacent edge of the second building panel when the edge of the first building panel and the adjacent edge of the second building panel are displaced vertically relative to each other, andwherein the displaceable tongue comprises a locking hook, and the locking hook is configured to be pulled out from the sidewardly open displacement groove, when the edge of the first building panel and the adjacent edge of the second building panel are displaced vertically relative to each other, into a locking position at which the locking hook locks against the first panel.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 14/701,959, filed on May 1, 2015, which is a continuation of U.S. application Ser. No. 14/483,352, filed on Sep. 11, 2014, now U.S. Pat. No. 9,051,738, which is a continuation of U.S. application Ser. No. 13/585,179, filed on Aug. 14, 2012, now U.S. Pat. No. 8,857,126, which claims the benefit of U.S. Provisional Application No. 61/523,584, filed on Aug. 15, 2011. The entire contents of each of U.S. application Ser. No. 14/701,959, U.S. application Ser. No. 14/483,352, U.S. Pat. No. 9,051,738, U.S. application Ser. No. 13/585,179, U.S. Pat. No. 8,857,126, and U.S. Provisional Application No. 61/523,584 are hereby incorporated herein by reference in their entirety.

US Referenced Citations (548)
Number Name Date Kind
87853 Kappes Mar 1869 A
108068 Utley Oct 1870 A
124228 Stuart Mar 1872 A
213740 Conner Apr 1879 A
274354 McCarthy et al. Mar 1883 A
316176 Ransom Apr 1885 A
634581 Miller Oct 1899 A
861911 Stewart Jul 1907 A
1194636 Joy Aug 1916 A
1723306 Sipe Aug 1929 A
1743492 Sipe Jan 1930 A
1809393 Rockwell Jun 1931 A
1902716 Newton Mar 1933 A
2026511 Storm Dec 1935 A
2027292 Rockwell Jan 1936 A
2110728 Hoggatt Mar 1938 A
2204675 Grunert Jun 1940 A
2266464 Kraft Dec 1941 A
2277758 Hawkins Mar 1942 A
2430200 Wilson Nov 1947 A
2956280 Nystrom May 1952 A
2732706 Friedman Jan 1956 A
2740167 Rowley Apr 1956 A
2858584 Gaines Nov 1958 A
2863185 Riedi Dec 1958 A
2865058 Andersson Dec 1958 A
2889016 Warren Jun 1959 A
3023681 Worson Mar 1962 A
3077703 Berstrom Feb 1963 A
3099110 Spaight Jul 1963 A
3147522 Schumm Sep 1964 A
3187612 Hervey Jun 1965 A
3271787 Clary Sep 1966 A
3325585 Brenneman Jun 1967 A
3331180 Vissing et al. Jul 1967 A
3378958 Parks et al. Apr 1968 A
3396640 Fujihara Aug 1968 A
3512324 Reed May 1970 A
3517927 Kennel Jun 1970 A
3526071 Watanabe Sep 1970 A
3535844 Glaros Oct 1970 A
3572224 Perry Mar 1971 A
3579941 Tibbals May 1971 A
3720027 Christensen Mar 1973 A
3722379 Koester Mar 1973 A
3731445 Hoffmann et al. May 1973 A
3742669 Mansfeld Jul 1973 A
3760547 Brenneman Sep 1973 A
3760548 Sauer et al. Sep 1973 A
3778954 Meserole Dec 1973 A
3849235 Gwynne Nov 1974 A
3919820 Green Nov 1975 A
3950915 Cole Apr 1976 A
3994609 Puccio Nov 1976 A
4007767 Colledge Feb 1977 A
4007994 Brown Feb 1977 A
4030852 Hein Jun 1977 A
4037377 Howell et al. Jul 1977 A
4041665 de Munck Aug 1977 A
4064571 Phipps Dec 1977 A
4080086 Watson Mar 1978 A
4082129 Morelock Apr 1978 A
4100710 Kowallik Jul 1978 A
4104840 Heintz et al. Aug 1978 A
4107892 Bellem Aug 1978 A
4113399 Hansen, Sr. et al. Sep 1978 A
4169688 Toshio Oct 1979 A
RE30154 Jarvis Nov 1979 E
4196554 Anderson Apr 1980 A
4227430 Janssen et al. Oct 1980 A
4299070 Oltmanns Nov 1981 A
4304083 Anderson Dec 1981 A
4426820 Terbrack Jan 1984 A
4447172 Galbreath May 1984 A
