Mechanical locking system for floor panels

Information

  • Patent Grant
  • 11053692
  • Patent Number
    11,053,692
  • Date Filed
    Wednesday, September 25, 2019
    5 years ago
  • Date Issued
    Tuesday, July 6, 2021
    3 years ago
Abstract
Floor panels are provided with a mechanical locking system having small local protrusions which reduce displacement along the joint when the panels are laying flat on the sub floor and locked vertically and horizontally. A method to install a floor comprising a plurality of rectangular floor panels laying in parallel rows on a sub floor with long and short edges which are connectable to each other along one pair of adjacent long edges and one pair of adjacent short edges.
Description
TECHNICAL FIELD

The invention generally relates to the field of mechanical locking systems for floor panels and building panels. The invention comprises floorboards, locking systems, installation methods and production methods.


FIELD OF APPLICATION

The present invention is particularly suitable for use in floating floors, which are formed of floor panels which are joined mechanically with a locking system integrated with the floor panel, i.e. mounted at the factory, and are made up of one or more upper layers of veneer, decorative laminate or decorative plastic material, an intermediate core of wood-fiber-based material or plastic material and preferably a lower balancing layer on the rear side of the core. The following description of prior-art technique, problems of known systems and objects and features of the invention will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular at laminate flooring formed as rectangular floor panels with long and shorts edges intended to be mechanically joined to each other on both long and short edges. The long and short edges are mainly used to simplify the description. The panels could be square.


It should be emphasized that the invention can be used in any floor panel and it could be combined with all types of known locking systems, where the floor panels are intended to be joined using a mechanical locking system connecting the panels in the horizontal and vertical directions on at least two adjacent sides. The invention can thus also be applicable to, for instance, solid wooden floors, parquet floors with a core of wood or wood-fiber-based material and a surface of wood or wood veneer and the like, floors with a printed and preferably also varnished surface, floors with a surface layer of plastic or cork, linoleum, rubber. Even floors with hard surfaces such as stone, tile and similar material are included, and floorings with soft wear layers, for instance, needle felt glued to a board. The invention can also be used for joining building panels which preferably contain a board material for instance wall panels, ceilings, furniture components and similar.


BACKGROUND

Laminate flooring usually consists of a core of a 6-12 mm fiber board, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material. A laminate surface may consist of melamine impregnated paper. The most common core material is fiberboard with high density and good stability usually called HDF—High Density Fiberboard. Sometimes also MDF—Medium Density Fiberboard—is used as the core.


Traditional laminate floor panels of this type have been joined by means of glued tongue-and-groove joints.


In addition to such traditional floors, floor panels have been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking means, which lock the panels horizontally and vertically. The mechanical locking systems are usually formed by machining the core of the panel. Alternatively, parts of the locking system can be formed of a separate material, for instance aluminum or HDF, which is integrated with the floor panel, i.e., joined with the floor panel in connection with the manufacture thereof.


The main advantages of floating floors with mechanical locking systems are that they are easy to install. They can also easily be taken up again and used once more at a different location.


DEFINITION OF SOME TERMS

In the following text, the visible surface of the installed floor panel is called “front side”, while the opposite side of the floor panel, facing the sub floor, is called “rear side”. The edge between the front and rear side is called “joint edge”. By “horizontal plane” is meant a plane, which extends parallel to the outer part of the surface layer. Immediately juxtaposed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane. By “vertical locking” is meant locking parallel to the vertical plane in D1 direction. By “horizontal locking” is meant locking parallel to the horizontal plane in D2 direction. By “first horizontal locking” is meant a horizontal locking perpendicular to the joint edges in D2 direction. By “second horizontal locking is meant a horizontal locking in the horizontal direction along the joint which prevents two panels to slide parallel to each other when they are laying in the same plane and locked both vertically and in the first horizontal direction.


By “locking systems” are meant co acting connecting elements which connect the floor panels vertically and/or horizontally in the first horizontal direction D2. By “mechanical locking system” is meant that joining can take place without glue. Mechanical locking systems can in many cases also be joined by gluing. By “integrated with” means formed in one piece with the panel or factory connected to the panel.


RELATED ART AND PROBLEMS THEREOF

For mechanical joining of long edges as well as short edges in the vertical and in the first horizontal direction (direction D1, D2) several methods could be used. One of the most used methods is the angle-snap method. The long edges are installed by angling. The panel is than displaced in locked position along the long side. The short edges are locked by horizontal snapping. The vertical connection is generally a tongue and a groove. During the horizontal displacement, a strip with a locking element is bent and when the edges are in contact, the strip springs back and a locking element enters a locking groove and locks the panels horizontally. Such a snap connection is complicated since a hammer and a tapping block may need to be used to overcome the friction between the long edges and to bend the strip during the snapping action. The friction on the long side could be reduced and the panels could be displaced without tools. The snapping resistance is however considerable especially in locking systems made in one piece with the core. Wood based materials are generally difficult to bend. Cracks in the panel may occur during snapping. It would be an advantage if the panels could be installed by angling of long edges but without a snap action to lock the short edges. Such a locking could be accomplished with a locking system that locks the long edges in such a way that also displacement along the joint is counteracted.


It is known from Wilson U.S. Pat. No. 2,430,200 that several projections and recesses could be used to prevent displacement along the joint. Such projections and recesses are difficult to produce, the panels can only be locked in well-defined positions against adjacent long edges and they cannot be displaced against each other in angled position against each other when top edges are in contact. Terbrack U.S. Pat. No. 4,426,820 describes a locking system with a tight fit in a panel made of plastic material. The tight fit prevents displacement along the joint. A system with tight fit does not give a safe and reliable locking over time especially if the locking system is made of wood fiber based material, which swells and shrink when the humidity varies over time.


OBJECTS AND SUMMARY

A first overall objective of the present invention is to provide a locking system for primarily rectangular floor panels with long and short edges installed in parallel rows, which allows that the short edges could be locked to each other horizontally by the locking system on the long edges. The costs and functions should be favorable compared to known technology. A part of the overall objective is to improve the function and costs of those parts of the locking system that locks in the horizontal direction along the joint when panels are installed on a sub floor.


More specifically the object is to provide a second horizontal locking system on the long edges, hereafter referred to as “slide lock” where one or several of the following advantages are obtained.


The slide lock on the long edges should be activated when a panel is brought in contact with an already installed panel and then angled down to the sub floor.


The slide lock function should be reliable over time and the panels should be possible to lock and unlock in any position when two adjacent long edges are brought into contact with each other.


The slide lock should be strong and prevent that short edges of two locked panels will separate when humidity is changing or when people walk on a floor.


The slide lock should be possible to lock with high precision and without the use of tools.


The locking system and the slide lock should be designed in such a way that the material and production costs could be low.


A second objective is to provide an installation method for installation of floorboards with a slide lock.


A third objective is to provide a production method for a slide lock system.


The above objects of the invention are achieved wholly or partly by locking systems, floor panels, and installation and production methods according to the independent claim. Embodiments of the invention are evident from the dependent claims and from the description and drawings.


According to a first aspect of the invention, a flooring system is provided comprising a plurality of rectangular floor panels to be installed on a sub floor. The floor panels have long and short edges, which are connectable to each other along one pair of adjacent edges of adjacent panels. The connectable adjacent edges have a mechanical locking system comprising a tongue formed in one piece with the panel and a groove for mechanically locking together said adjacent edges at right angles to the horizontal plane of the panels, thereby forming a vertical mechanical connection between the panels. One pair of adjacent edges has a locking element at one first edge and a locking groove at an opposite second edge thereby forming a first horizontal mechanical connection locking the panels to each other in a direction parallel to the horizontal plane and at right angles to the joint edges. Each panel is at said adjacent edges provided with a second horizontal mechanical connection locking the panels to each other along the joint edges, in a direction parallel to the horizontal plane and parallel to the joint edges, when the panels are laying flat on the sub floor. The second horizontal mechanical connection comprises a plurality of small local protrusions in said mechanical locking system which prevents displacement along the joint edges when the panels are laying flat on the sub floor and are locked with the vertical and the first horizontal connections.


Although it is an advantage to integrate the slide locking system with the panel, the invention does not exclude an embodiment in which parts of the locking system are delivered as separate components to be connected to the panel by the installer prior to installation. Such separate components could be applied in the locking system in order to prevent displacement along the joint when two panels are locked by preferably angling. Displacement could also be prevented and additional strength could be accomplished with a locking system which is pre glued.


It is an advantage if the short edges have a vertical locking preferably with a tongue and a groove. The short edges could however be made without vertical locking especially if the panels are narrow. In such a case long edges will also lock the short edges even in the vertical direction.


