Mechanical locking system for floor panels

Information

  • Patent Grant
  • 7454875
  • Patent Number
    7,454,875
  • Date Filed
    Friday, October 22, 2004
    20 years ago
  • Date Issued
    Tuesday, November 25, 2008
    16 years ago
Abstract
Floor panels (1, 1′) are provided with a mechanical locking system including a flexible tongue (30) in a sliding groove (40) which during a vertical folding motion is displaced. Moreover, a tongue blank (50), a production method and an installation method are shown.
Description
TECHNICAL FIELD

The invention generally relates to the field of mechanical locking systems for floor panels and such building panels that are made of a board material. The invention relates to panels provided with such locking systems, elements for such locking systems and methods for making and installing panels with such locking systems.


FIELD OF APPLICATION OF THE INVENTION

The present invention is particularly suitable for use in floating floors, which are formed of floor panels which are joined mechanically with a locking system integrated with the floorpanel, i.e. mounted at the factory, are made up of one or more upper layers of veneer, decorative laminate or decorative plastic material, an intermediate core of wood-fibre-based material or plastic material and preferably a lower balancing layer on the rear side of the core. The following description of prior-art technique, problems of known systems and objects and features of the invention will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular laminate flooring formed as rectangular floor panels with long and shorts sides intended to be mechanically joined on both long and short sides. The long and shorts sides are mainly used to simplify the description of the invention. The panels could be square, the sides could have an angle other than 90 degree and they could have more than 4 sides. It should be emphasised that the invention can be used in any floor panel and it could be combined with all types of known locking system, where the floor panels are intended to be joined using a mechanical locking system in the horizontal and vertical directions. The invention can thus also be applicable to, for instance, solid wooden floors, parquet floors with a core of wood or wood-fibre-based material and a surface of wood or wood veneer and the like, floors with a printed and preferably also varnished surface, floors with a surface layer of plastic or cork, linoleum, rubber. Even floors with hard surfaces such as stone, tile and similar are included and floorings with soft wear layer, for instance needle felt glued to a board. The invention can also be used for joining building panels which preferably contain a board material for instance wall panels, ceilings, furniture components and similar.


BACKGROUND OF THE INVENTION

Laminate flooring usually consists of a core of a 6-12 mm fibre board, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material. The surface layer provides appearance and durability to the floor panels. The core provides stability, and the balancing layer keeps the panel plane when the relative humidity (RH) varies during the year. The floor panels are laid floating, i.e. without gluing, on an existing sub floor. Laminate flooring and also many other floorings are made by the surface layer and the balancing layer being applied to a core material. This application may take place by gluing a previously manufactured decorative layer, for instance when the fibre board is provided with a decorative high pressure laminate which is made in a separate operation where a plurality of impregnated sheets of paper are compressed under high pressure and at a high temperature. The currently most common method when making laminate flooring, however, is direct laminating which is based on a more modern principle where both manufacture of the decorative laminate layer and the bonding to the fibre board take place in one and the same manufacturing step. Impregnated sheets of paper are applied directly to the panel and pressed together under pressure and heat without any gluing.


Traditional hard floor panels in floating flooring of this type are usually joined by means of glued tongue-and-groove joints.


In addition to such traditional floors, which are joined by means of glued tongue-and-groove joints, floor panels have recently been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking means which lock the panels horizontally and vertically. The mechanical locking systems are usually formed by machining of the core of the panel. Alternatively, parts of the locking system can be formed of a separate material, for instance aluminum or HDF, which is integrated with the floor panel, i.e. joined with the floor panel in connection with the manufacture thereof.


The main advantages of floating floors with mechanical locking systems are that they can easily and quickly be laid by various combinations of inward angling, snapping-in and insertion. They can also easily be taken up again and used once more at a different location. A further advantage of the mechanical locking systems is that the joint edges of the floor panels can be made of materials, which need not to have good gluing properties. The most common core material is fibreboard with high density and good stability usually called HDF—High Density Fibreboard. Sometimes also MDF—Medium Density Fibreboard—is used as core.


DEFINITION OF SOME TERMS

In the following text, the visible surface of the installed floor panel is called “front side”, while the opposite side of the floor panel, facing the sub floor, is called “rear side”. The edge between the front and rear side is called “joint edge”. By “horizontal plane” is meant a plane which extends parallel to the outer part of the surface layer. Immediately juxtaposed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane.


By “joint” or “locking system” are meant co acting connecting means which connect the floor panels vertically and/or horizontally. By “mechanical locking system” is meant that joining can take place without glue. Mechanical locking systems can in many cases also be joined by gluing. By “integrated with” means formed in one piece with the panel or factory connected to the panel.


By a “flexible tongue” is meant a separate tongue which has a length direction along the joint edges and which is forming a part of the vertical locking system and could be displaced horizontally during locking. The tongue could be for example flexible and resilient in such a way that it can bend along its length and spring back to its initial position.


By “flexible tongue blank” are meant two or more flexible tongues which are connected to a one piece component. Examples of such flexible tongue blanks will be described in more detail below.


By “fixing the flexible tongue” is meant that the flexible tongue should at least be sufficiently attached to the floor panel so as not to incidentally fall off during handling of the floor panel, at the factory, during transport and/or in installation. By “mechanically fixed” is meant that the fixing is essentially due to shape or friction force.


By “angling” is meant a connection that occurs by a turning motion, during which an angular change occurs between two parts that are being connected, or disconnected. When angling relates to connection of two floor panels, the angular motion takes place with the upper parts of joint edges at least partly being in contact with each other, during at least part of the motion.


By “vertical folding” is meant a connection of three panels where a first and second panel are in a connected state and where an angling action connects two perpendicular edges of a new panel to the first and second panel. Such a connection takes place for example when a long side of first panel in a first row is already connected to a long side of a second panel in a second row. The third panel is than connected by angling to the long side of the first panel in the first row. This specific type of angling action, which also connects the short side of the new panel and second panel, is referred to as vertical folding


PRIOR-ART TECHNIQUE AND PROBLEMS THEREOF

For mechanical joining of long sides as well as short sides in the vertical and horizontal direction (direction D1, D2) several methods are used but the locking is always performed in 3 steps where angling or snapping are combined with displacement along the joint edge in the locked position after an optional side has been joined.

    • Angling of long side, displacement and snapping-in of short side
    • Snapping-in of long side, displacement and snapping-in of short side.
    • Angling of short side, displacement of the new panel along the short side edge of the previous panel and finally downward angling of two panels.


These laying methods can also be combined with insertion along the joint edge.


It is known the locking system may, however, be formed so that snapping-in may occur by a motion which is vertical to the surface of the floor panel. Generally the long side is locked by angling and the short side with a vertical angling which locks with a snap action. Such a system in described in WO 01/0248127 (Akzenta) The connection of panels is complicated and difficult since fibres must be compressed and a hammer with a tapping block must be used. The panels are locked in vertical direction mainly by a friction force and the locking strength is low.


It is known that floor panels may be locked on long and short side vertically and horizontally with one simple vertical folding action (WO 03/083234 Applicant Valinge Aluminum). This document comprises a part of this application. The object of WO 03/083234 is to provide a joint system and floor panels which can be laid with a vertical folding.


A floor panel with a vertical joint in the form of a flexible tongue and a groove is provided, the tongue being made of a separate material and being flexible so that at least one of the sides of the floor panel can be joined by a vertical motion parallel to the vertical plane.