4512131 Laramore Apr 1985 A
4599841 Haid Jul 1986 A
4648165 Whitehorne Mar 1987 A
4819932 Trotter, Jr. Apr 1989 A
5007222 Raymond Apr 1991 A
5026112 Rice Jun 1991 A
5071282 Brown Dec 1991 A
5135597 Barker Aug 1992 A
5148850 Urbanick Sep 1992 A
5173012 Ortwein et al. Dec 1992 A
5182892 Chase Feb 1993 A
5247773 Weir Sep 1993 A
5272850 Mysliwiec et al. Dec 1993 A
5274979 Tsai Jan 1994 A
5295341 Kajiwara Mar 1994 A
5344700 McGath et al. Sep 1994 A
5348778 Knipp et al. Sep 1994 A
5373674 Winter, IV Dec 1994 A
5465546 Buse Nov 1995 A
5485702 Sholton Jan 1996 A
5502939 Zadok et al. Apr 1996 A
5548937 Shimonohara Aug 1996 A
5577357 Civelli Nov 1996 A
5598682 Haughian Feb 1997 A
5618602 Nelson Apr 1997 A
5634309 Polen Jun 1997 A
5658086 Brokaw et al. Aug 1997 A
5694730 Del Rincon et al. Dec 1997 A
5755068 Ormiston May 1998 A
5860267 Pervan Jan 1999 A
5899038 Stroppiana May 1999 A
5910084 Koike Jun 1999 A
5950389 Porter Sep 1999 A
5970675 Schray Oct 1999 A
6006486 Moriau Dec 1999 A
6029416 Andersson Feb 2000 A
6052960 Yonemura Apr 2000 A
6065262 Motta May 2000 A
6173548 Hamar et al. Jan 2001 B1
6182410 Pervan Feb 2001 B1
6203653 Seidner Mar 2001 B1
6210512 Jones Apr 2001 B1
6254301 Hatch Jul 2001 B1
6295779 Canfield Oct 2001 B1
6314701 Meyerson Nov 2001 B1
6332733 Hamberger Dec 2001 B1
6339908 Chuang Jan 2002 B1
6345481 Nelson Feb 2002 B1
6358352 Schmidt Mar 2002 B1
6363677 Chen et al. Apr 2002 B1
6385936 Schneider May 2002 B1
6418683 Martensson et al. Jul 2002 B1
6446413 Gruber Sep 2002 B1
6449918 Nelson Sep 2002 B1
6450235 Lee Sep 2002 B1
6490836 Moriau et al. Dec 2002 B1
6505452 Hannig Jan 2003 B1
6546691 Leopolder Apr 2003 B2
6553724 Bigler Apr 2003 B1
6576079 Kai Jun 2003 B1
6584747 Kettler et al. Jul 2003 B2
6588166 Martensson Jul 2003 B2
6591568 Pålsson Jul 2003 B1
6601359 Olofsson Aug 2003 B2
6617009 Chen et al. Sep 2003 B1
6647689 Pletzer et al. Nov 2003 B2
6647690 Martensson Nov 2003 B1
6651400 Murphy Nov 2003 B1
6670019 Andersson Dec 2003 B2
6672030 Schulte Jan 2004 B2
6681820 Olofsson Jan 2004 B2
6684592 Martin Feb 2004 B2
6685391 Gideon Feb 2004 B1
6729091 Martensson May 2004 B1
6763643 Martensson Jul 2004 B1
6766622 Thiers Jul 2004 B1
6769219 Schwitte et al. Aug 2004 B2
6769835 Stridsman Aug 2004 B2
6802166 Gerhard Oct 2004 B1
6804926 Eisermann Oct 2004 B1
6808777 Andersson et al. Oct 2004 B2
6854235 Martensson Feb 2005 B2
6862857 Tychsen Mar 2005 B2
6865855 Knauseder Mar 2005 B2
6874291 Weber Apr 2005 B1
6880307 Schwitte et al. Apr 2005 B2
6948716 Drouin Sep 2005 B2
7021019 Knauseder Apr 2006 B2
7040068 Moriau et al. May 2006 B2
7051486 Pervan May 2006 B2
7108031 Secrest Sep 2006 B1
7121058 Pålsson Oct 2006 B2
7152383 Wilkinson et al. Dec 2006 B1
7188456 Knauseder Mar 2007 B2
7219392 Mullet et al. May 2007 B2
7251916 Konzelmann et al. Aug 2007 B2
7257926 Kirby Aug 2007 B1
7337588 Moebus Mar 2008 B1
7377081 Ruhdorfer May 2008 B2
7451578 Hannig Nov 2008 B2
7454875 Pervan et al. Nov 2008 B2
7516588 Pervan Apr 2009 B2
7517427 Sjoberg et al. Apr 2009 B2
7533500 Morton et al. May 2009 B2
7556849 Thompson et al. Jul 2009 B2
7568322 Pervan Aug 2009 B2
7584583 Bergelin et al. Sep 2009 B2
7614197 Nelson Nov 2009 B2
7617651 Grafenauer Nov 2009 B2
7621092 Groeke et al. Nov 2009 B2
7634884 Pervan Dec 2009 B2
7637068 Pervan Dec 2009 B2
7644553 Knauseder Jan 2010 B2
7654055 Ricker Feb 2010 B2