The invention is especially suited for use in floor panels, which are difficult to snap for example because they have a core, which is not flexible, or strong enough to form a strong snap locking system. The invention is also suitable for wide floor panels, for example with a width larger than 20 cm, where the high snapping resistance is a major disadvantage during installation, in panels where parts of the locking system on the long edge is made of a material with high friction, such as wood and in locking systems which are produced with tight fit or without play or even with pretension. Especially panels with such pretension where the locking strip is bent in locked position and presses the panels together are very difficult to displace and snap. A locking system that avoids snapping will decrease the installation time of such panels considerably. However, a tight fit and pretension in the locked position could improve the strength of the slide lock. An alternative to small protrusions, in some applications, is to use a high friction core material together with a tight fit between as many adjacent surfaces in the locking system as possible. Even a wood based material might be used if normal shrinking and swelling is reduced.


The invention is also suited to lock parallel rows to each other such that the rows maintain their position after installation. This could be an advantage in floors which are installed in advanced patterns such as tiles or stone reproductions where grout lines or other decorative effect must be aligned accurately or in any other installation where it is an advantage if the floor panels cannot slide after installation.


According to a second aspect of the invention a production method is provided to make a mechanical locking system between two edges of a first and second panel containing a wood fiber based core. According to the invention the locking system is formed at least partly in the core and comprises protrusions formed in the wood based core. The protrusions are at least partly formed by embossing.


According to a third aspect of the invention an installation method to install a floor is provided, comprising a plurality of rectangular floor panels laying in parallel rows on a sub floor with long and short edges which are connectable to each other along one pair of adjacent long edges and one pair of adjacent short edges. The panels have a mechanical locking system comprising a tongue formed in one piece with the panels and groove for mechanically locking together said adjacent long and short edges at right angles to the horizontal plane of the panels, thereby forming a vertical mechanical connection between the panels. The panels have also a locking element at one first long edge and a locking groove at an opposite second long edge which form a first horizontal mechanical connection locking the long edges of the panels to each other in a direction parallel to the horizontal plane and at right angles to the joint edges. Each panel is at said adjacent long edges provided with a second horizontal mechanical connection locking the panels to each other along the joined long edges when the panels are laying flat on the sub floor. The second horizontal mechanical connection comprises small local protrusions in said mechanical locking system on the long edges which prevents displacement along the joint when the panels are laying flat on the sub floor and are locked with the vertical and the first horizontal connections. The method comprises five steps:

    • a) As a first step a first panel is installed on a sub floor in a first row.
    • b) As a second step a second panel in a second row is brought in contact with its long edge against the long edge of the first panel and held at an angle against the sub floor.
    • c) As a third step a new panel in a second row is brought at an angle with its long edge in contact with the long edge of the first panel and its short edge in contact with the short edge of the second panel.
    • d) As a fourth step the new panel is displaced against the second panel in the angled position and the tongue is inserted into the groove until the top edges at the short edges are in contact with each other.
    • e) As a final fifth step the second and new panels are angled down to the sub floor. This angling locks the long edges of the second and new panels to the first panel in a vertical direction and in a first horizontal direction perpendicular to the joined long edges and in a second horizontal direction along the long edges. The locking in the second horizontal direction prevents separations between the short edges of the second and the new panel.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1a-d illustrate two embodiments of the invention.



FIGS. 2a-d illustrate locking of the slide lock with angling.



FIG. 3 illustrates a floorboard with a slide lock on long side.



FIGS. 4a-b illustrates a production method to form a slide lock.



FIGS. 5a-e illustrate another embodiment of the invention.



FIGS. 6a-i illustrate an installation method according to an embodiment of the invention.



FIGS. 7a-i illustrate floor panels, which could be installed in a herringbone pattern and in parallel rows according to an embodiment of the invention.



FIGS. 8a-8d illustrate embodiments according to the invention.





DESCRIPTION OF EMBODIMENTS OF THE INVENTION

To facilitate understanding, several locking systems in the figures are shown schematically. It should be emphasized that improved or different functions can be achieved using combinations of the preferred embodiments. The inventor has tested all known and especially all commercially used locking systems on the market in all type of floor panels, especially laminate and wood floorings and the conclusion is that at least all these known locking systems which have one or more locking elements cooperating with locking grooves could be adjusted to a system with a slide lock which prevents displacement along the adjacent edges. The locking systems described by the drawings could all be locked with angling. The principles of the invention could however also be used in snap systems or in systems which are locked with a vertical folding. The slide lock prevents sliding along the joint after snapping or folding.


The invention does not exclude floor panels with a slide lock on for example a long and/or a short side and floor panels with a angling, snapping or vertical folding lock on short side which locks horizontally and where the slide lock on the long side for example gives additional strength to the short side locking.


The most preferable embodiments are however based on floorboards with a surface layer of laminate or wood, a core of HDF or wood and a locking system on the long edge with a strip extending beyond the upper edge which allows locking by angling combined with a tongue and groove joint on the short edges. The described embodiments are therefore non-restrictive examples based on such floor panels. All embodiments could be used separately or in combinations. Angles, dimensions, rounded parts, spaces between surfaces etc. are only examples and could be adjusted within the basic principles of the invention.


A first preferred embodiment of a floor panel 1, 1′ provided with a slide lock system according to the invention is now described with reference to FIGS. 1a-1d.



FIG. 1a illustrates schematically a cross-section of a joint preferably between a long side joint edge of a panel 1 and an opposite long side joint edge of a second panel 1′.


The front sides of the panels are essentially positioned in a common horizontal plane HP, and the upper parts of the joint edges abut against each other in a vertical plane VP. The mechanical locking system provides locking of the panels relative to each other in the vertical direction D1 as well as the horizontal direction D2.


To provide joining of the two joint edges in the D1 and D2 directions, the edges of the floor panel 1 have in a manner known per se a locking strip 6 with a locking element 8, and a groove 9 made in one piece with the panel in one joint edge and a tongue 10 made in one piece with the panel at an opposite edge of a similar panel V. The tongue 10 and the groove 9 provide the vertical locking D1.


The mechanical locking system according to an embodiment of the invention comprises a second horizontal locking 16, 17 formed as small local protrusions on the upper part of the strip 6 and on the lower part of the panel V in the edge portion between the tongue 10 and the locking groove 14. When the panels 1, 1′ are locked together in a common plane and are laying flat on the sub floor as shown in FIG. 1a, the small local protrusions 16, 17 are pressed to each other such that they grip against each other and prevent sliding and small displacement along the joint in a horizontal direction D3. This embodiment shows the first principle of the invention where the local protrusions are formed in the panel material. As a nonrestrictive example it could be mentioned that the upper 17 and lower 16 protrusions could be very small, for example only 0.1-0.2 mm high and the horizontal distance between the protrusions along the joint could be for example 0.1-0.5 mm. The distance between the upper protrusions could be slightly different than the distance between the lower protrusions. In locked position some protrusions will grip behind each other and some will press against each other but over the length of the floor boards there will be enough resistance to prevent sliding. The friction and the locking will be sufficient even in small cut off pieces at the end of the installed rows.



FIG. 1b shows an embodiment where small local protrusions 16 are formed on the upper part of the strip 8 adjacent to the locking element 8. The protrusions have a length direction which is essentially perpendicular to the edge of the floorboard. D1 show the locking in the vertical direction, D2 in the first horizontal direction and D3 in the second horizontal direction along the joint edge. FIG. 1c shows that similar protrusions could be formed on the lower side of the adjacent panel 1′ in a portion which is located between the locking groove 14 and the tongue 10. The protrusions on one edge could be different to the protrusions on the other adjacent edge. This is shown in FIG. 1d where the length direction of the protrusions has a different angle than the protrusions on the strip 6 in FIG. 1b. When two such panels are connected the protrusions will always overlap each other and prevent displacement in all locked positions. A strong locking could be accomplished with very small protrusions. The protrusions in this embodiment which is based on the principle that the protrusions 16, 17 are formed in one piece with the panel material could for example have a length of 2-5 mm, a height of 0.1-0.5 mm and a width of 0.1-0.5 mm. Other shapes are of course possible for example round or square shaped protrusions arranged as shown in FIG. 5a.



FIGS. 2a-2c show locking of a slide lock system. In this preferred embodiment the panels 1, 1′ are possible to displace even when the locking element 8 is partly in the locking groove. This is an advantage when connecting the short edges with a tongue and a groove



FIG. 2b show that the local protrusions are in contact with each other when the adjacent panels 1, 1′ are held at a small locking angle A for example of about 3 degrees against the sub floor. Lower locking angles are possible but could cause problems when the panels are installed on an uneven sub floor. Most preferable locking angles are 3-10 degrees but of course locking systems with other locking angles smaller or larger could be designed. FIG. 2c shows the slide lock in locked position.