This document also show how a joint system can be made with a flexible spring tongue which can be displaced and/or compressed horizontally in and out or alternatively be bent vertically up or down. It describes a separate tongue of, for instance, wood fibre material, which can be displaced horizontally by means of a flexible material, for instance a rubber paste. It also describes an embodiment with a tongue, which has an inner part that is resilient.


This known technology with a tongue which during locking moves horizontally in relation to the adjacent edges offers several advantages over the known installation methods. The locking is easy and faster since 3 steps are reduced to one step.


The invention described in WO 03/083234 does not however show the best method to lock floor panels with a vertical folding. The production cost and the locking function could be improved considerably.


BRIEF DESCRIPTION AND OBJECTS THEREOF

A first overall objective of the present invention is to provide a locking system based on a vertical folding with a flexible tongue connected in a tongue groove. The locking system should make it possible to lock all four sides of one panel vertically and horizontally to other panels with an angling action only. The costs and functions should be favourable compared to the known technology. An essential part of the overall objective is to improve the function and costs of those parts of the locking system that causes the flexible tongue to displace during locking and spring back in locked position.


More specifically the object is to provide a vertical folding locking system with a flexible tongue where one or several of the following advantages are obtained.


The flexible tongue should preferably be possible to displacement during locking with such a low force that no tools will be needed in connection with installation.


The spring effect should be reliable and the flexible tongue should always move back to its predetermined position when the panels have been brought to the position where they are to be locked.


The vertical locking should be strong and prevent that two locked panels will move vertically when humidity is changing or when people walk on a floor.


The locking system should be able to lock floor panels vertically with high precision so that the surfaces are essentially in the same plane.


The vertical locking system should be designed in such a way that the material and production costs could be low.


The separate flexible tongue should be possible to connect to the floor panel in a simple and cost effective way. The connection should keep the flexible tongue connected to the panel during production, transport and installation.


A second objective is to provide methods to produce the flexible tongue and flexible tongue blanks which are later to constitute parts of the mechanical locking system of the floor panels.


A third object is to provide a rational method for joining the flexible tongues with the joint portion of the floor panel to form an integrated mechanical locking system where the flexible tongue is factory connected to the floor panel.


A fourth object is to provide installation methods to connect floor panels with vertical folding.


The above objects of the invention are achieved wholly or partly by a locking system, floor panels, a flexible tongue, a flexible tongue blank and production and installation methods according to the independent claims. Embodiments of the invention are evident from the dependent claims and from the description and drawings.


Although it is an advantage to integrate the flexible tongue with the panel in the factory before installation, the invention does not exclude an embodiment in which flexible tongues are delivered as separate components to be connected to the panel by the installer prior to installation.


According to a first aspect of the invention, a new floor panel comprising connecting means which are integrated with the floor panel and adapted to connect the new floor panel with an essentially identical first and second floor panel is provided. The upper joint edges of said new and second floor panels define in the connected state a vertical plane. The connecting means are designed to connect said new floor panel with said second floor panel in a horizontal direction perpendicular to said vertical plane and in a vertical direction parallel to the vertical plane. The vertical connection comprising a flexible tongue in a sliding groove in one of the new or second floor panels. The sliding groove is formed in the edge of the panel and is open towards the vertical plane. The flexible tongue has a length direction along the joint edges, a width in the horizontal plane perpendicular to the length and a thickness in the vertical direction.


The flexible tongue is designed to cooperate, in said connected state with a tongue groove of another one of the new or second floor panels.


The horizontal connection comprising a locking strip which projects from said vertical plane and carries a locking element 8 in the second panel.


The locking strip 6 is designed to cooperate, in said connected state, with a downward open locking groove of the new floor panel. The new floor panel could be locked to the first and second floor panel with vertical folding. The flexible tongue is during the vertical folding displaced two times in the sliding groove. The first displacement is effected by the vertical folding of the new floor panel whereby at least a part of the flexible tongue is bent in the length direction and parallel with the width.


A second displacement of the flexible tongue towards its initial position is accomplished substantially by a spring effect caused by said bending of said flexible tongue.


According to a first aspect of the second objective a tongue blank is provided consisting of several flexible tongues connected to each other. This facilitated automatic handling of the tongues in connection with the fixing of the flexible tongues into the displacement groove.


According to a first aspect of the third objective a production method is provided to fix the flexible tongue in the displacement groove. The flexible tongue is separated from a tongue blank and displaced essentially parallel to its width or length into the displacement groove where it is fixed with a friction force.


According to a first aspect of the fourth objective installation methods are provided which make it possible to connect floor panels vertically and horizontally long side to short side with a simple angling motion.


The invention allows horizontal and vertical locking of all sides of floor panels with a simple angling of the long sides only. Therefore it is especially suited for use in floor panels which are difficult to displace in locked position for example because they are long, in panels where parts of the locking system is made of a material with high friction, such as wood and in locking systems which are produced with tight fit, without play or even with pretension. Especially panels with such pretension where the locking strip is bent in locked position and presses the panels together are very difficult to displace. A locking system that allows a vertical folding according to the invention will decrease the installation time of such panels considerably.


The invention is also especially well suited for panels which are connected long side to short side and for panels which are wide for example with a width larger than 20 cm. Such panels are difficult to snap on short side and in most materials they must have a vertical locking to avoid height differences between the joint surfaces.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1
a-d illustrate one embodiment of a locking system according to the invention.



FIGS. 2
a-e illustrate in different steps mechanical joining of a floor panels according to an embodiment of the invention.



FIGS. 3
a-b show floor panels with a mechanical locking system on a short side.



FIGS. 4
a-b show the flexible tongue during the locking action.



FIGS. 5
a-b show how short sides of two floor panels could be locked with vertical folding.



FIGS. 6
a-c show another embodiment of the invention.



FIGS. 7
a-f show different embodiments of a flexible tongue.



FIGS. 8
a-8d show schematically how a separate flexible tongue could be connected to a floor panel.



FIGS. 9
a-f show schematically different embodiments according to the invention.



FIGS. 10
a-d show how two types of panels could be locked vertically and horizontally long side to short side with a simple angling action only.



FIGS. 11
a-d show another embodiment according to the principles in fig 10a-d.



FIGS. 12
a-f show square panels and alternative locking methods.



FIGS. 13
a-c show how widely used traditional panels could be adjusted to vertical folding.



FIG. 14 show the flexible tongue in another embodiment according to the invention.





DESCRIPTION OF EMBODIMENTS OF THE INVENTION

A first preferred embodiment of a floor panel 1, 1′ provided with a mechanical locking system according to the invention is now described with reference to FIGS. 1a-1d. To facilitate understanding, the locking systems in all figures are shown schematically. It should be emphasised that improved or different functions can be achieved using combinations of the preferred embodiments. The inventor has tested all known and especially all commercially used locking systems on the market in all type of floor panels, especially laminate and wood floorings and the conclusion is that at least all these known locking systems which have one or more tongues could be adjusted to a system with one ore more flexible tongues according to the invention. Most of them could easily be adjusted in such a way that they will be compatible with the present systems. Several flexible tongues could be located in both adjacent edges, one over the other and they could be on different levels in the same edge or installed in the same groove after each other. The flexible tongue could be on long and/or short sides and one side with a flexible tongue could be combined with an other side which could have all known locking systems, preferably locking systems which could be locked by angling or a vertical movement. The invention does not exclude floor panels with flexible tongues on for example a long and a short side. Such panels could be installed by a vertical motion without any angling. Angles, dimensions, rounded parts etc are only examples and could be adjusted within the principles of the invention.