7677005 Pervan Mar 2010 B2
7716889 Pervan May 2010 B2
7721503 Pervan et al. May 2010 B2
7726088 Muehlebach Jun 2010 B2
7757452 Pervan Jul 2010 B2
7802411 Pervan Sep 2010 B2
7806624 McLean et al. Oct 2010 B2
7841144 Pervan et al. Nov 2010 B2
7841145 Pervan et al. Nov 2010 B2
7841150 Pervan Nov 2010 B2
7856789 Eisermann Dec 2010 B2
7861482 Pervan et al. Jan 2011 B2
7866110 Pervan Jan 2011 B2
7908815 Pervan et al. Mar 2011 B2
7908816 Grafenauer Mar 2011 B2
7930862 Bergelin et al. Apr 2011 B2
7954295 Pervan Jun 2011 B2
7980039 Groeke Jul 2011 B2
7980041 Pervan Jul 2011 B2
8006458 Olofsson et al. Aug 2011 B1
8033074 Pervan Oct 2011 B2
8042311 Pervan Oct 2011 B2
8061104 Pervan Nov 2011 B2
8079196 Pervan Dec 2011 B2
8112967 Pervan et al. Feb 2012 B2
8171692 Pervan May 2012 B2
8181416 Pervan et al. May 2012 B2
8191334 Braun Jun 2012 B2
8220217 Muehlebach Jul 2012 B2
8234830 Pervan et al. Aug 2012 B2
8245478 Bergelin Aug 2012 B2
8281549 Du Oct 2012 B2
8302367 Schulte Nov 2012 B2
8336272 Prager et al. Dec 2012 B2
8341914 Pervan et al. Jan 2013 B2
8341915 Pervan et al. Jan 2013 B2
8353140 Pervan et al. Jan 2013 B2
8359805 Pervan et al. Jan 2013 B2
8375673 Evjen Feb 2013 B2
8381476 Hannig Feb 2013 B2
8381477 Pervan et al. Feb 2013 B2
8387327 Pervan Mar 2013 B2
8448402 Pervan et al. May 2013 B2
8499521 Pervan et al. Aug 2013 B2
8505257 Boo et al. Aug 2013 B2
8511031 Bergelin et al. Aug 2013 B2
8522505 Beach Sep 2013 B2
8528289 Pervan et al. Sep 2013 B2
8544230 Pervan Oct 2013 B2
8544234 Pervan et al. Oct 2013 B2
8572922 Pervan Nov 2013 B2
8578675 Palsson et al. Nov 2013 B2
8590250 Oh Nov 2013 B2
8596013 Boo Dec 2013 B2
8615952 Engström Dec 2013 B2
8627862 Pervan et al. Jan 2014 B2
8631623 EngstrÖM Jan 2014 B2
8635829 Schulte Jan 2014 B2
8640424 Pervan et al. Feb 2014 B2
8650826 Pervan et al. Feb 2014 B2
8677714 Pervan Mar 2014 B2
8689512 Pervan Apr 2014 B2
8701368 Vermeulen Apr 2014 B2
8707650 Pervan Apr 2014 B2
8713886 Boo et al. May 2014 B2
8733065 Pervan May 2014 B2
8733410 Pervan May 2014 B2
8763341 Pervan Jul 2014 B2
8769905 Pervan Jul 2014 B2
8776473 Pervan et al. Jul 2014 B2
8833026 Devos et al. Sep 2014 B2
8844236 Pervan et al. Sep 2014 B2
8857126 Pervan et al. Oct 2014 B2
8869485 Pervan Oct 2014 B2
8887468 Hakansson et al. Nov 2014 B2
8898988 Pervan Dec 2014 B2
8925274 Pervan et al. Jan 2015 B2
8938929 EngstrÖM Jan 2015 B2
8959866 Pervan Feb 2015 B2
8973331 Boo Mar 2015 B2
8991055 Cappelle Mar 2015 B2
8997423 Mann Apr 2015 B2
9027306 Pervan May 2015 B2
9051738 Pervan et al. Jun 2015 B2
9068360 Pervan Jun 2015 B2
9080329 Döhring Jul 2015 B2
9091077 Boo Jul 2015 B2
9181697 Masanek, Jr. et al. Nov 2015 B2
9194134 Nygren et al. Nov 2015 B2
9206611 Vermeulen et al. Dec 2015 B2
9212492 Pervan et al. Dec 2015 B2
9216541 Boo et al. Dec 2015 B2
9238917 Pervan et al. Jan 2016 B2
9284737 Pervan et al. Mar 2016 B2
9290948 Capelle Mar 2016 B2
9309679 Pervan et al. Apr 2016 B2
9316002 Boo Apr 2016 B2
9340974 Pervan et al. May 2016 B2
9347469 Pervan May 2016 B2
9359774 Pervan Jun 2016 B2
9366036 Pervan Jun 2016 B2
9371654 Capelle Jun 2016 B2
9376821 Pervan et al. Jun 2016 B2
9382716 Pervan et al. Jul 2016 B2
9388584 Pervan et al. Jul 2016 B2
9428919 Pervan et al. Aug 2016 B2
9453347 Pervan et al. Sep 2016 B2
9458634 Derelov Oct 2016 B2
9482012 Nygren et al. Nov 2016 B2
9540826 Pervan et al. Jan 2017 B2
9663940 Boo May 2017 B2