FIG. 2d show a testing method to test the sliding strength F of a slide lock. Test show that even small protrusions could prevent displacement of the short edges 5a and 5b of two panels. A slide lock could prevent displacement of the short edges when a pulling force F equal to 1000 N is applied to the panels with a slide lock length L of 200 mm on both long edges. This corresponds to a sliding strength of 5000 N per 1000 mm of slide lock length. This means that even small pieces with a length of 100 mm could be locked with a locking force of 500 N and this is in most applications sufficient. A slide lock could be designed with a sliding strength of more than 10,000 N per 1000 mm joint length. Even sliding strengths of 20,000 N or more could be reached and this is considerably more than the strength of traditional mechanical locking systems. Such systems are generally produced with a horizontal locking strength of 2000-5000 N per 1000 mm joint length. A preferable embodiment is locking systems where the slide strength of the slide lock in the second horizontal direction exceeds the locking strength of the mechanical locking system in the first horizontal direction. A high sliding strength is an important feature in a floating floor where small pieces often are installed as end pieces against the walls. In some applications a sliding strength of at least 50% of the horizontal locking strength is sufficient. In other applications, especially in public places 150% is required.



FIG. 3 shows a preferred embodiment of a floor panel with long 4a, 4b and short 5a, 5b edges. The long edges have a slide lock (C,D) with upper 17 and lower 16 protrusions over substantially the whole length of the long edges. The short edges have only a vertical locking system (A,B) with a tongue 10 and a groove 9. The lower lip 6 is a strip and extends beyond the upper lip 7.



FIG. 4a shows a production method to form small local protrusions in a wood based material. The protrusions are formed by embossing. This could be done with a press or with any other appropriate method where a tool is pressed against the wood fibers. Another alternative is to brush or to scrape parts of the locking system to form small local protrusions. The most preferable method is a wheel 30, which is rolled against the wood fibers with a pressure such that small local protrusions 16 are formed by compression of wood fibers. Such an embossing could be made continuous in the same machining line where the other parts of the locking system are formed.



FIG. 4b shows that the local protrusions could be formed between the tongue 10 and the groove 9, at the upper part 21 of the tongue, at the tip 20 of the tongue and at the lower outer part 19 of the tongue. They could also be formed between the upper part 18 of the strip and the adjacent edge portion and/or between the locking element 8 and the locking groove 14 at the locking surfaces 22, at the upper part 23 of the locking element and at the outer distal part 24 of the locking element. The local protrusions could be formed on only one edge portion or preferably on both edge portions and all these locations could be used separately or in combinations.


Compression of wood fibers with a wheel could also be used to form parts of the locking system such as the locking grove 14 or the locking element 8 or any other parts. This production method makes it possible to compress fibers and to form parts with smooth surfaces, improved production tolerances and increased density.



FIG. 5a shows another embodiment according to a second principle. The protrusions 16 could be applied as individual parts of a separate material such as rubber, polymer materials or hard sharp particles or grains which are applied into the locking system with a binder. Suitable materials are grains similar to those generally used in sandpaper, metal grains, especially aluminum particles. This embodiment could be combined with the first principle where protrusions formed in one piece with the panel material cooperates with a separate material which is applied into the locking system and which also could have cooperating protrusions. FIG. 5b shows an embodiment where a rubber strip is applied into the locking system. Separate high friction material could create a strong slide lock even without any protrusions but protrusions in the panel and/or in the separate material gives a stronger and safer slide lock. FIG. 5c shows that an embossed aluminum extrusion or wire 15 could be applied into the locking system. FIGS. 5d and 5e shows preferable location of the separate friction material 16, 17, 17′.


The following basic principles to make a slide lock have now been described:


Local protrusions are formed in one piece with the panel material preferably on both adjacent edges and they cooperate with each other in locked position.


A separate material softer than the panel material is applied in the locking system and this material could preferably cooperate with the protrusions which are formed in one piece with the panel.


A separate material harder than the material of the panel is applied in the locking system. Parts of this harder material, which preferably has sharp protrusions or grains, are in locked position pressed into the panel material.


Separate soft and flexible friction material is applied into the locking system with or without protrusions.


All of these principles could be used separately or in combinations and several principles could be used in the same locking system. For example a soft material could be applied on both edges and local protrusions could also be formed on both edges and both local protrusions could cooperate with both soft materials.



FIGS. 6a-6i shows a method to install a floor of rectangular floor panels in parallel rows with a slide lock. The floor panels have long 4a,4b and short 5a,5b edges. The panels have a mechanical locking system comprising a tongue 10 formed in one piece with the panels and groove 9 for mechanically locking together adjacent long and short edges vertically in D1 direction. The panels have also a locking element 8 at one first long edge and a locking groove 14 at an opposite second long edge which form a first horizontal mechanical connection locking the long edges of the panels to each other in a D2 direction parallel to the horizontal plane and at right angles to the joint edges. Each panel is at the adjacent long edges provided with a second horizontal mechanical connection locking the panels to each other along the joined long edges in the D3 direction when the panels are laying flat on the sub floor. The second horizontal mechanical connection comprises small local protrusions 16, 17 in the mechanical locking system on the long edges which prevents displacement along the joint when the panels are laying flat on the sub floor and are locked in D1 and D2 directions. The method comprises five steps:

    • a) As a first step a first panel Fl 1 is installed on a sub floor in a first row R1.
    • b) As a second step a second panel Fl 2 in a second row R2 is brought in contact with its long edge 4a against the long edge 4b of the first panel Fl 1 and held at an angle A against the sub floor.
    • c) As a third step a new panel Fl 3 in a second row R2 is brought at an angle A with its long edge 4a in contact with the long edge 4b of the first panel Fl 1 and its short edge 5a in contact with the short edge 5b of the second panel FL 2. In this preferred embodiment the tongue 10 is angled on the strip 6 which is an extension of the lower lip of the grove 9. These 3 steps are shown in FIGS. 6a, 6b and 6c.
    • d) As a fourth step the new panel Fl 3 is displaced against the second panel Fl 2 in the angled position and the tongue 10 is inserted into the groove 9 until the top edges at the short edges 5a, 5b are in contact with each other. This is shown in FIGS. 6d-6f.
    • e) As a final fifth step the second panel Fl 2 and new panel Fl 3 are angled down to the sub floor. This angling locks the long edges 4a, 4b of the second Fl 2 and new Fl 3 panels to the first panel Fl 1 in a vertical direction D1 and in a first horizontal direction D2 perpendicular to the joined long edges and in a second horizontal direction D3 along the long edges. The locking in the second horizontal direction D3 prevents separations between the short edges 5a, 5b of the second Fl 2 and the new panel Fl 3. This is shown in FIGS. 6g-6i.


It is not necessary that the second and the new panels are held in the same angle since some twisting of the panels may occur or may even be applied to the panels.


The installation method and the locking system according to the embodiments of the invention make it possible to install floor panels in a simple way without tools and without any snap action on the short sides. The locking system could be designed in such a way that the upper part of the locking element keeps the floorboards in an angled position until they are pressed down to the sub floor.


If the short edges do not have a tongue, installation could be made by just angling the floor boards to the sub floor. Even the traditional installation with angling the new panel Fl 3 to the sub floor and thereafter displacing the new panel towards the second panel Fl 2 could be used. The disadvantage is that a hammer and a tapping block should be used to overcome the resistance of the slide lock. This could be done without damaging the slide lock or substantially decreasing the sliding strength since the panels will be pushed upwards into a small angle by the small local protrusions.



FIGS. 7a-7i show preferred embodiments of floorboards which are only A panels and which could be installed in a herringbone pattern and in parallel rows. FIGS. 7a-7d show a locking system where the horizontal locking in D2 direction is obtained by a strip 6, a locking element 8 and a locking groove 14. In FIGS. 7e-7h the horizontal locking D2 is obtained by a tongue lock where a locking element 41 on the upper part of the tongue locks against another locking element 42 in the upper part of the groove 9. The figures show long edges 4a, 4b short edges 5a, 5b and long edges 4a or 4b locked against the short edges 5a, 5b. The advantage of such a locking system is that a herringbone pattern could be created with only one type of A panels. The locking elements 41, 42, 8 and the locking groove 14 locks both short edges 5a, 5b of one panel to both long edges 4a,4b of a similar panel. The disadvantage is that such panels cannot be installed in parallel rows since the short edges cannot be locked horizontally. This is shown in FIGS. 7c and 7g. This problem could be solved however with a slide lock 16 on the long edges. The invention comprises one type of panels which could be installed in parallel rows and in a herringbone pattern and which at the long edges have a slide lock according to the described embodiments above.