A first preferred embodiment of a floor panel 1, 1′ provided with a mechanical locking system according to the invention is now described with reference to FIGS. 1a-1d.



FIG. 1
a illustrates schematically a cross-section of a joint between a short side joint edge 4a of a panel 1 and an opposite short side joint edge 4b of a second panel 1′.


The front sides 61 of the panels are essentially positioned in a common horizontal plane HP, and the upper parts 21, 41 of the joint edges 4a, 4b abut against each other in a vertical plane VP. The mechanical locking system provides locking of the panels relative to each other in the vertical direction D1 as well as the horizontal direction D2.


To provide joining of the two joint edges in the D1 and D2 directions, the edges of the floor panel have in a manner known per se a locking strip 6 with a locking element 8 in one joint edge, hereafter referred to as the “strip panel” which cooperates with a locking groove 14 in the other joint edge, hereafter referred to as the “fold panel”, and provides the horizontal locking.


The mechanical locking system according to the invention comprises a separate flexible tongue 30 connected into a displacement groove 40 formed in one of the joint edges. The flexible tongue 30 has a groove portion P1 which is located in the displacement groove 40 and a projecting portion P2 projecting outside the displacement groove 40. The projecting portion P2 of the flexible tongue 30 in one of the joint edges cooperates with a tongue groove formed in the other joint edge.


In this embodiment, the panel 1 could for example have a body or core 60 of wood-fibre-based material such as HDF, plywood or solid wood.


The flexible tongue 30 has a protruding part P2 with a rounded outer part 31 and a sliding surface 32 which in this embodiment is formed like a bevel. It has upper 33 and lower 35 tongue displacement surfaces and an inner part 34.


The displacement groove 40 has an upper 42 and lower 46 opening which in this embodiment are rounded, a bottom 44 and upper 43 and lower 45 groove displacement surfaces which preferably are essentially parallel with the horizontal plane HP.


The tongue groove 20 has a tongue locking surface 22 which cooperates with the flexible tongue 30 and locks the joint edges in a vertical direction D1. The fold panel 1′ has a vertical locking surface 24, which is closer to the rear side 62 than the tongue groove 20. The vertical locking surface 24 cooperates with the strip 6 and locks the joint edges in an other vertical direction. The fold panel has in this embodiment a sliding surface 23 which cooperated during locking with the sliding surface 32 of the tongue.



FIGS. 2
a-2e shows how a fold panel 1′ could be locked to a strip panel 1. The figures show a vertical motion of two panels towards each other. The figures also shows a part of a vertical folding connecting three panels to each other as shown in FIG. 5a. The FIGS. 2a-2e shows how the two cross sections A-A and A′-A′ of FIG. 5a will be connected when the fold panel 1′ will be angled towards the strip panel 1. FIG. 2b-c show how the sliding surfaces cooperate when the folding panel 1′ is moved vertically towards the strip panel 1. The flexible tongue 30 is displaced with a first displacement essentially horizontally in the displacement groove 40 towards the bottom 44. When the panels are in the position where they are to be locked to each other, the flexible tongue 30 springs back with a second displacement towards its initial position and the panels are locked vertically between the vertical locking surface 24 and the strip 6 and the lower displacement surface 35 and the tongue locking surface 22.


The flexible tongue 30 should preferably be connected to the displacement groove 40 with high precision. Depending on the compressibility and friction between the flexible tongue 30 and the displacement groove 40, the tongue as whole or different parts could be connected with a small play, for example 0.01-0.10 mm, a precise fit or a pre tension. Wax or other friction reducing materials or chemicals could be applied between the flexible tongue and the displacement groove and/or in the tongue groove and/or in the locking system in order to facilitate displacement of the tongue and the locking and/or to facilitate the connection of the flexible tongue in the displacement groove.


Even with a play, a precise fit between the upper joint edges could be accomplished. The lower tongue displacement surface 35 could be formed to press the tongue locking surface 22 and the vertical locking surface 24 towards the strip 6. For example the protruding part P2 of the tongue displacement surface 35 could be formed with a small angle to the horizontal plane HP. The protruding part P2 of the flexible tongue will tilt towards the front side 61 and a part of the upper tongue displacement surface 33 will press against the upper groove displacement surface 43 while parts of lower displacement surfaces 35,45 close to the bottom 44 of the displacement groove 40 will press against each other. In such an embodiment, the vertical fit between the upper joint edges will mainly depend on the production tolerances between the vertical locking surfaces 24 and an vertical contact surface 6′, in this embodiment located on the upper part of the strip 6, which in locked position will be in contact with each other and preferably press against each other. The flexible tongue 30 could be formed to cause a permanent pressure force horizontally in the locked position. This means that the flexible tongue 30 will only partly spring back to the initial position. The flexible tongue 30 could optionally be designed with such dimensions that in locked position it will move slightly towards its initial position when people walk on the floor or when the panels at warping in different humidity. Gradually a perfect vertical connection will be accomplished.



FIG. 3
a shows a cross section A-A of a panel according to FIG. 3b seen from above. The flexible tongue 30 has a length L along the joint edge, a width W parallel to the horizontal plane and perpendicular to the length L and a thickness T in the vertical direction D1. The sum of the largest groove portion P1 and the largest protruding part P2 is the total width TW. The flexible tongue has also in this embodiment a middle section MS and two edge sections ES adjacent to the middle section. The size of the protruding part P2 and the groove portion P1 varies in this embodiment along the length L and the tongue is spaced from the two corner sections 9a and 9b. This shape is favourable in order to facilitate the first and the second displacement of the flexible tongue 30.



FIGS. 4
a and 4b shows the position of the flexible tongue 30 after the first displacement towards the bottom 44 of the displacement groove 40. The displacement is caused essentially by bending of parts of the flexible tongue 30 in its length direction L parallel to the width W. This feature is essential for this embodiment of the invention and offers several advantages


A first important advantage is that the tongue could be made of rather rigid material which is strong and stabile in the vertical direction while at the same time a flexibility in horizontal direction D2 could be accomplished. The bending portions are could be made considerably larger than the horizontal displacement needed to accomplish the locking.


A second advantage is that the parts which are flexible and facilitates the first and second horizontal displacement also supports the vertical stability of the tongue. The advantage is that the total width TW of the flexible tongue and the depth of the displacement groove could be rather limited. This improves the strength and moisture deformation of the joint edge. As a non restrictive example it could be mentioned that the total width TW of the flexible tongue could be about 5-15 mm


A third advantage is that the flexible tongue could be made in one piece of a single material without any soft and compressible materials. This will decrease the production cost and facilitate the connection of the tongue in the displacement groove.


The sliding grove is in this preferred embodiment a continuous groove over the whole length of the join edge. The displacement groove (40) could however be formed in only a part of the edge and it does not have to be parallel with the edge. The displacement groove (40) could for instance be curved. Such a groove is easy to produce with a rotating tool which could move against the edge.


The fold panel could be disconnected with a needle shaped tool which could be inserted from the corner section 9b into the tongue grove 20 and press the flexible tongue back into the displacement groove 40. The fold panel could than be angled up while the strip panel is still on the sub floor. Of course the panels could also be disconnected in the traditional way.