9725912 Pervan Aug 2017 B2
9771723 Pervan Sep 2017 B2
9777487 Pervan et al. Oct 2017 B2
9803374 Pervan Oct 2017 B2
9803375 Pervan Oct 2017 B2
9856656 Pervan Jan 2018 B2
9874027 Pervan Jan 2018 B2
20010024707 Andersson et al. Sep 2001 A1
20010045150 Owens Nov 2001 A1
20020031646 Chen et al. Mar 2002 A1
20020069611 Leopolder Jun 2002 A1
20020092263 Schulte Jul 2002 A1
20020095894 Pervan Jul 2002 A1
20020108343 Knauseder Aug 2002 A1
20020170258 Schwitte et al. Nov 2002 A1
20020170259 Ferris Nov 2002 A1
20020178674 Pervan Dec 2002 A1
20020178680 Martensson Dec 2002 A1
20020189190 Charmat et al. Dec 2002 A1
20020194807 Nelson et al. Dec 2002 A1
20030009971 Palmberg Jan 2003 A1
20030024199 Pervan et al. Feb 2003 A1
20030037504 Schwitte et al. Feb 2003 A1
20030084636 Pervan May 2003 A1
20030094230 Sjoberg May 2003 A1
20030101674 Pervan Jun 2003 A1
20030101681 Tychsen Jun 2003 A1
20030145549 Palsson et al. Aug 2003 A1
20030180091 Stridsman Sep 2003 A1
20030188504 Ralf Oct 2003 A1
20030196405 Pervan Oct 2003 A1
20040016196 Pervan Jan 2004 A1
20040031227 Knauseder Feb 2004 A1
20040049999 Krieger Mar 2004 A1
20040060255 Knauseder Apr 2004 A1
20040068954 Martensson Apr 2004 A1
20040123548 Gimpel et al. Jul 2004 A1
20040128934 Hecht Jul 2004 A1
20040139676 Knauseder Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040159066 Thiers et al. Aug 2004 A1
20040168392 Konzelmann et al. Sep 2004 A1
20040177584 Pervan Sep 2004 A1
20040182033 Wernersson Sep 2004 A1
20040182036 Sjoberg et al. Sep 2004 A1
20040200175 Weber Oct 2004 A1
20040211143 Hannig Oct 2004 A1
20040244325 Nelson Dec 2004 A1
20040250492 Becker Dec 2004 A1
20040261348 Vulin Dec 2004 A1
20050003132 Blix et al. Jan 2005 A1
20050028474 Kim Feb 2005 A1
20050050827 Schitter Mar 2005 A1
20050160694 Pervan Jul 2005 A1
20050166514 Pervan Aug 2005 A1
20050205161 Lewark Sep 2005 A1
20050210810 Pervan Sep 2005 A1
20050235593 Hecht Oct 2005 A1
20050252130 Martensson Nov 2005 A1
20050268570 Pervan Dec 2005 A2
20060053724 Braun et al. Mar 2006 A1
20060070333 Pervan Apr 2006 A1
20060101769 Pervan May 2006 A1
20060156670 Knauseder Jul 2006 A1
20060174577 O'Neil Aug 2006 A1
20060179754 Yang Aug 2006 A1
20060236642 Pervan Oct 2006 A1
20060260254 Pervan et al. Nov 2006 A1
20060272262 Pomberger Dec 2006 A1
20070006543 Engström Jan 2007 A1
20070011981 Eiserman Jan 2007 A1
20070028547 Grafenauer Feb 2007 A1
20070065293 Hannig Mar 2007 A1
20070108679 Grothaus May 2007 A1
20070151189 Yang et al. Jul 2007 A1
20070175156 Pervan et al. Aug 2007 A1
20070193178 Groeke et al. Aug 2007 A1
20070209736 Deringor et al. Sep 2007 A1
20070214741 Llorens Miravet Sep 2007 A1
20080000182 Pervan Jan 2008 A1
20080000185 Duernberger Jan 2008 A1
20080000186 Pervan et al. Jan 2008 A1
20080000187 Pervan et al. Jan 2008 A1
20080005998 Pervan Jan 2008 A1
20080010931 Pervan et al. Jan 2008 A1
20080010937 Pervan et al. Jan 2008 A1
20080028707 Pervan Feb 2008 A1
20080034708 Pervan Feb 2008 A1
20080041008 Pervan Feb 2008 A1
20080053029 Ricker Mar 2008 A1
20080066415 Pervan Mar 2008 A1
20080104921 Pervan et al. May 2008 A1
20080110125 Pervan May 2008 A1
20080134607 Pervan Jun 2008 A1
20080134613 Pervan Jun 2008 A1
20080134614 Pervan Jun 2008 A1
20080155930 Pervan et al. Jul 2008 A1
20080184646 Alford Aug 2008 A1
20080216434 Pervan Sep 2008 A1
20080216920 Pervan Sep 2008 A1
20080236088 Hannig et al. Oct 2008 A1