FIG. 7i shows a strong locking system with a slide lock and with a locking element 8 and a locking groove 14 and with locking elements 41,42 in the upper part of the tongue 10 and the groove 9. The locking element 42 in the locking groove could be formed with a scraping tool.



FIG. 8a shows a floor panel with a surface layer 31, a core 30 and a balancing layer 32. Part of the balancing layer has been removed under the strip 6 to prevent backwards bending of the strip in dry or humid environment. Such bending could reduce the strength of the slide lock especially in laminate floors installed in dry environment.



FIG. 8b shows an embodiment with a separate wood based strip 6 which has a flexible friction material 16.



FIGS. 8c and 8d shows a separate strip of aluminum. Small local protrusions 16, 16′ are formed on the upper and lower parts of the strip 6. These protrusions prevent sliding between the strip and the two adjacent edges 4a and 4b.


It will be apparent to those skilled in the art that various modifications and variations of the present invention can be made without departing from the spirit and scope of the invention. Thus, it is intended that the present invention include the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A flooring system comprising a plurality of rectangular floor panels adapted to be installed on a sub floor, said floor panels having long and short edges which are connectable to each other along one pair of adjacent edges of adjacent panels having a mechanical locking system comprising a tongue formed in one piece with the panels and a groove for mechanically locking together said adjacent edges at right angles to a horizontal plane of the panels, thereby forming a vertical mechanical connection between the panels, and a locking element at one first edge and a locking groove at an opposite second edge thereby forming a first horizontal mechanical connection locking the panels to each other in a first horizontal direction parallel to the horizontal plane and at right angles to joint edges of the adjacent panels, wherein: each panel at said adjacent edges is provided with a second horizontal mechanical connection locking the panels to each other along the joint edges, in a second horizontal direction parallel to the horizontal plane and parallel to the joint edges, when the panels are laying flat on the sub floor, wherein the second horizontal mechanical connection comprises a strip of a separate material made of a rubber material, or of at least one polymer material, or of particles or grains applied with a binder, the separate material being configured to lock the panels to each other along the joint edges in the second horizontal direction, a surface of the strip extending substantially parallel to the horizontal plane of the panels.
  • 2. The flooring system as claimed in claim 1, wherein the separate material is made of the rubber material or of the at least one polymer material.
  • 3. The flooring system as claimed in claim 1, wherein the locking groove is open towards a rear side.
  • 4. The flooring system as claimed in claim 1, wherein the first horizontal mechanical connection comprises a locking strip which is an extension of a lower part of the groove, and wherein the locking element is formed on the locking strip.
  • 5. The flooring system as claimed in claim 4, wherein the locking strip comprises the strip.
  • 6. The flooring system as claimed in claim 1, wherein the locking groove comprises the strip.
  • 7. The flooring system as claimed in claim 1, wherein a lower side of the tongue comprises the strip.
  • 8. The flooring system as claimed in claim 1, wherein the adjacent panels are displaceable along the joint edges when upper parts of the joint edges are in contact and when said adjacent panels are in an angled position relative each other.
  • 9. The flooring system as claimed in claim 8, wherein the panels are displaceable at an angle of less than 45 degrees when top edges of the joint edges are in contact with each other.
  • 10. The flooring system as claimed in claim 1, wherein the locking system is integrated with the panels.
  • 11. The flooring system as claimed in claim 1, wherein a sliding strength of a slide lock in the second horizontal direction exceeds a horizontal locking strength of the mechanical locking system in the first horizontal direction.
  • 12. A flooring system comprising a plurality of rectangular floor panels adapted to be installed on a sub floor, said floor panels having long and short edges which are connectable to each other along one pair of adjacent edges of adjacent panels having a mechanical locking system comprising a tongue formed in one piece with the panels and a groove for mechanically locking together said adjacent edges at right angles to a horizontal plane of the panels, thereby forming a vertical mechanical connection between the panels, and a locking element at one first edge and a locking groove at an opposite second edge thereby forming a first horizontal mechanical connection locking the panels to each other in a first horizontal direction parallel to the horizontal plane and at right angles to joint edges of the adjacent panels, wherein: each panel at said adjacent edges is provided with a second horizontal mechanical connection locking the panels to each other along the joint edges, in a second horizontal direction parallel to the horizontal plane and parallel to the joint edges, when the panels are laying flat on the sub floor, wherein the second horizontal mechanical connection comprises a strip,the first horizontal mechanical connection comprises a locking strip which is an extension of a lower part of the groove, and the locking element is formed on the locking strip,the locking strip comprises the strip, andthe strip comprises a rubber material, or a polymer material, or particles or grains applied with a binder, and the strip is configured to lock the panels to each other along the joint edges in the second horizontal direction, a surface of the strip extending substantially parallel to the horizontal plane of the panels.
  • 13. The flooring system as claimed in claim 12, wherein the strip comprises the rubber material or the polymer material.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 14/938,612, filed on Nov. 11, 2015, which is a divisional of U.S. application Ser. No. 14/683,340, filed on Apr. 10, 2015, which is a continuation of U.S. application Ser. No. 14/270,711, filed on May 6, 2014, now U.S. Pat. No. 9,027,306, which is a continuation of U.S. application Ser. No. 13/426,159, filed on Mar. 21, 2012, now U.S. Pat. No. 8,733,065, which is a continuation of U.S. application Ser. No. 11/822,684, filed on Jul. 9, 2007, now U.S. Pat. No. 8,171,692, which is a continuation of U.S. application Ser. No. 10/908,658, filed on May 20, 2005, now U.S. Pat. No. 8,061,104. The entire contents of each of U.S. application Ser. No. 14/938,612, U.S. application Ser. No. 14/683,340, U.S. application Ser. No. 14/270,711, U.S. application Ser. No. 13/426,159, U.S. application Ser. No. 11/822,684, and U.S. application Ser. No. 10/908,658 are hereby incorporated herein by reference.