FIGS. 5
a and 5b show one embodiment of a vertical folding. A first panel 1″ in a first row is connected to a second 1 panel in a second row. The new panel 1′ is connected with its long side 5a to the long side 5b of the first panel with angling. This angling action also connects the short side 4b of the new panel with the short side 4a of the second panel. The fold panel 1′ is locked to the strip panel 1 with a combined vertical and turning motion along the vertical plane VP. The protruding part P2 has a rounded and or angled folding part P2′ which during folding cooperates with the sliding surface 23 of the folding panel 1′. The combined effect of a folding part P2′, and a sliding surface 32 of the tongue which during the folding cooperates with the sliding surface 23 of the fold panel 1′ facilitates considerably the first displacement of the flexible tongue 30. The horizontal pressing force could be spread over a much larger portion than the thickness T of the flexible tongue and the fold panel could easily be folded down with a low force even if the spring effect of the bending is high. As a non restrictive example it could be mentioned that a vertical pressing force of 10 N against a piece, which has a length of 100 mm along the long side, applied on the long side 5b of the fold panel, as shown in FIG. 5a, could displace a projecting portion P2 to the inner position even if the spring force is 20 N. Most of the pressure force will be horizontal and the flexible tongue will be displaced into the displacement groove 40 without any risk of a block effect caused by friction or a tilting and/or vertically bending of the flexible tongue 30. It is an advantage if the locking system is designed in such a way that the locking element 8 is partly in the locking groove 14 when the first displacement starts. This is shown in FIG. 5b. The top edges 41, 21 are partly in contact with each other and the fold panel 1′ is in the correct starting position. The locking element 8 and the locking groove 14 prevent the strip panel 1 and the fold panel 1′ from separating when the flexible tongue 30 is pressed into the displacement groove 40. An essential feature of this embodiment is the position of the projecting portion P2 which is spaced from the corner section 9a and 9b. The spacing should be preferably at least 10% of the length of the joint edge, in this case the visible short side 4a. FIG. 5a shows that the spacing from both corner section 9a and 9b gives the flexibility that the fold panel could during the vertical folding be connected to the long side of the first panel 1″ with the tongue side 5a or the strip side 5b.



FIG. 6
a-6b show that the flexible tongue could be in the edge of the fold panel 1′. The sliding surface 32 of the tongue cooperates in this embodiment with the top edge of the strip panel. Thanks to the folding part P2′, the locking could be made without any risk of damaging the top surface layer at the edge. The advantage of this embodiment is that a short side with a flexible tongue could be connected to a traditional long side or short side locking system with a strip 6 and a tongue groove 20 in the same edge.



FIG. 6
c shows an embodiment where the displacement groove 40 is not parallel with the horizontal plane HP. This facilitates the connection of the flexible tongue 30 into the displacement groove 40. The protruding part of the flexible tongue 30 is wedge shaped in order to press the vertical contact surface 6′ and the vertical locking surface 24 against each other. The locking surfaces between the locking element 8 and the locking groove 14 are angled and have an angle which is less than 90 degree against the horizontal plane HP and the locking system could be connected with a tight fit and/or pre tension.



FIGS. 7
a-7e shows different embodiments of the flexible tongue 30. In FIG. 7a the flexible tongue 30 has on one of the edge sections a friction connection 36 which could be shaped for instance as a local small vertical protrusion. This friction connection keeps the flexible tongue in the displacement groove 40 during installation, or during production, packaging and transport, if the flexible tongue is integrated with the floor panel at the factory. FIG. 4b show that the friction connection 36 keeps one edge section ES connected while the other edge section ES′ moves along the edge. The length L′ in the inner position is in this embodiment larger than the length L in locked position.



FIG. 7
b shows a tongue blank 50 consisting of several flexible tongues 30 connected to each other. In this embodiment the flexible tongue 30 is made with moulding preferably injection moulding. Any type of polymer materials could be used such as PA (nylon), POM, PC, PP, PET or PE or similar having the properties described above in the different embodiments. These plastic materials could be reinforced with for instance glass fibre. A preferred material is glass fibre reinforced PA.



FIGS. 7
c-e show different embodiments made by injection moulding. With this production method a wide variety of complex three-dimensional shapes could be produced at low cost and the flexible tongues 30 could easily be connected to each other to form tongue blanks 50. Of course the flexible tongue 30 could be made from metal. FIG. 7e shows that the flexible tongue could be made of an extruded or machined plastic section which could be further shaped with for example punching to form a flexible tongue according to the invention. Materials such as plastic, metals preferably aluminum, wood based sheet material such as HDf and compact laminate could be used.



FIG. 7
f shows an embodiment which consist of two section 38 and 39 which are connected to each other. This will be explained more in connection to FIGS. 12d-f.


In general any shape which allows that a part of the tongue could bend in length direction and spring back in such a way that the projecting portion could be displaced with 0.1 mm or more, will be possible to use. Normally the displacement should be 1-3 mm but very small displacements of some 0.1 mm could be enough to form a vertical locking which prevent vertical movement especially in HDF material.



FIGS. 8
a-8d show schematically a production method to fix the flexible tongue to the displacement groove. In this embodiment the flexible tongue is mechanically fixed. Of course glue or mechanical devices can also be used. To simplified the understanding the panel 1′ is located with its front side up. The panel could also be turned with the rear side up. The tongue blanks 50 are moved trough a separation unit 51 which separates the flexible tongue 30 from the tongue blank 50. The flexible tongue 30 could than be moved to a lower level with a vertical device 55. This motion could also be combined with the separation. A pusher 54 moves the flexible tongue 30 into the displacement groove 40 and connects it with the friction connection 36. The flexible tongue is guided over the strip 6 between an upper 52 and lower 53 guiding devices. Vacuum could also be used to connect the flexible tongue 30 to the upper 52 guiding device during the horizontal displacement into the displacement groove 40. A lot of alternatives are possible within the main principles that the flexible tongue is separated from a tongue blank containing at least two connected flexible tongues and displaced essentially parallel to its width and/or length into the displacement groove 40 where it is fixed with a friction force.



FIGS. 9
a to 9f are examples which show that all known locking systems could be adjusted to vertical folding with a flexible tongue 30 according to the invention and that the flexible tongue 30 could be attached optionally to the strip or fold panel. In the embodiment of FIG. 9e, the strip 6 is not rigid enough to form a vertical contact surface. This could be solved by a tongue 10 and a groove 9 above the flexible tongue 330. Of course the vertical contact surface 6′could be a part of the tongue groove and the vertical locking surface 24 could be the projecting portion of the tongue as shown in FIG. 9e.



FIG. 10
a-b shows how a locking system could be designed to lock long side 4a to long side 4b with angling, short side 5a to short side 5b by vertical folding and/or angling and short side to long side with vertical folding or angling. FIGS. 10c-10d show how two panels A and B with mirror inverted locking systems could be locked to a floor with an advanced installation pattern. Panels 1-6 could be installed with angling. Panel 7 could be installed by angling the short side to the long side of pane 6. Panels 8-9 could be installed by angling. Panel 12 is installed by angling the short side. Panels 13-23 are installed by folding. Panels 24-26 are installed by angling and panels 27-34 by folding. Thanks to the flexible tongue 30 on the short side the whole floor could be installed with a simple angling action in spite of the fact that all panels are connected on all sides vertically and horizontally and all panels are connected long to long side and long to short side. This installation method could be used in connection with all types of flexible tongues and not only those embodiment that bend along the length direction. FIG. 10b show that the locking system could be locked with a pressure force F caused by the flexible tongue 30.