20080295432 Pervan et al. Dec 2008 A1
20080302044 Johansson Dec 2008 A1
20090019806 Muehlebach Jan 2009 A1
20090064624 Sokol Mar 2009 A1
20090100782 Groeke et al. Apr 2009 A1
20090133353 Pervan et al. May 2009 A1
20090151290 Liu Jun 2009 A1
20090173032 Prager et al. Jul 2009 A1
20090193741 Cappelle Aug 2009 A1
20090193748 Boo et al. Aug 2009 A1
20090193753 Schitter Aug 2009 A1
20090217615 Engstrom Sep 2009 A1
20090241460 Beaulieu Oct 2009 A1
20090308014 Muehlebach Dec 2009 A1
20100043333 Hannig et al. Feb 2010 A1
20100083603 Goodwin Apr 2010 A1
20100170189 Schulte Jul 2010 A1
20100173122 Susnjara Jul 2010 A1
20100281803 Cappelle Nov 2010 A1
20100293879 Pervan et al. Nov 2010 A1
20100300029 Braun et al. Dec 2010 A1
20100300031 Pervan et al. Dec 2010 A1
20100319290 Pervan Dec 2010 A1
20100319291 Pervan et al. Dec 2010 A1
20110016815 Yang Jan 2011 A1
20110030303 Pervan et al. Feb 2011 A1
20110041996 Pervan Feb 2011 A1
20110047922 Fleming, III Mar 2011 A1
20110088344 Pervan et al. Apr 2011 A1
20110088345 Pervan Apr 2011 A1
20110088346 Hannig Apr 2011 A1
20110131916 Chen Jun 2011 A1
20110154763 Bergelin et al. Jun 2011 A1
20110162312 Schulte Jul 2011 A1
20110167750 Pervan Jul 2011 A1
20110167751 Engström Jul 2011 A1
20110173914 Engström Jul 2011 A1
20110197535 Baker et al. Aug 2011 A1
20110225921 Schulte Sep 2011 A1
20110225922 Pervan et al. Sep 2011 A1
20110252733 Pervan Oct 2011 A1
20110271631 Engstrom Nov 2011 A1
20110271632 Cappelle et al. Nov 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20120017533 Pervan et al. Jan 2012 A1
20120031029 Pervan et al. Feb 2012 A1
20120036804 Pervan Feb 2012 A1
20120042598 Vermeulen et al. Feb 2012 A1
20120055112 Engström Mar 2012 A1
20120124932 Schulte et al. May 2012 A1
20120151865 Pervan et al. Jun 2012 A1
20120174515 Pervan Jul 2012 A1
20120174519 Schulte Jul 2012 A1
20120174520 Pervan Jul 2012 A1
20120174521 Schulte et al. Jul 2012 A1
20120192521 Schulte Aug 2012 A1
20120279161 Håkansson et al. Nov 2012 A1
20120304590 Engström Dec 2012 A1
20130008117 Pervan Jan 2013 A1
20130008118 Baert et al. Jan 2013 A1
20130014463 Pervan Jan 2013 A1
20130019555 Pervan Jan 2013 A1
20130025231 Vermeulen Jan 2013 A1
20130042562 Pervan Feb 2013 A1
20130042563 Pervan Feb 2013 A1
20130042564 Pervan et al. Feb 2013 A1
20130042565 Pervan Feb 2013 A1
20130047536 Pervan Feb 2013 A1
20130081349 Pervan et al. Apr 2013 A1
20130111837 Devos et al. May 2013 A1
20130111845 Pervan May 2013 A1
20130145708 Pervan Jun 2013 A1
20130152500 Engström Jun 2013 A1
20130160391 Pervan et al. Jun 2013 A1
20130167467 Vermeulen et al. Jul 2013 A1
20130219806 Carrubba Aug 2013 A1
20130232905 Pervan Sep 2013 A2
20130239508 Pervan et al. Sep 2013 A1
20130263454 Boo et al. Oct 2013 A1
20130263547 Boo Oct 2013 A1
20130283719 Döhring et al. Oct 2013 A1
20130318906 Pervan et al. Dec 2013 A1
20140007539 Pervan et al. Jan 2014 A1
20140020324 Pervan Jan 2014 A1
20140026513 Bishop Jan 2014 A1
20140033634 Pervan Feb 2014 A1
20140053497 Pervan et al. Feb 2014 A1
20140059966 Boo Mar 2014 A1
20140069043 Pervan Mar 2014 A1
20140090335 Pervan et al. Apr 2014 A1
20140109501 Pervan Apr 2014 A1
20140109506 Pervan et al. Apr 2014 A1
20140123586 Pervan et al. May 2014 A1
20140130437 Cappelle May 2014 A1
20140144096 Vermeulen et al. May 2014 A1
20140150369 Hannig Jun 2014 A1
20140190112 Pervan Jul 2014 A1