US Referenced Citations (592)
Number Name Date Kind
87853 Kappes Mar 1869 A
108068 Utley Oct 1870 A
124228 Stuart Mar 1872 A
213740 Conner Apr 1879 A
274354 McCarthy et al. Mar 1883 A
316176 Ransom Apr 1885 A
634581 Miller Oct 1899 A
861911 Stewart Jul 1907 A
1194636 Joy Aug 1916 A
1723306 Sipe Aug 1929 A
1743492 Sipe Jan 1930 A
1809393 Rockwell Jun 1931 A
1902716 Newton Mar 1933 A
2026511 Storm Dec 1935 A
2027292 Rockwell Jan 1936 A
2110728 Hoggatt Mar 1938 A
2142305 Davis Jan 1939 A
2204675 Grunert Jun 1940 A
2266464 Kraft Dec 1941 A
2277758 Hawkins Mar 1942 A
2430200 Wilson Nov 1947 A
2596280 Nystrom May 1952 A
2732706 Friedman Jan 1956 A
2740167 Rowley Apr 1956 A
2858584 Gaines Nov 1958 A
2863185 Riedi Dec 1958 A
2865058 Andersson Dec 1958 A
2889016 Warren Jun 1959 A
3023681 Worson Mar 1962 A
3077703 Bergstrom Feb 1963 A
3099110 Spaight Jul 1963 A
3147522 Schumm Sep 1964 A
3172237 Bradley Mar 1965 A
3187612 Hervey Jun 1965 A
3271787 Clary Sep 1966 A
3276797 Humes, Jr. Oct 1966 A
3308588 Von Wedel Mar 1967 A
3325585 Brenneman Jun 1967 A
3331180 Vissing et al. Jul 1967 A
3378958 Parks et al. Apr 1968 A
3396640 Fujihara Aug 1968 A
3512324 Reed May 1970 A
3517927 Kennel Jun 1970 A
3526071 Watanabe Sep 1970 A
3535844 Glaros Oct 1970 A
3572224 Perry Mar 1971 A
3579941 Tibbals May 1971 A
3626822 Koster Dec 1971 A
3640191 Hendrich Feb 1972 A
3694983 Couquet Oct 1972 A
3720027 Christensen Mar 1973 A
3722379 Koester Mar 1973 A
3731445 Hoffmann et al. May 1973 A
3742669 Mansfeld Jul 1973 A
3760547 Brenneman Sep 1973 A
3760548 Sauer et al. Sep 1973 A
3764767 Randolph Oct 1973 A
3778954 Meserole Dec 1973 A
3849235 Gwynne Nov 1974 A
3919820 Green Nov 1975 A
3950915 Cole Apr 1976 A
3994609 Puccio Nov 1976 A
4007767 Colledge Feb 1977 A
4007994 Brown Feb 1977 A
4030852 Hein Jun 1977 A
4037377 Howell et al. Jul 1977 A
4041665 de Munck Aug 1977 A
4064571 Phipps Dec 1977 A
4080086 Watson Mar 1978 A
4082129 Morelock Apr 1978 A
4100710 Kowallik Jul 1978 A
4104840 Heintz et al. Aug 1978 A
4107892 Bellem Aug 1978 A
4113399 Hansen, Sr. et al. Sep 1978 A
4154041 Namy May 1979 A
4169688 Toshio Oct 1979 A
RE30154 Jarvis Nov 1979 E
4196554 Anderson Apr 1980 A
4227430 Janssen et al. Oct 1980 A
4299070 Oltmanns Nov 1981 A
4304083 Anderson Dec 1981 A
4426820 Terbrack Jan 1984 A
4447172 Galbreath May 1984 A
4512131 Laramore Apr 1985 A
4599841 Haid Jul 1986 A
4622784 Black Nov 1986 A
4648165 Whitehorne Mar 1987 A
4819932 Trotter, Jr. Apr 1989 A
4948716 Mihayashi et al. Aug 1990 A
4998395 Bezner Mar 1991 A
5007222 Raymond Apr 1991 A
5026112 Rice Jun 1991 A
5071282 Brown Dec 1991 A
5135597 Barker Aug 1992 A
5148850 Urbanick Sep 1992 A
5173012 Ortwein et al. Dec 1992 A
5182892 Chase Feb 1993 A
5247773 Weir Sep 1993 A
5272850 Mysliwiec et al. Dec 1993 A
5274979 Tsai Jan 1994 A
5281055 Neitzke et al. Jan 1994 A
5293728 Christopher et al. Mar 1994 A
5295341 Kajiwara Mar 1994 A
5344700 McGath et al. Sep 1994 A
5348778 Knipp et al. Sep 1994 A
5373674 Winter, IV Dec 1994 A
5465546 Buse Nov 1995 A
5485702 Sholton Jan 1996 A
5502939 Zadok et al. Apr 1996 A
5548937 Shimonohara Aug 1996 A
5577357 Civelli Nov 1996 A
5587218 Betz Dec 1996 A
5598682 Haughian Feb 1997 A
5616389 Blatz Apr 1997 A
5618602 Nelson Apr 1997 A
5634309 Polen Jun 1997 A
5658086 Brokaw et al. Aug 1997 A
5694730 Del Rincon et al. Dec 1997 A
5755068 Ormiston May 1998 A
5860267 Pervan Jan 1999 A
5899038 Stroppiana May 1999 A
5910084 Koike Jun 1999 A
5950389 Porter Sep 1999 A
5970675 Schray Oct 1999 A
6006486 Moriau Dec 1999 A
6029416 Andersson Feb 2000 A
6052960 Yonemura Apr 2000 A
6065262 Motta May 2000 A
6098354 Skandis Aug 2000 A
6122879 Montes Sep 2000 A
6134854 Stanchfield Oct 2000 A
6145261 Godfrey et al. Nov 2000 A
6164618 Yonemura Dec 2000 A
6173548 Hamar et al. Jan 2001 B1
6182410 Pervan Feb 2001 B1
6203653 Seidner Mar 2001 B1
6210512 Jones Apr 2001 B1
6254301 Hatch Jul 2001 B1
6295779 Canfield Oct 2001 B1
6314701 Meyerson Nov 2001 B1
6324796 Heath Dec 2001 B1
6324809 Nelson Dec 2001 B1
6332733 Hamberger Dec 2001 B1
6339908 Chuang Jan 2002 B1
6345481 Nelson Feb 2002 B1
6358352 Schmidt Mar 2002 B1
6363677 Chen et al. Apr 2002 B1
6385936 Schneider May 2002 B1
6418683 Martensson et al. Jul 2002 B1
6446413 Gruber Sep 2002 B1
6449918 Nelson Sep 2002 B1
6450235 Lee Sep 2002 B1
6490836 Moriau et al. Dec 2002 B1
6505452 Hannig Jan 2003 B1
6546691 Leopolder Apr 2003 B2
6553724 Bigler Apr 2003 B1
6576079 Kai Jun 2003 B1
6584747 Kettler et al. Jul 2003 B2
6588166 Martensson Jul 2003 B2
6591568 Pålsson Jul 2003 B1
6601359 Olofsson Aug 2003 B2
6617009 Chen et al. Sep 2003 B1
6647689 Pletzer et al. Nov 2003 B2
6647690 Martensson Nov 2003 B1
6651400 Murphy Nov 2003 B1
6670019 Andersson Dec 2003 B2
6672030 Schulte Jan 2004 B2
6681820 Olofsson Jan 2004 B2
6682254 Olofsson et al. Jan 2004 B1
6684592 Martin Feb 2004 B2
6685391 Gideon Feb 2004 B1
6729091 Martensson May 2004 B1
6763643 Martensson Jul 2004 B1
6766622 Thiers Jul 2004 B1
6769219 Schwitte et al. Aug 2004 B2
6769835 Stridsman Aug 2004 B2
6802166 Gerhard Oct 2004 B1
6804926 Eisermann Oct 2004 B1
6808777 Andersson et al. Oct 2004 B2
6854235 Martensson Feb 2005 B2
6862857 Tychsen Mar 2005 B2
6865855 Knauseder Mar 2005 B2
6874291 Weber Apr 2005 B1
6880307 Schwitte et al. Apr 2005 B2
6948716 Drouin Sep 2005 B2
7021019 Knauseder Apr 2006 B2
7040068 Moriau et al. May 2006 B2
7051486 Pervan May 2006 B2
7108031 Secrest Sep 2006 B1
7121058 Pålsson Oct 2006 B2
7152383 Wilkinson et al. Dec 2006 B1
7156383 Jacobs Jan 2007 B1
7188456 Knauseder Mar 2007 B2
7219392 Mullet et al. May 2007 B2
7251916 Konzelmann et al. Aug 2007 B2
7257926 Kirby Aug 2007 B1
7337588 Moebus Mar 2008 B1
7377081 Ruhdorfer May 2008 B2
7380383 Olofsson et al. Jun 2008 B2
7441384 Miller et al. Oct 2008 B2
7451578 Hannig Nov 2008 B2
7454875 Pervan et al. Nov 2008 B2
7516588 Pervan Apr 2009 B2
7517427 Sjoberg et al. Apr 2009 B2
7520092 Showers et al. Apr 2009 B2
7533500 Morton et al. May 2009 B2
7556849 Thompson et al. Jul 2009 B2
7568322 Pervan Aug 2009 B2
7584583 Bergelin et al. Sep 2009 B2
7591116 Thiers et al. Sep 2009 B2
7614197 Nelson Nov 2009 B2
7617651 Grafenauer Nov 2009 B2