FIGS. 11
a-11d show how A and B panels with a flexible tongue could be installed and locked vertically D1 and horizontally D2 in a single or double herringbone pattern with only a simple angling action.



FIG. 12
a-c shows vertical folding installation with square panels. The flexible tongue 30 has several protruding parts P2. This embodiment could be used as an alternative to several separate flexible tongues when the length of the joint edge exceed for example 200 mm. The friction connection 36 could be located for example in a middle section.



FIG. 12
d-e shows an alternative way to displace the flexible tongue. The method could be combined with a flexible tongue according to FIG. 7f. The new panel 1′ is in angled position with an upper part of the joint edge in contact with the first panel 1″ in the first row. The first panel 1′, the fold panel, is than displaced towards the second panel 1 until the edges are essentially in contact and a part of the flexible tongue 30 is pressed into the displacement groove 40 as can be seen in the FIG. 12e. The new panel 1′ is than folded down towards the second panel 1. FIG. 12f show that the tongue could be on the folding panel. Since the displacement of the new panel 1′ presses an edge section of the flexible tongue 30 into the displacement groove 40, vertical folding will be possible to make with less resistance. Such an installation could be made with a flexible tongue that has a straight protruding part. The flexible tongue 30 does not have to bend in the length direction if it has a flexible device such as rubber that could be compressed. The bending could be replaced by a horizontal turning action where one edge section of the flexible tongue during locking is closer to the bottom 44 of the displacement groove 40 than another opposite edge section.



FIGS. 13
a-c shows how a known locking system, used in large volumes on the marked, could be converted to a vertical folding, preferably in two steps. The first step is to replace the traditional tongue 10 with a flexible tongue 30. In this embodiment the locking systems will be compatible which means that an old and new panel could be locked to each other. After a while when all products in the shops are sold, the groove 9 of the strip part could be adjusted.


Within the invention a lot of alternatives are possible to accomplish vertical folding with a flexible tongue.


A flexible tongue could be produced according to the same principle as known mechanical devices which create a spring effect similar to locking devices used in doors, windows, furniture, cars and mobile phones. The flexible tongue with these mechanical devices could be formed with dimensions suitable for 6-15 mm floorings, especially wood floorings, and inserted into the edge. FIG. 13d shows that the flexible tongue (30) could for example be mounted in a separate sliding section 56 made of plastic or metal or any other suitable material and containing a compressible or flexible rubber, metal or plastic component (57) or similar able to create the spring effect. This sliding section 56 could be connected into the edge of the floor panel in a holding groove 40′ which in this embodiment is rounded and has a shape similar to a part of a rotating saw blade. Since the holding groove 40′ only is formed in a part of the short side edge, it could be made rather deep and the edge will still have sufficient strength. A preferable feature of this embodiment is that the deepest part of the holding groove 40′ is only located in a part of the edge. Contrary to the other embodiments the holding groove 40′ is not parallel with the joint edge and does not cover the whole edge. Of course other shapes are possible and the parallel groove is not excluded.


Especially on long and wide floor panels rather complicated devices could be used since only 2-4 pieces are required per m2 of flooring. Even with a rather high unit price, the advantages with vertical folding are considerable and could overcome a rather high cost for the locking system. Due to the fact that the short sides are not sawn very often, metal components could also be used and these components could be formed in such a way that they are easy to remove from the floor panel if the short side edge must be sawn.


In floor panels with a width of about 20 cm a flexible tongue with a length of a few cm is enough if it is positioned in the middle part of the short side about 6-9 cm from the corner section.


The flexible tongue could also be made of one single component as described in the embodiment above and with a thickness of about 1 mm only and could be used to connect floorboards with a thickness down to 4 mm.


All features of the embodiment described above could be combined with each other or used separately. The flexible tongues could be combined with all shown displacement or holding grooves. The locking systems could be used in any shown joint or floor panel. The system according to FIG. 14 could for example be used in floor panels described in FIGS. 10a-d. The tongue as shown in FIG. 7f could also have a shape as shown I FIG. 7b and it could be made to bend in the length direction where this bending is partly supported by a flexible material 38. The locking strips could in all embodiments be made of a separate material or in one piece. Part of the strip 6 in FIG. 14 could be removed under the plastic component 56 to facilitate fixing to the joint.


The method to produce a separate tongue which is inserted into a groove could of course be used to save material and improve friction properties even if the tongue is not flexible or displaceable. The methods and principle could also be used together with a flexible tongue that could be bent in vertical direction up and/or down during locking.


The system could be used to connect tile shaped panes installed on a wall and. The tile could be connected to each other and to a locking member fixed to the wall.


Although only preferred embodiments are specifically illustrated and described herein, it will be appreciated that many modifications and variations of the present invention are possible in light of the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.