20140208677 Pervan et al. Jul 2014 A1
20140223852 Pervan Aug 2014 A1
20140237931 Pervan Aug 2014 A1
20140250813 Nygren et al. Sep 2014 A1
20140260060 Pervan et al. Sep 2014 A1
20140283466 Boo Sep 2014 A1
20140305065 Pervan Oct 2014 A1
20140366476 Pervan Dec 2014 A1
20140373478 Pervan et al. Dec 2014 A2
20140373480 Pervan et al. Dec 2014 A1
20150000221 Boo Jan 2015 A1
20150013260 Pervan Jan 2015 A1
20150047284 Cappelle Feb 2015 A1
20150059281 Pervan Mar 2015 A1
20150089896 Pervan et al. Apr 2015 A2
20150121796 Pervan May 2015 A1
20150152644 Boo Jun 2015 A1
20150167318 Pervan Jun 2015 A1
20150176619 Baker Jun 2015 A1
20150211239 Pervan Jul 2015 A1
20150233125 Pervan et al. Aug 2015 A1
20150267419 Pervan Sep 2015 A1
20150300029 Pervan Oct 2015 A1
20150330088 Derelov Nov 2015 A1
20150337537 Boo Nov 2015 A1
20160032596 Nygren et al. Feb 2016 A1
20160060879 Pervan Mar 2016 A1
20160069088 Boo et al. Mar 2016 A1
20160076260 Pervan et al. Mar 2016 A1
20160090744 Pervan et al. Mar 2016 A1
20160153200 Pervan Jun 2016 A1
20160168866 Pervan et al. Jun 2016 A1
20160186426 Boo Jun 2016 A1
20160194884 Pervan et al. Jul 2016 A1
20160201336 Pervan Jul 2016 A1
20160251859 Pervan et al. Sep 2016 A1
20160251860 Pervan Sep 2016 A1
20160281368 Pervan et al. Sep 2016 A1
20160326751 Pervan Nov 2016 A1
20160340913 Derelöv Nov 2016 A1
20170037641 Nygren et al. Feb 2017 A1
20170081860 Boo Mar 2017 A1
20170254096 Pervan Sep 2017 A1
20170321433 Pervan et al. Nov 2017 A1
20170362834 Pervan et al. Dec 2017 A1
20180001509 Myllykangas et al. Jan 2018 A1
20180001510 Fransson Jan 2018 A1
20180001573 Blomgren et al. Jan 2018 A1
20180002933 Pervan Jan 2018 A1
20180030737 Pervan Feb 2018 A1
20180030738 Pervan Feb 2018 A1
Foreign Referenced Citations (186)
Number Date Country
2456513 Feb 2003 CA
201588375 Sep 2010 CN
138 992 Jul 1901 DE
142 293 Jul 1902 DE
2 159 042 Jun 1973 DE
25 05 489 Aug 1976 DE
33 43 601 Jun 1985 DE
33 43 601 Jun 1985 DE
39 32 980 Nov 1991 DE
42 15 273 Nov 1993 DE
42 42 530 Jun 1994 DE
196 01 322 May 1997 DE
299 22 649 Apr 2000 DE
200 01 788 Jun 2000 DE
200 02 744 Aug 2000 DE
199 40 837 Nov 2000 DE
199 58 225 Jun 2001 DE
202 05 774 Aug 2002 DE
203 20 799 Apr 2005 DE
10 2004 055 951 Jul 2005 DE
10 2004 001 363 Aug 2005 DE
10 2005 002 297 Aug 2005 DE
10 2004 054 368 May 2006 DE
10 2005 024 366 Nov 2006 DE
10 2006 024 184 Nov 2007 DE
10 2006 037 614 Dec 2007 DE
10 2006 057 491 Jun 2008 DE
10 2007 018 309 Aug 2008 DE
10 2007 016 533 Oct 2008 DE
10 2007 032 885 Jan 2009 DE
10 2007 035 648 Jan 2009 DE
10 2007 049 792 Feb 2009 DE
10 2009 048 050 Jan 2011 DE
10 2009 041 297 Mar 2011 DE
0 013 852 Aug 1980 EP
0 871 156 Oct 1998 EP
0 974 713 Jan 2000 EP
1 120 515 Aug 2001 EP
1 146 182 Oct 2001 EP
1 251 219 Oct 2002 EP
1 350 904 Oct 2003 EP
1 350 904 Oct 2003 EP
1 396 593 Mar 2004 EP
1 420 125 May 2004 EP
1 437 457 Jul 2004 EP
1 640 530 Mar 2006 EP
1 650 375 Apr 2006 EP
1 650 375 Sep 2006 EP
1 980 683 Oct 2008 EP
2 000 610 Dec 2008 EP
2 017 403 Jan 2009 EP
2 034 106 Mar 2009 EP
2 063 045 May 2009 EP
2 078 801 Jul 2009 EP
2 236 694 Oct 2010 EP
2 270 291 Jan 2011 EP
2 270 291 May 2011 EP
2 333 195 Jun 2011 EP
2 388 409 Nov 2011 EP
2 395 179 Dec 2011 EP
2 078 801 Mar 2012 EP
2 333 195 Jul 2014 EP
1 138 595 Jun 1957 FR
2 810 060 Dec 2001 FR
240629 Oct 1925 GB
376352 Jul 1932 GB
1171337 Nov 1969 GB
2 051 916 Jan 1981 GB
03-110258 May 1991 JP