7621094 Moriau et al. Nov 2009 B2
7634884 Pervan Dec 2009 B2
7637068 Pervan Dec 2009 B2
7644553 Knauseder Jan 2010 B2
7677005 Pervan Mar 2010 B2
7716889 Pervan May 2010 B2
7721503 Pervan et al. May 2010 B2
7748176 Harding et al. Jul 2010 B2
7757452 Pervan Jul 2010 B2
7802411 Pervan Sep 2010 B2
7806624 McLean et al. Oct 2010 B2
7841144 Pervan et al. Nov 2010 B2
7841145 Pervan et al. Nov 2010 B2
7841150 Pervan Nov 2010 B2
7849642 Forster et al. Dec 2010 B2
7856789 Eisermann Dec 2010 B2
7861482 Pervan et al. Jan 2011 B2
7866110 Pervan Jan 2011 B2
7896571 Hannig et al. Mar 2011 B1
7908815 Pervan et al. Mar 2011 B2
7908816 Grafenauer Mar 2011 B2
7913471 Pervan Mar 2011 B2
7930862 Bergelin et al. Apr 2011 B2
7954295 Pervan Jun 2011 B2
7980041 Pervan Jul 2011 B2
8001741 Duernberger Aug 2011 B2
8006458 Olofsson et al. Aug 2011 B1
8033074 Pervan Oct 2011 B2
8042311 Pervan Oct 2011 B2
8061104 Pervan Nov 2011 B2
8079196 Pervan Dec 2011 B2
8112967 Pervan et al. Feb 2012 B2
8171692 Pervan May 2012 B2
8181416 Pervan et al. May 2012 B2
8234830 Pervan et al. Aug 2012 B2
8341914 Pervan et al. Jan 2013 B2
8341915 Pervan et al. Jan 2013 B2
8353140 Pervan et al. Jan 2013 B2
8359805 Pervan et al. Jan 2013 B2
8375673 Evjen Feb 2013 B2
8381477 Pervan et al. Feb 2013 B2
8387327 Pervan Mar 2013 B2
8448402 Pervan et al. May 2013 B2
8499521 Pervan et al. Aug 2013 B2
8505257 Boo et al. Aug 2013 B2
8528289 Pervan et al. Sep 2013 B2
8544230 Pervan Oct 2013 B2
8544233 Pålsson Oct 2013 B2
8544234 Pervan et al. Oct 2013 B2
8572922 Pervan Nov 2013 B2
8578675 Palsson et al. Nov 2013 B2
8596013 Boo Dec 2013 B2
8627862 Pervan et al. Jan 2014 B2
8640424 Pervan et al. Feb 2014 B2
8650826 Pervan et al. Feb 2014 B2
8677714 Pervan Mar 2014 B2
8689512 Pervan Apr 2014 B2
8707650 Pervan Apr 2014 B2
8713886 Boo et al. May 2014 B2
8733065 Pervan May 2014 B2
8733410 Pervan May 2014 B2
8763341 Pervan Jul 2014 B2
8769905 Pervan Jul 2014 B2
8776473 Pervan et al. Jul 2014 B2
8806832 Kell Aug 2014 B2
8844236 Pervan et al. Sep 2014 B2
8857126 Pervan et al. Oct 2014 B2
8869485 Pervan Oct 2014 B2
8898988 Pervan Dec 2014 B2
8925274 Pervan et al. Jan 2015 B2
8959866 Pervan Feb 2015 B2
8973331 Boo Mar 2015 B2
9027306 Pervan May 2015 B2
9051738 Pervan et al. Jun 2015 B2
9068360 Pervan Jun 2015 B2
9091077 Boo Jul 2015 B2
9103126 Kell Aug 2015 B2
9103128 Pomberger Aug 2015 B2
9194134 Nygren et al. Nov 2015 B2
9212492 Pervan et al. Dec 2015 B2
9216541 Boo et al. Dec 2015 B2
9238917 Pervan et al. Jan 2016 B2
9284737 Pervan et al. Mar 2016 B2
9309679 Pervan et al. Apr 2016 B2
9316002 Boo Apr 2016 B2
9340974 Pervan et al. May 2016 B2
9347469 Pervan May 2016 B2
9359774 Pervan Jun 2016 B2
9366036 Pervan Jun 2016 B2
9376821 Pervan et al. Jun 2016 B2
9382716 Pervan et al. Jul 2016 B2
9388584 Pervan et al. Jul 2016 B2
9428919 Pervan et al. Aug 2016 B2
9453347 Pervan et al. Sep 2016 B2
9458634 Derelov Oct 2016 B2
9482012 Nygren et al. Nov 2016 B2
9540826 Pervan et al. Jan 2017 B2
9663940 Boo May 2017 B2
9725912 Pervan Aug 2017 B2
9771723 Pervan Sep 2017 B2
9777487 Pervan et al. Oct 2017 B2
9803374 Pervan Oct 2017 B2
9803375 Pervan Oct 2017 B2
9856656 Pervan Jan 2018 B2
9874027 Pervan Jan 2018 B2
9945130 Nygren et al. Apr 2018 B2
9951526 Boo et al. Apr 2018 B2
10000935 Kell Jun 2018 B2
10006210 Pervan et al. Jun 2018 B2
10017948 Boo Jul 2018 B2
10113319 Pervan Oct 2018 B2
10125488 Boo Nov 2018 B2
10138636 Pervan Nov 2018 B2
10161139 Pervan Dec 2018 B2
10180005 Pervan et al. Jan 2019 B2
10214915 Pervan et al. Feb 2019 B2
10214917 Pervan et al. Feb 2019 B2
10240348 Pervan et al. Mar 2019 B2
10240349 Pervan et al. Mar 2019 B2
10246883 Derelöv Apr 2019 B2
10352049 Boo Jul 2019 B2
10358830 Pervan Jul 2019 B2
10378217 Pervan Aug 2019 B2
10458125 Pervan Oct 2019 B2
10480196 Boo Nov 2019 B2
10519676 Pervan Dec 2019 B2
10526792 Pervan et al. Jan 2020 B2
10538922 Pervan Jan 2020 B2
10570625 Pervan Feb 2020 B2
10640989 Pervan May 2020 B2
10655339 Pervan May 2020 B2
10669723 Pervan et al. Jun 2020 B2
10724251 Kell Jul 2020 B2
10731358 Pervan Aug 2020 B2
10794065 Boo et al. Oct 2020 B2
10828798 Fransson Nov 2020 B2
10933592 Blomgren et al. Mar 2021 B2
10934721 Pervan et al. Mar 2021 B2
10953566 Fransson et al. Mar 2021 B2
10968639 Pervan et al. Apr 2021 B2
10975577 Pervan et al. Apr 2021 B2
10995501 Pervan May 2021 B2
20010024707 Andersson et al. Sep 2001 A1
20010034991 Martensson Nov 2001 A1
20010045150 Owens Nov 2001 A1
20020014047 Thiers Feb 2002 A1
20020031646 Chen et al. Mar 2002 A1
20020069611 Leopolder Jun 2002 A1
20020092263 Schulte Jul 2002 A1
20020095894 Pervan Jul 2002 A1
20020108343 Knauseder Aug 2002 A1
20020170258 Schwitte et al. Nov 2002 A1
20020170259 Ferris Nov 2002 A1
20020178674 Pervan Dec 2002 A1
20020178680 Martensson Dec 2002 A1
20020189190 Charmat et al. Dec 2002 A1
20020189747 Steinwender Dec 2002 A1
20020194807 Nelson et al. Dec 2002 A1
20030009971 Palmberg Jan 2003 A1
20030024199 Pervan et al. Feb 2003 A1
20030037504 Schwitte et al. Feb 2003 A1
20030066588 Pålsson Apr 2003 A1
20030084636 Pervan May 2003 A1
20030094230 Sjoberg May 2003 A1
20030101674 Pervan Jun 2003 A1
20030101681 Tychsen Jun 2003 A1
20030145549 Palsson et al. Aug 2003 A1
20030180091 Stridsman Sep 2003 A1
20030188504 Ralf Oct 2003 A1
20030196405 Pervan Oct 2003 A1
20040016196 Pervan Jan 2004 A1
20040031225 Fowler Feb 2004 A1
20040031227 Knauseder Feb 2004 A1
20040049999 Krieger Mar 2004 A1
20040060255 Knauseder Apr 2004 A1
20040068954 Martensson Apr 2004 A1
20040123548 Gimpel et al. Jul 2004 A1
20040128934 Hecht Jul 2004 A1
20040137180 Sjoberg et al. Jul 2004 A1
20040139676 Knauseder Jul 2004 A1
20040139678 Pervan Jul 2004 A1
20040159066 Thiers et al. Aug 2004 A1
20040168392 Konzelmann et al. Sep 2004 A1
20040177584 Pervan Sep 2004 A1
20040182033 Wernersson Sep 2004 A1
20040182036 Sjoberg et al. Sep 2004 A1
20040200175 Weber Oct 2004 A1
20040211143 Hanning Oct 2004 A1
20040238001 Risden Dec 2004 A1
20040244325 Nelson Dec 2004 A1
20040250492 Becker Dec 2004 A1
20040261348 Vulin Dec 2004 A1
20050003132 Blix et al. Jan 2005 A1
20050028474 Kim Feb 2005 A1
20050050827 Schitter Mar 2005 A1
20050160694 Pervan Jul 2005 A1