Claims
  • 1. A new floor panel comprising connectors which are integrated with the new floor panel and adapted to connect the new floor panel to essentially identical first and second floor panels, so that upper joint edges of said new and second floor panels in the connected state define a vertical plane, said connectors being designed to connect said new floor panel with said second floor panel in a horizontal direction perpendicular to said vertical plane and in a vertical direction parallel to the vertical plane,one of the connectors for making a vertical connection comprises a flexible tongue in a sliding groove in one of the new or second floor panels,the sliding groove is formed in an edge of the panel and is open towards the vertical plane,the flexible tongue has a length direction along a lengthwise direction of the joint edges, a width in the horizontal plane perpendicular to the length and a thickness in the vertical direction,the flexible tongue is designed to cooperate, in a connected state with a tongue groove of the other of the new or second floor panels,another one of the connectors for making a horizontal connection comprises a locking strip which projects from said vertical plane in the second panel and carries a locking element,said locking strip is designed to cooperate, in a connected state, with a downward open locking groove of the new floor panel,wherein the new floor panel is adapted to be locked to the first and second floor panels with vertical folding,the flexible tongue during the vertical folding is capable of being displaced two times in the sliding groove,a first displacement is effected by the vertical folding of the new floor panel whereby at least a part of the flexible tongue is capable of being bent in the horizontal direction,a second displacement of the flexible tongue towards its initial position is accomplished substantially by a spring effect caused by said bending of said flexible tongue,wherein the flexible tongue along its length has a middle section and two edge sections on both sides of the middle section and that the middle section could be displaced more than one of the edge sections.
  • 2. The floor panel as claimed in claim 1, wherein said flexible tongue has a projecting portion which in connected state is located outside the sliding groove and a groove portion in the sliding groove such that the size of said projecting portion and/or the groove portion varies along the length.
  • 3. The floor panel as claimed in claim 1, wherein said flexible tongue has a projecting portion which in connected state is located outside the sliding groove and a groove portion in the sliding groove such that the size of said projecting portion and/or the groove portion varies along the length.
  • 4. The floor panel as claimed in claim 1, wherein said flexible tongue has a projecting portion which in connected state is located outside the sliding groove and a groove portion in the sliding groove such that the size of said projecting portion and/or the groove portion varies along the length.
  • 5. The floor panel as claimed in claim 2, wherein the projecting portion is spaced from a corner section of the panel.
  • 6. The floor panel as claimed in claim 1, wherein the flexible tongue is made of moulded polymer material.
  • 7. The floor panel as claimed in claim 5, wherein the flexible tongue is made of moulded polymer material.
  • 8. The floor panel as claimed in claim 5, wherein the dimensions of the new and second panels are such that the locking element is partly in the locking groove when the first displacement starts.
  • 9. The floor panel as claimed in claim 8, wherein the flexible tongue is on the same edge as the locking strip.
  • 10. A floor panel comprising an edge portion presenting a sidewardly open groove, in which a tongue formed as a separate part is received, the tongue is bendable in a plane substantially parallel with a main plane of the floor panel, such that the tongue is resiliently displaceable in said plane, wherein the flexible tongue has a length direction along a lengthwise direction of the edge portion, a width in a horizontal plane perpendicular to the length and a thickness in a vertical direction,wherein the flexible tongue is adapted to bend such that it capable of displacing along its length direction, wherein the tongue's length direction is greater than its width direction.
  • 11. The floor panel of claim 10, wherein the tongue during a vertical folding is capable of being displaced two times in the sidewardly open groove, a first displacement is effected by the vertical folding of the floor panel whereby at least a part of the tongue is capable of being bent in the horizontal direction,a second displacement of the tongue towards its initial position is accomplished substantially by a spring effect caused by said bending of said tongue,wherein the tongue along its length has at least two sections and that the first or second displacement of one of the sections is larger than the first or second displacement of the other one of the sections.
  • 12. The floor panel as claimed in claim 11, wherein the flexible tongue along its length has a middle section and two edge sections on both sides of the middle section and that the middle section could be displaced more than one of the edge sections.
  • 13. The floor panel as claimed in claim 12, wherein said flexible tongue has a projecting portion which in connected state is located outside the sliding groove and a groove portion in the sliding groove such that the size of said projecting portion and/or the groove portion varies along the length.
US Referenced Citations (273)
Number Name Date Kind
213740 Conner Apr 1879 A
714987 Wolfe Dec 1902 A
753791 Fulghum Mar 1904 A
1124228 Houston Jan 1915 A
1194636 Joy Aug 1916 A
1371856 Cade Mar 1921 A
1407679 Ruthrauff Feb 1922 A
1454250 Parsons May 1923 A
1468288 Een Sep 1923 A
1477813 Daniels et al. Dec 1923 A
1510924 Daniels et al. Oct 1924 A
1540128 Houston Jun 1925 A
1575821 Daniels Mar 1926 A
1602256 Sellin Oct 1926 A
1602267 Karwisch Oct 1926 A
1615096 Meyers Jan 1927 A