05-018028 Jan 1993 JP
6-146553 May 1994 JP
6-288017 Oct 1994 JP
6-306961 Nov 1994 JP
6-322848 Nov 1994 JP
7-300979 Nov 1995 JP
2002-047782 Feb 2002 JP
526 688 May 2005 SE
529 076 Apr 2007 SE
WO 9426999 Nov 1994 WO
WO 9623942 Aug 1996 WO
WO 9627721 Sep 1996 WO
WO 9747834 Dec 1997 WO
WO 9821428 May 1998 WO
WO 9822677 May 1998 WO
WO 9858142 Dec 1998 WO
WO 9866152 Dec 1999 WO
WO 9966151 Dec 1999 WO
WO 0020705 Apr 2000 WO
WO 0020706 Apr 2000 WO
WO 0043281 Jul 2000 WO
WO 0047841 Aug 2000 WO
WO 0055067 Sep 2000 WO
WO 0102669 Jan 2001 WO
WO 0102670 Jan 2001 WO
WO 0102671 Jan 2001 WO
WO 0102672 Jan 2001 WO
WO 0107729 Feb 2001 WO
WO 0138657 May 2001 WO
WO 0144669 Jun 2001 WO
WO 0144669 Jun 2001 WO
WO 0148331 Jul 2001 WO
WO 0148332 Jul 2001 WO
WO 0151732 Jul 2001 WO
WO 0151733 Jul 2001 WO
WO 0166877 Sep 2001 WO
WO 0175247 Oct 2001 WO
WO 0177461 Oct 2001 WO
WO 0194721 Dec 2001 WO
WO 0194721 Dec 2001 WO
WO 0198604 Dec 2001 WO
WO 0248127 Jun 2002 WO
WO 02055809 Jul 2002 WO
WO 02055810 Jul 2002 WO
WO 02081843 Oct 2002 WO
WO 02103135 Dec 2002 WO
WO 03012224 Feb 2003 WO
WO 03016654 Feb 2003 WO
WO 03025307 Mar 2003 WO
WO 03038210 May 2003 WO
WO 03044303 May 2003 WO
WO 03069094 Aug 2003 WO
WO 03074814 Sep 2003 WO
WO 03083234 Oct 2003 WO
WO 03087497 Oct 2003 WO
WO 03089736 Oct 2003 WO
WO 2004016877 Feb 2004 WO
WO 2004020764 Mar 2004 WO
WO 2004048716 Jun 2004 WO
WO 2004050780 Jun 2004 WO
WO 2004079128 Sep 2004 WO
WO 2004079130 Sep 2004 WO
WO 2004083557 Sep 2004 WO
WO 2004085765 Oct 2004 WO
WO 2005003488 Jan 2005 WO
WO 2005003489 Jan 2005 WO
WO 2005054599 Jun 2005 WO
WO 2006043893 Apr 2006 WO
WO 2006050928 May 2006 WO
WO 2006104436 Oct 2006 WO
WO 2006123988 Nov 2006 WO
WO 2006125646 Nov 2006 WO
WO 2007015669 Feb 2007 WO
WO 2007015669 Feb 2007 WO
WO 2007019957 Feb 2007 WO
WO 2007079845 Jul 2007 WO
WO 2007089186 Aug 2007 WO
WO 2007118352 Oct 2007 WO
WO 2007141605 Dec 2007 WO
WO 2007142589 Dec 2007 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008004960 Jan 2008 WO
WO 2008017281 Feb 2008 WO
WO 2008017301 Feb 2008 WO
WO 2008017301 Feb 2008 WO
WO 2008060232 May 2008 WO
WO 2008068245 Jun 2008 WO
WO 2008116623 Oct 2008 WO
WO 2009013590 Jan 2009 WO
WO 2009066153 May 2009 WO
WO 2009116926 Sep 2009 WO
WO 2010006684 Jan 2010 WO
WO 2010028621 Mar 2010 WO
WO 2010070472 Jun 2010 WO
WO 2010070472 Jun 2010 WO
WO 2010070605 Jun 2010 WO
WO 2010082171 Jul 2010 WO
WO 2010087752 Aug 2010 WO
WO 2010105732 Sep 2010 WO
WO 2010108980 Sep 2010 WO
WO 2010136171 Dec 2010 WO
WO 2011001326 Jan 2011 WO
WO 2011012104 Feb 2011 WO
WO 2011012105 Feb 2011 WO
WO 2011032540 Mar 2011 WO
WO 2011038709 Apr 2011 WO
WO 2011085788 Jul 2011 WO
WO 2011108812 Sep 2011 WO
WO 2011127981 Oct 2011 WO
WO 2011151758 Dec 2011 WO
WO 2011151758 Dec 2011 WO
WO 2013012386 Jan 2013 WO
WO 2013025163 Feb 2013 WO
WO 2013025164 Feb 2013 WO
WO 2013087190 Jun 2013 WO
WO 2013151493 Oct 2013 WO
Non-Patent Literature Citations (39)
Entry
U.S. Appl. No. 15/160,311, Pervan.
U.S. Appl. No. 15/172,926, Pervan, et al.
U.S. Appl. No. 15/217,023, Pervan, et al.
U.S. Appl. No. 15/229,575, Derelov.
U.S. Appl. No. 15/261,071, Pervan.
International Search Report dated Oct. 30, 2012 in PCT/SE2012/050872, Swedish Patent Office, Stockholm, Sweden, 5 pages.
LifeTips, “Laminate Flooring Tips,” available at (http://flooring.lifetips.com/cat/61734/laminate-flooring-tips/index.html), 2000, 12 pages.