20050166514 Pervan Aug 2005 A1
20050183370 Cripps Aug 2005 A1
20050205161 Lewark Sep 2005 A1
20050210810 Pervan Sep 2005 A1
20050235593 Hecht Oct 2005 A1
20050252130 Martensson Nov 2005 A1
20050252167 Van Horne, Jr. Nov 2005 A1
20050268570 Pervan Dec 2005 A2
20060053724 Braun et al. Mar 2006 A1
20060070333 Pervan Apr 2006 A1
20060101769 Pervan May 2006 A1
20060156670 Knauseder Jul 2006 A1
20060174577 O'Neil Aug 2006 A1
20060179754 Yang Aug 2006 A1
20060185287 Glazer et al. Aug 2006 A1
20060236642 Pervan Oct 2006 A1
20060260254 Pervan et al. Nov 2006 A1
20060272262 Pomberger Dec 2006 A1
20070003366 Wedberg Jan 2007 A1
20070011981 Eisermann Jan 2007 A1
20070028547 Grafenauer Feb 2007 A1
20070065293 Hannig Mar 2007 A1
20080000182 Pervan Jan 2008 A1
20080000185 Duernberger Jan 2008 A1
20080000186 Pervan et al. Jan 2008 A1
20080000187 Pervan et al. Jan 2008 A1
20080010931 Pervan et al. Jan 2008 A1
20080010937 Pervan et al. Jan 2008 A1
20080028707 Pervan Feb 2008 A1
20080034708 Pervan Feb 2008 A1
20080041008 Pervan Feb 2008 A1
20080066415 Pervan Mar 2008 A1
20080104921 Pervan et al. May 2008 A1
20080110125 Pervan May 2008 A1
20080134607 Pervan Jun 2008 A1
20080134613 Pervan Jun 2008 A1
20080134614 Pervan Jun 2008 A1
20080155930 Pervan et al. Jul 2008 A1
20080216434 Pervan Sep 2008 A1
20080216920 Pervan Sep 2008 A1
20080295432 Pervan et al. Dec 2008 A1
20090126308 Hannig et al. May 2009 A1
20090133353 Pervan et al. May 2009 A1
20090193748 Boo et al. Aug 2009 A1
20090249733 Moebus Oct 2009 A1
20100293879 Pervan et al. Nov 2010 A1
20100300031 Pervan et al. Dec 2010 A1
20100319290 Pervan Dec 2010 A1
20100319291 Pervan et al. Dec 2010 A1
20110030303 Pervan et al. Feb 2011 A1
20110041996 Pervan Feb 2011 A1
20110088344 Pervan et al. Apr 2011 A1
20110088345 Pervan Apr 2011 A1
20110088346 Hannig Apr 2011 A1
20110154763 Bergelin et al. Jun 2011 A1
20110167750 Pervan Jul 2011 A1
20110225922 Pervan et al. Sep 2011 A1
20110252733 Pervan Oct 2011 A1
20110283650 Pervan et al. Nov 2011 A1
20120017533 Pervan et al. Jan 2012 A1
20120031029 Pervan et al. Feb 2012 A1
20120036804 Pervan Feb 2012 A1
20120151865 Pervan et al. Jun 2012 A1
20120174515 Pervan Jul 2012 A1
20120174520 Pervan Jul 2012 A1
20120279161 Håkansson et al. Nov 2012 A1
20130008117 Pervan Jan 2013 A1
20130014463 Pervan Jan 2013 A1
20130019555 Pervan Jan 2013 A1
20130042562 Pervan Feb 2013 A1
20130042563 Pervan Feb 2013 A1
20130042564 Pervan et al. Feb 2013 A1
20130042565 Pervan Feb 2013 A1
20130047536 Pervan Feb 2013 A1
20130081349 Pervan et al. Apr 2013 A1
20130111845 Pervan May 2013 A1
20130145708 Pervan Jun 2013 A1
20130160391 Pervan et al. Jun 2013 A1
20130232905 Pervan Sep 2013 A2
20130239508 Pervan et al. Sep 2013 A1
20130263454 Boo et al. Oct 2013 A1
20130263547 Boo Oct 2013 A1
20130318906 Pervan et al. Dec 2013 A1
20140007539 Pervan et al. Jan 2014 A1
20140020324 Pervan Jan 2014 A1
20140033633 Kell Feb 2014 A1
20140033634 Pervan Feb 2014 A1
20140053497 Pervan et al. Feb 2014 A1
20140059966 Boo Mar 2014 A1
20140069043 Pervan Mar 2014 A1
20140090335 Pervan et al. Apr 2014 A1
20140109501 Pervan Apr 2014 A1
20140109506 Pervan et al. Apr 2014 A1
20140123586 Pervan et al. May 2014 A1
20140150369 Hannig Jun 2014 A1
20140190112 Pervan Jul 2014 A1
20140208677 Pervan et al. Jul 2014 A1
20140223852 Pervan Aug 2014 A1
20140237931 Pervan Aug 2014 A1
20140250813 Nygren et al. Sep 2014 A1
20140260060 Pervan et al. Sep 2014 A1
20140305065 Pervan Oct 2014 A1
20140366476 Pervan Dec 2014 A1
20140366477 Kell Dec 2014 A1
20140373478 Pervan et al. Dec 2014 A2
20140373480 Pervan et al. Dec 2014 A1
20150000221 Boo Jan 2015 A1
20150013260 Pervan Jan 2015 A1
20150059281 Pervan Mar 2015 A1
20150089896 Pervan et al. Apr 2015 A2
20150121796 Pervan May 2015 A1
20150152644 Boo Jun 2015 A1
20150167318 Pervan Jun 2015 A1
20150211239 Pervan Jul 2015 A1
20150233125 Pervan et al. Aug 2015 A1
20150267419 Pervan Sep 2015 A1
20150300029 Pervan Oct 2015 A1
20150330088 Derelov Nov 2015 A1
20150337537 Boo Nov 2015 A1
20150368910 Kell Dec 2015 A1
20160032596 Nygren et al. Feb 2016 A1
20160060879 Pervan Mar 2016 A1
20160069088 Boo et al. Mar 2016 A1
20160076260 Pervan et al. Mar 2016 A1
20160090744 Pervan et al. Mar 2016 A1
20160153200 Pervan Jun 2016 A1
20160168866 Pervan et al. Jun 2016 A1
20160186426 Boo Jun 2016 A1
20160194884 Pervan et al. Jul 2016 A1
20160201336 Pervan Jul 2016 A1
20160251859 Pervan et al. Sep 2016 A1
20160251860 Pervan Sep 2016 A1
20160281368 Pervan et al. Sep 2016 A1
20160281370 Pervan et al. Sep 2016 A1
20160326751 Pervan Nov 2016 A1
20160340913 Derelöv Nov 2016 A1
20170037641 Nygren et al. Feb 2017 A1
20170081860 Boo Mar 2017 A1
20170089379 Pervan Mar 2017 A1
20170254096 Pervan Sep 2017 A1
20170321433 Pervan et al. Nov 2017 A1
20170362834 Pervan et al. Dec 2017 A1
20180001509 Myllykangas et al. Jan 2018 A1
20180001510 Fransson Jan 2018 A1
20180001573 Blomgren et al. Jan 2018 A1
20180002933 Pervan Jan 2018 A1
20180016783 Boo Jan 2018 A1
20180030737 Pervan Feb 2018 A1
20180030738 Pervan Feb 2018 A1
20180119431 Pervan et al. May 2018 A1
20180178406 Fransson et al. Jun 2018 A1
20190024387 Pervan et al. Jan 2019 A1
20190048592 Boo Feb 2019 A1
20190048596 Pervan Feb 2019 A1
20190063076 Boo et al. Feb 2019 A1
20190071879 Thiers et al. Mar 2019 A1
20190093370 Pervan et al. Mar 2019 A1
20190093371 Pervan Mar 2019 A1
20190119928 Pervan et al. Apr 2019 A1
20190127989 Kell May 2019 A1
20190127990 Pervan et al. May 2019 A1
20190169859 Pervan et al. Jun 2019 A1
20190232473 Fransson et al. Aug 2019 A1
20190271165 Boo Sep 2019 A1
20190376298 Pervan et al. Dec 2019 A1
20190394314 Pervan et al. Dec 2019 A1
20200087927 Pervan Mar 2020 A1
20200102756 Pervan Apr 2020 A1
20200109569 Pervan Apr 2020 A1
20200149289 Pervan May 2020 A1
20200173175 Pervan Jun 2020 A1
20200224430 Ylikangas et al. Jul 2020 A1
20200284045 Kell Sep 2020 A1
20200318667 Derelöv Oct 2020 A1
20200354969 Pervan et al. Nov 2020 A1
20200412852 Pervan et al. Dec 2020 A9
20210016465 Fransson Jan 2021 A1
20210047840 Pervan Feb 2021 A1
20210047841 Pervan et al. Feb 2021 A1
20210071428 Pervan Mar 2021 A1
20210087831 Nilsson et al. Mar 2021 A1