1622103 Fulton Mar 1927 A
1622104 Fulton Mar 1927 A
1637634 Carter Aug 1927 A
1644710 Crooks Oct 1927 A
1660480 Daniels Feb 1928 A
1714738 Smith May 1929 A
1718702 Pfiester Jun 1929 A
1734826 Pick Nov 1929 A
1764331 Moratz Jun 1930 A
1778069 Fetz Oct 1930 A
1787027 Wasleff Dec 1930 A
1790178 Sutherland, Jr. Jan 1931 A
1809393 Rockwell Jun 1931 A
1823039 Gruner Sep 1931 A
1859667 Gruner May 1932 A
1898364 Gynn Feb 1933 A
1906411 Potvin May 1933 A
1929871 Jones Oct 1933 A
1940377 Storm Dec 1933 A
1953306 Moratz Apr 1934 A
1986739 Mitte Jan 1935 A
1988201 Hall Jan 1935 A
2026511 Storm Dec 1935 A
2044216 Klages Jun 1936 A
2266464 Kraft Dec 1941 A
2276071 Scull Mar 1942 A
2324628 Kähr Jul 1943 A
2398632 Frost et al. Apr 1946 A
2430200 Wilson Nov 1947 A
2495862 Osborn Jan 1950 A
2740167 Rowley Apr 1956 A
2780253 Joa Feb 1957 A
2851740 Baker Sep 1958 A
2865058 Andersson et al. Dec 1958 A
2894292 Gramelspacher Jul 1959 A
2947040 Schultz Aug 1960 A
3045294 Livezey, Jr. Jul 1962 A
3100556 De Ridder Aug 1963 A
3120083 Dahlberg et al. Feb 1964 A
3125138 Bolenbach Mar 1964 A
3182769 De Ridder May 1965 A
3200553 Frashour et al. Aug 1965 A
3203149 Soddy Aug 1965 A
3247638 Gay Apr 1966 A
3267630 Omholt Aug 1966 A
3282010 King, Jr. Nov 1966 A
3301147 Clayton et al. Jan 1967 A
3310919 Bue et al. Mar 1967 A
3347048 Brown et al. Oct 1967 A
3377931 Hilton Apr 1968 A
3387422 Wanzer Jun 1968 A
3460304 Braeuninger et al. Aug 1969 A
3481810 Waite Dec 1969 A
3508523 De Meerleer Apr 1970 A
3526420 Brancalcone Sep 1970 A
3538665 Gohner Nov 1970 A
3548559 Levine Dec 1970 A
3553919 Omholt Jan 1971 A
3555762 Constanzo, Jr. Jan 1971 A
3579941 Tibbals May 1971 A
3694983 Couquet Oct 1972 A
3714747 Curran Feb 1973 A
3731445 Hoffmann et al. May 1973 A
3759007 Thiele Sep 1973 A
3768846 Hensley et al. Oct 1973 A
3786608 Boettcher Jan 1974 A
3842562 Daigle Oct 1974 A
3857749 Yoshida Dec 1974 A
3859000 Webster Jan 1975 A
3902293 Witt et al. Sep 1975 A
3908053 Hettich Sep 1975 A
3936551 Elmendorf et al. Feb 1976 A
3988187 Witt et al. Oct 1976 A
4037377 Howell et al. Jul 1977 A
4084996 Wheeler Apr 1978 A
4090338 Bourgade May 1978 A
4099358 Compaan Jul 1978 A
4100710 Kowallik Jul 1978 A
4169688 Toshio Oct 1979 A
4227430 Jansson et al. Oct 1980 A
4242390 Nemeth Dec 1980 A
4299070 Oltmanns et al. Nov 1981 A
4304083 Anderson Dec 1981 A
4426820 Terbrack et al. Jan 1984 A
4471012 Maxwell Sep 1984 A
4489115 Layman et al. Dec 1984 A
4501102 Knowles Feb 1985 A
4561233 Harter et al. Dec 1985 A
4567706 Wendt Feb 1986 A
4612074 Smith et al. Sep 1986 A
4612745 Hovde Sep 1986 A
4641469 Wood Feb 1987 A
4643237 Rosa Feb 1987 A
4646494 Saarinen et al. Mar 1987 A
4648165 Whitehorne Mar 1987 A
4653242 Ezard Mar 1987 A
4703597 Eggemar Nov 1987 A
4715162 Brightwell Dec 1987 A
4716700 Hagemeyer Jan 1988 A
4738071 Ezard Apr 1988 A
4769963 Meyerson Sep 1988 A
4819932 Trotter, Jr. Apr 1989 A
4822440 Hsu et al. Apr 1989 A
4831806 Niese et al. May 1989 A
4845907 Meek Jul 1989 A
4905442 Daniels Mar 1990 A
5029425 Bogataj Jul 1991 A
5113632 Hanson May 1992 A
5117603 Weintraub Jun 1992 A
5148850 Urbanick Sep 1992 A
5165816 Parasin Nov 1992 A
5179812 Hill Jan 1993 A
5216861 Meyerson Jun 1993 A
5253464 Nilsen Oct 1993 A
5271564 Smith Dec 1993 A
5286545 Simmons, Jr. Feb 1994 A
5295341 Kajiwara Mar 1994 A
5349796 Meyerson Sep 1994 A
5390457 Sjölander Feb 1995 A
5433806 Pasquali et al. Jul 1995 A
5474831 Nystrom Dec 1995 A
5497589 Porter Mar 1996 A
5502939 Zadok et al. Apr 1996 A
5540025 Takehara et al. Jul 1996 A
5560569 Schmidt Oct 1996 A
5567497 Zegler et al. Oct 1996 A
5570554 Searer Nov 1996 A
5597024 Bolyard et al. Jan 1997 A
5613894 Delle Vedove Mar 1997 A
5618602 Nelson Apr 1997 A
5630304 Austin May 1997 A
5653099 MacKenzie Aug 1997 A
5671575 Wu Sep 1997 A
5695875 Larsson et al. Dec 1997 A
5706621 Pervan Jan 1998 A
5755068 Ormiston May 1998 A
5768850 Chen Jun 1998 A
5797237 Finkell, Jr. Aug 1998 A
5823240 Bolyard et al. Oct 1998 A
5827592 Van Gulik et al. Oct 1998 A
5860267 Pervan Jan 1999 A
5899038 Stroppiana May 1999 A
5900099 Sweet et al. May 1999 A
5925211 Rakauskas Jul 1999 A
5935668 Smith Aug 1999 A
5943239 Shamblin et al. Aug 1999 A
5968625 Hudson Oct 1999 A
5987839 Hamar et al. Nov 1999 A
6006486 Moriau et al. Dec 1999 A
6023907 Pervan Feb 2000 A
6029416 Andersson Feb 2000 A
6094882 Pervan Aug 2000 A
6101778 Martensson Aug 2000 A
6119423 Costantino Sep 2000 A
6134854 Stanchfield Oct 2000 A
6148884 Bolyard et al. Nov 2000 A
6173548 Hamar et al. Jan 2001 B1
6182410 Pervan Feb 2001 B1
6203653 Seidner Mar 2001 B1
6205639 Pervan Mar 2001 B1
6209278 Tychsen Apr 2001 B1
6216403 Belbeoc'h Apr 2001 B1
6216409 Roy et al. Apr 2001 B1
6247285 Mobeus Jun 2001 B1
6314701 Meyerson Nov 2001 B1
6324803 Pervan Dec 2001 B1
6332733 Hamberger et al. Dec 2001 B1
6339908 Chuang Jan 2002 B1
6345481 Nelson Feb 2002 B1
6363677 Chen et al. Apr 2002 B1
6385936 Schneider May 2002 B1
6397547 Martensson Jun 2002 B1
6421970 Martensson et al. Jul 2002 B1
6438919 Knauseder Aug 2002 B1
6446405 Pervan Sep 2002 B1
6490836 Moriau et al. Dec 2002 B1
6497079 Pletzer et al. Dec 2002 B1
6505452 Hannig et al. Jan 2003 B1
6510665 Pervan Jan 2003 B2
6516579 Pervan Feb 2003 B1
6526719 Pletzer et al. Mar 2003 B2
6532709 Pervan Mar 2003 B2
6536178 Palsson et al. Mar 2003 B1
6584747 Kettler et al. Jul 2003 B2
6601359 Olofsson Aug 2003 B2
6606834 Martensson et al. Aug 2003 B2
6647689 Pletzer et al. Nov 2003 B2
6647690 Martensson Nov 2003 B1
6670019 Andersson Dec 2003 B2
6672030 Schulte Jan 2004 B2
6684592 Martin Feb 2004 B2
6715253 Pervan Apr 2004 B2
6722809 Hamberger et al. Apr 2004 B2
6763643 Martensson Jul 2004 B1
6769219 Schwitte et al. Aug 2004 B2
6786019 Thiers Sep 2004 B2
6854235 Martensson Feb 2005 B2
6862857 Tychsen Mar 2005 B2
6874292 Moriau et al. Apr 2005 B2
6933043 Son et al. Aug 2005 B1
7003924 Kettler et al. Feb 2006 B2
7003925 Pervan Feb 2006 B2
7022189 Delle Vedove Apr 2006 B2
7040068 Moriau et al. May 2006 B2
20010029720 Pervan Oct 2001 A1
20020014047 Thiers Feb 2002 A1
20020020127 Thiers et al. Feb 2002 A1
20020031646 Chen et al. Mar 2002 A1
20020046528 Pervan et al. Apr 2002 A1
20020069611 Leopolder Jun 2002 A1