Välinge Innovation AB, Technical Disclosure entitled “Mechanical locking for floor panels with a flexible bristle tongue,” IP.com No. IPCOM000145262D, Jan. 12, 2007, IP.com PriorArtDatabase, 57 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA-038 Mechanical Locking of Floor Panels With Vertical Folding,” IP com No. IPCOM000179246D, Feb. 10, 2009, IP.com Prior Art Database, 59 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA043 5G Linear Slide Tongue,” IP com No. IPCOM000179015D, Feb. 4, 2009, IP.com Prior Art Database, 126 pages.
Engstrand, Ola (Owner)/Välinge Innovation AB, Technical Disclosure entitled “VA043b PCT Mechanical Locking of Floor Panels,” IP com No. IPCOM000189420D, Nov. 9, 2009, IP.com Prior Art Database, 62 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA055 Mechanical locking system for floor panels,” IP com No. IPCOM000206454D, Apr. 27, 2011, IP.com Prior Art Database, 25 pages.
Engstrand, Ola (Contact)/Välinge Innovation AB, Technical Disclosure entitled “VA058 Rocker Tongue,” IP com No. IPCOM000203832D, Feb. 4, 2011, IP.com Prior Art Database, 22 pages.
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA066b Glued Tongue,” IP com No. IPCOM000210865D, Sep. 13, 2011, IP.com Prior Art Database, 19 pages.
Pervan, Darko (Inventor)/Välinge Flooring Technology AB, Technical Disclosure entitled “VA067 Fold Slide Loc,” IP com No. IPCOM000208542D, Jul. 12, 2011, IP.com Prior Art Database, 37 pages.
Pervan, Darko (Author)/Välinge Flooring Technology, Technical Disclosure entitled “VA068 Press Lock VFT,” IP com No. IPCOM000208854D, Jul. 20, 2011, IP.com Prior Art Database, 25 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA069 Combi Tongue,” IP com No. IPCOM000210866D, Sep. 13, 2011, IP.com Prior Art Database, 41 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA070 Strip Part,” IP com No. IPCOM000210867D, Sep. 13, 2011, IP.com Prior Art Database, 43 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA071 Pull Lock,” IP com No. IPCOM000210868D, Sep. 13, 2011, IP.com Prior Art Database, 22 pages.
Pervan, Darko (Author), Technical Disclosure entitled “VA073a Zip Loc,” IP com No. IPCOM000210869D, Sep. 13, 2011, IP.com Prior Art Database, 36 pages.
Pervan, Darko, U.S. Appl. No. 15/160,311, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office May 20, 2016.
Pervan, Darko, et al., U.S. Appl. No. 15/172,926, entitled “Mechanical Locking of Floor Panels with a Flexible Bristle Tongue,” filed in the U.S. Patent and Trademark Office on Jun. 3, 2016.
Pervan, Darko, et al., U.S. Appl. No. 15/217,023, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Jul. 22, 2016.
Derelov, Peter, U.S. Appl. No. 15/229,575, entitled “Building Panel With a Mechanical Locking System,” filed in the U.S. Patent and Trademark Office on Aug. 5, 2016.
Pervan, Darko, U.S. Appl. No. 15/261,071, entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Sep. 9, 2016.
U.S. Appl. No. 15/603,913, Darko Pervan, filed May 24, 2017.
U.S. Appl. No. 15/726,853, Darko Pervan, filed Oct. 6, 2017.
U.S. Appl. No. 15/726,853, Pervan.
Pervan, Darko, U.S. Appl. No. 15/726,853 entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed in the U.S. Patent and Trademark Office Oct. 6, 2017.
U.S. Appl. No. 15/365,546, Christian Boo, filed Nov. 30, 2016.
Extended European Search Report dated Apr. 19, 2016 in EP 12 82 4331.8, European Patent Office, Munich, DE, 7 pages.
U.S. Appl. No. 15/813,855, Pervan.
U.S. Appl. No. 15/855,389, Pervan, et al.
U.S. Appl. No. 15/896,571, Pervan, et al.
Pervan, Darko, U.S. Appl. No. 15/813,855 entitled “Mechanical Locking of Floor Panels with a Glued Tongue,” filed in the U.S. Patent and Trademark Office Nov. 15, 2017.
Pervan, Darko, et al., U.S. Appl. No. 15/855,389 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Dec. 27, 2017.
Pervan, Darko, et al., U.S. Appl. No. 15/896,571 entitled “Mechanical Locking of Floor Panels with a Flexible Tongue,” filed in the U.S. Patent and Trademark Office on Feb. 14, 2018.
U.S. Appl. No. 16/143,610, filed Sep. 27, 2018, Darko Pervan.
Pervan, Darko, U.S. Appl. No. 16/143,610 entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed in the U.S. Patent and Trademark Office dated Sep. 27, 2018.
Related Publications (1)
Number Date Country
20160281370 A1 Sep 2016 US
Provisional Applications (1)
Number Date Country
61523584 Aug 2011 US
Continuations (3)
Number Date Country
Parent 14701959 May 2015 US
Child 15175768 US
Parent 14483352 Sep 2014 US
Child 14701959 US
Parent 13585179 Aug 2012 US
Child 14483352 US