20210087832 Boo Mar 2021 A1
20210087833 Ylikangas et al. Mar 2021 A1
20210087834 Ylikangas et al. Mar 2021 A1
Foreign Referenced Citations (91)
Number Date Country
142 293 Jul 1902 DE
138 992 Jul 1907 DE
2 159 042 Jun 1973 DE
25 05 489 Aug 1976 DE
33 43 601 Jun 1985 DE
33 43 601 Jun 1985 DE
39 32 980 Nov 1991 DE
4215 273 Nov 1993 DE
42 42 530 Jun 1994 DE
196 01 322 May 1997 DE
299 22 649 Mar 2000 DE
200 02 744 Aug 2000 DE
199 40 837 Nov 2000 DE
199 58 225 Jun 2001 DE
202 05 774 Aug 2002 DE
0 013 852 Aug 1980 EP
0 871 156 Oct 1998 EP
1 120 515 Aug 2001 EP
1 146 182 Oct 2001 EP
1 251 219 Oct 2002 EP
1 279 778 Jan 2003 EP
1 350 904 Oct 2003 EP
1 350 904 Oct 2003 EP
1 396 593 Mar 2004 EP
1 420 125 May 2004 EP
1 437 457 Jul 2004 EP
1 437 457 Jul 2004 EP
1.138.595 Jun 1957 FR
2 256 807 Aug 1975 FR
2 810 060 Dec 2001 FR
240629 Oct 1925 GB
376352 Jul 1932 GB
1171337 Nov 1969 GB
2 051 916 Jan 1981 GB
H03-110258 May 1991 JP
H05-018028 Jan 1993 JP
H06-146553 May 1994 JP
H06-288017 Oct 1994 JP
H06-306961 Nov 1994 JP
H06-322848 Nov 1994 JP
H07-300979 Nov 1995 JP
2900115 Jun 1999 JP
2002-047782 Feb 2002 JP
526 688 May 2005 SE
WO 9426999 Nov 1994 WO
WO 9627721 Sep 1996 WO
WO 9747834 Dec 1997 WO
WO 9822677 May 1998 WO
WO 9966151 Dec 1999 WO
WO 9966152 Dec 1999 WO
WO 0043281 Jul 2000 WO
WO 0047841 Aug 2000 WO
WO 0055067 Sep 2000 WO
WO 0102670 Jan 2001 WO
WO 0102672 Jan 2001 WO
WO 0107729 Feb 2001 WO
WO 0138657 May 2001 WO
WO 0144669 Jun 2001 WO
WO 0144669 Jun 2001 WO
WO 0148332 Jul 2001 WO
WO 0151732 Jul 2001 WO
WO 0151733 Jul 2001 WO
WO 0166877 Sep 2001 WO
WO 0175247 Oct 2001 WO
WO 0177461 Oct 2001 WO
WO 02055809 Jul 2002 WO
WO 02055810 Jul 2002 WO
WO 02081843 Oct 2002 WO
WO 02103135 Dec 2002 WO
WO 03012224 Feb 2003 WO
WO 03016654 Feb 2003 WO
WO 03025307 Mar 2003 WO
WO 03038210 May 2003 WO
WO 03044303 May 2003 WO
WO 03074814 Sep 2003 WO
WO 03083234 Oct 2003 WO
WO 03087497 Oct 2003 WO
WO 03089736 Oct 2003 WO
WO 2004003314 Jan 2004 WO
WO 2004020764 Mar 2004 WO
WO 2004048716 Jun 2004 WO
WO 2004050780 Jun 2004 WO
WO 2004079128 Sep 2004 WO
WO 2004079130 Sep 2004 WO
WO 2004085765 Oct 2004 WO
WO 2005003488 Jan 2005 WO
WO 2005003489 Jan 2005 WO
WO 2005054599 Jun 2005 WO
WO 2006050928 May 2006 WO
WO 2006104436 Oct 2006 WO
WO 2006123988 Nov 2006 WO
Non-Patent Literature Citations (28)
Entry
U.S. Appl. No. 15/896,571, Darko Pervan, Niclas Håkansson and Per Nygren, filed Feb. 14, 2018, (Cited herein as US Patent Application Publication No. 2019/0093370 A1 of Mar. 28, 2019).
U.S. Appl. No. 16/224,951, Darko Pervan and Tony Pervan, filed Dec. 19, 2018, (Cited herein as US Patent Application Publication No. 2019/0119928 A1 of Apr. 25, 2019).
U.S. Appl. No. 16/269,806, Darko Pervan and Tony Pervan, filed Feb. 7, 2019, (Cited herein as US Patent Application Publication No. 2019/0169859 A1 of Jun. 6, 2019).
U.S. Appl. No. 16/419,660, Christian Boo, filed May 22, 2019, (Cited herein as US Patent Application Publication No. 2019/0271165 A1 of Sep. 5, 2019).
U.S. Appl. No. 16/439,827, Darko Pervan, filed Jun. 13, 2019, (Cited herein as US Patent Application Publication No. 2020/0102756 A1 of Apr. 2, 2020).
U.S. Appl. No. 16/692,104, Darko Pervan, filed Nov. 22, 2019, (Cited herein as US Patent Application Publication No. 2020/0087927 A1 of Mar. 19, 2020).
U.S. Appl. No. 16/713,373, Roger Ylikangas, Karl Quist, Anders Nilsson and Caroline Landgård, filed Dec. 13, 2019, (Cited herein as US Patent Application Publication No. 2020/0224430 A1 of Jul. 16, 2020).
U.S. Appl. No. 16/781,301, Darko Pervan, filed Feb. 4, 2020, (Cited herein as US Patent Application Publication No. 2020/0173175 A1 of Jun. 4, 2020).
U.S. Appl. No. 16/861,666, Darko Pervan, filed Apr. 29, 2020.
U.S. Appl. No. 16/861,686, Darko Pervan and Agne Pålsson, filed Apr. 29, 2020.
U.S. Appl. No. 16/908,902, Darko Pervan, filed Jun. 23, 2020.
U.S. Appl. No. 16/861,666, Pervan.
U.S. Appl. No. 16/861,686, Pervan et al.
U.S. Appl. No. 16/908,902, Pervan.
International Search Report dated Aug. 18, 2006 in PCT/SE2006/000595 (Published as WO 2006/123988 A1), Swedish Patent Office, Stockholm, SE, 4 pages.
Extended European Search Report issued in EP06747799.2, dated Apr. 1, 2009, European Patent Office, Munich, DE, 12 pages.
Extended European Search Report issued in EP13164407.2, dated Jul. 30, 2014, European Patent Office, Munich, DE, 7 pages.
LifeTips, “Laminate Flooring Tips,” available at (http://flooring.lifetips.com/cat/61734/laminate-flooring-tips/index.html), 2000, 12 pages.
Pervan, Darko, U.S. Appl. No. 16/861,666 entitled “Mechanical Locking System for Panels and Method of Installing Same,” filed in the U.S. Patent and Trademark Office on Apr. 29, 2020.
Pervan, Darko, et al., U.S. Appl. No. 16/861,686 entitled “Mechanical Locking of Floor Panels with a Flexible Bristle Tongue,” filed in the U.S. Patent and Trademark Office on Apr. 29, 2020.
Pervan, Darko, U.S. Appl. No. 16/908,902 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Jun. 23, 2020.
U.S. Appl. No. 17/206,702, filed Mar. 19, 2021, Darko Pervan, Niclas Håkansson and Per Nygren.
**Pervan, Darko, et al., U.S. Appl. No. 17/206,702 entitled “Mechanical Locking of Floor Panels with a Flexible Tongue,” filed in the U.S. Patent and Trademark Office on Mar. 19, 2021.
U.S. Appl. No. 17/206,702, Pervan et al.
**Pervan, Darko, U.S. Appl. No. 17/224,290 entitled “Mechanical Locking System for Floor Panels,” filed in the U.S. Patent and Trademark Office on Apr. 7, 2021.
**Pervan, Darko, U.S. Appl. No. 17/314,431 entitled “Mechanical Locking of Floor Panels with Vertical Folding,” filed in the U.S. Patent and Trademark Office on May 7, 2021..
U.S. Appl. No. 17/224,290, Pervan.
U.S. Appl. No. 17/314,431, Pervan.
Related Publications (1)
Number Date Country
20200263437 A1 Aug 2020 US
Divisions (1)
Number Date Country
Parent 14683340 Apr 2015 US
Child 14938612 US
Continuations (5)
Number Date Country
Parent 14938612 Nov 2015 US
Child 16581990 US
Parent 14270711 May 2014 US
Child 14683340 US
Parent 13426159 Mar 2012 US
Child 14270711 US
Parent 11822684 Jul 2007 US
Child 13426159 US
Parent 10908658 May 2005 US
Child 11822684 US