20020100231 Miller et al. Aug 2002 A1
20020112433 Pervan Aug 2002 A1
20020178673 Pervan Dec 2002 A1
20020178674 Pervan Dec 2002 A1
20020178682 Pervan Dec 2002 A1
20030009972 Pervan et al. Jan 2003 A1
20030024199 Pervan et al. Feb 2003 A1
20030033777 Thiers et al. Feb 2003 A1
20030033784 Pervan Feb 2003 A1
20030037504 Schwitte et al. Feb 2003 A1
20030041545 Stanchfield Mar 2003 A1
20030084636 Pervan May 2003 A1
20030101674 Pervan et al. Jun 2003 A1
20030115812 Pervan Jun 2003 A1
20030115821 Pervan Jun 2003 A1
20030196405 Pervan Oct 2003 A1
20030221387 Shah Dec 2003 A1
20030233809 Pervan Dec 2003 A1
20040016196 Pervan Jan 2004 A1
20040035078 Pervan Feb 2004 A1
20040035079 Evjen Feb 2004 A1
20040060255 Knauseder Apr 2004 A1
20040139678 Pervan Jul 2004 A1
20040177584 Pervan Sep 2004 A1
20040206036 Pervan Oct 2004 A1
20040241374 Thiers et al. Dec 2004 A1
20040255541 Thiers et al. Dec 2004 A1
20050102937 Pervan May 2005 A1
20050108970 Liu May 2005 A1
20050161468 Wagner Jul 2005 A1
20050193677 Vogel Sep 2005 A1
20050208255 Pervan Sep 2005 A1
20050235593 Hecht Oct 2005 A1
20050268570 Pervan Dec 2005 A2
20060048474 Pervan Mar 2006 A1
20060070333 Pervan Apr 2006 A1
20060073320 Pervan et al. Apr 2006 A1
20060075713 Pervan et al. Apr 2006 A1
20060101769 Pervan May 2006 A1
20060117696 Pervan Jun 2006 A1
20060179773 Pervan Aug 2006 A1
20060196139 Pervan Sep 2006 A1
20060236642 Pervan Oct 2006 A1
20060260254 Pervan Nov 2006 A1
20060283127 Pervan Dec 2006 A1
20070028547 Grafenauer et al. Feb 2007 A1
20070119110 Pervan May 2007 A1
Foreign Referenced Citations (215)
Number Date Country
218725 Dec 1961 AT
713628 Jan 1998 AU
200020703 Jun 2000 AU
417526 Sep 1936 BE
0557844 Jun 1957 BE
1010339 Jun 1998 BE
1010487 Oct 1998 BE
0991373 Jun 1976 CA
2226286 Dec 1997 CA
2252791 May 1999 CA
2289309 Jul 2000 CA
2 363 184 Jul 2001 CA
2456513 Feb 2003 CA
200949 Jan 1939 CH
211877 Jan 1941 CH
690242 Jun 2000 CH
1 212 275 Mar 1966 DE
7102476 Jan 1971 DE
1 534 278 Nov 1971 DE
2 159 042 Jun 1973 DE
2 205 232 Aug 1973 DE
7402354 Jan 1974 DE
2 238 660 Feb 1974 DE
2 252 643 May 1974 DE
2 502 992 Jul 1976 DE
2 616 077 Oct 1977 DE
2 917 025 Nov 1980 DE
30 41781 Jun 1982 DE
32 14 207 Nov 1982 DE
32 46 376 Jun 1984 DE
33 43 601 Jun 1985 DE
35 38 538 Oct 1985 DE
86 04 004 Jun 1986 DE
35 12 204 Oct 1986 DE
35 44 845 Jun 1987 DE
36 31 390 Dec 1987 DE
40 02 547 Aug 1991 DE
41 30 115 Sep 1991 DE
41 34 452 Apr 1993 DE
42 15 273 Nov 1993 DE
42 42 530 Jun 1994 DE
43 13 037 Aug 1994 DE
93 17 191 Mar 1995 DE
296 10 462 Oct 1996 DE
196 01 322 May 1997 DE
296 18 318 May 1997 DE
297 10 175 Sep 1997 DE
196 51 149 Jun 1998 DE
197 09 641 Sep 1998 DE
197 18 319 Nov 1998 DE
197 18 812 Nov 1998 DE
299 22 649 Apr 2000 DE
200 01 225 Aug 2000 DE
200 02 744 Sep 2000 DE
199 25 248 Dec 2000 DE
200 13 380 Dec 2000 DE
200 17 461 Mar 2001 DE
200 18 284 Mar 2001 DE
100 01 248 Jul 2001 DE
100 32 204 Jul 2001 DE
100 44 016 Mar 2002 DE
202 05 774 Aug 2002 DE
203 07 580 Jul 2003 DE
203 17 527 Jan 2004 DE
20 2004 001 038 May 2004 DE
20 2005 006 300 Aug 2005 DE
10 2004 054 368 May 2006 DE
0 248 127 Dec 1987 EP
0 487 925 Jun 1992 EP
0 623 724 Nov 1994 EP
0 652 340 May 1995 EP
0 665 347 Aug 1995 EP
0 690 185 Jan 1996 EP
0 698 162 Feb 1996 EP
0 843 763 May 1998 EP
0 849 416 Jun 1998 EP
0 855 482 Jul 1998 EP
0 877 130 Nov 1998 EP
0 958 441 Nov 1998 EP
0 661 135 Dec 1998 EP
0 903 451 Mar 1999 EP
0 969 163 Jan 2000 EP
0 969 163 Jan 2000 EP
0 969 164 Jan 2000 EP
0 969 164 Jan 2000 EP
0 974 713 Jan 2000 EP
0 976 889 Feb 2000 EP
1 048 423 Nov 2000 EP
1 120 515 Aug 2001 EP
1 146 182 Oct 2001 EP
1 165 906 Jan 2002 EP
1 223 265 Jul 2002 EP
1 251 219 Oct 2002 EP
1 262 609 Dec 2002 EP
1 317 983 Jun 2003 EP
1 338 344 Aug 2003 EP
843060 Aug 1984 FI
1 293 043 Apr 1962 FR
2 568 295 Jan 1986 FR
2 630 149 Oct 1989 FR
2 637 932 Apr 1990 FR
2 675 174 Oct 1992 FR
2 691 491 Nov 1993 FR
2 697 275 Apr 1994 FR
2 712 329 May 1995 FR
2 781 513 Jan 2000 FR
2 785 633 May 2000 FR
2 810 060 Dec 2001 FR
2 846 023 Apr 2004 FR
240629 Oct 1925 GB
424057 Feb 1935 GB
585205 Jan 1947 GB
599793 Mar 1948 GB
636423 Apr 1950 GB
812671 Apr 1959 GB
1127915 Oct 1968 GB
1171337 Nov 1969 GB
1237744 Jun 1971 GB
1275511 May 1972 GB
1394621 May 1975 GB
1430423 Mar 1976 GB
2117813 Oct 1983 GB
2126106 Mar 1984 GB
2243381 Oct 1991 GB
2256023 Nov 1992 GB
54-65528 May 1979 JP
57-119056 Jul 1982 JP
57-185110 Nov 1982 JP
59-186336 Nov 1984 JP
3-169967 Jul 1991 JP
4-106264 Apr 1992 JP
4-191001 Jul 1992 JP
05018028 Jan 1993 JP
5-148984 Jun 1993 JP
6-56310 May 1994 JP
6-146553 May 1994 JP
6-320510 Nov 1994 JP
7-076923 Mar 1995 JP
7-180333 Jul 1995 JP
7-300979 Nov 1995 JP
7-310426 Nov 1995 JP
8-109734 Apr 1996 JP
9-38906 Feb 1997 JP
9-88315 Mar 1997 JP
2000 179137 Jun 2000 JP
P2000 226932 Aug 2000 JP
2001 173213 Jun 2001 JP
2001 179710 Jul 2001 JP
2001 254503 Sep 2001 JP
2001 260107 Sep 2001 JP
P2001 329681 Nov 2001 JP
7601773 Aug 1976 NL
157871 Jul 1984 NO
305614 May 1995 NO
24931 Nov 1974 PL
372 051 May 1973 SE
450 141 Jun 1984 SE
501 014 Oct 1994 SE
502 994 Mar 1996 SE
506 254 Nov 1997 SE
509 059 Jun 1998 SE
509 060 Jun 1998 SE
512 290 Dec 1999 SE
512 313 Dec 1999 SE
0000200-6 Jul 2001 SE
363795 Nov 1973 SU
1680359 Sep 1991 SU
WO 8402155 Jun 1984 WO
WO 8703839 Jul 1987 WO
WO 9217657 Oct 1992 WO
WO 9313280 Jul 1993 WO
WO 9401628 Jan 1994 WO
WO 9426999 Nov 1994 WO
WO 9627719 Sep 1996 WO
WO 9627721 Sep 1996 WO
WO 9630177 Oct 1996 WO
9719232 May 1997 WO
WO 9747834 Dec 1997 WO
WO 9822677 May 1998 WO
WO 9824994 Jun 1998 WO
WO 9824995 Jun 1998 WO
WO 9838401 Sep 1998 WO
WO 9940273 Aug 1999 WO
WO 9966151 Dec 1999 WO
WO 9966152 Dec 1999 WO
WO 0006854 Jan 2000 WO
WO 0020705 Apr 2000 WO
WO 0020706 Apr 2000 WO
WO 0066856 Nov 2000 WO
0102669 Jan 2001 WO
0107729 Feb 2001 WO
0151733 Jul 2001 WO
WO 0166876 Sep 2001 WO
WO 0166877 Sep 2001 WO
WO 0175247 Oct 2001 WO
WO 0177461 Oct 2001 WO
0196688 Dec 2001 WO
0198603 Dec 2001 WO
WO 0198604 Dec 2001 WO
02055809 Jul 2002 WO
02055810 Jul 2002 WO
02060691 Aug 2002 WO
03016654 Feb 2003 WO
03070384 Aug 2003 WO
03078761 Sep 2003 WO
WO 03074814 Sep 2003 WO
03083234 Oct 2003 WO
WO 03083234 Oct 2003 WO
03099461 Dec 2003 WO
WO 2004083557 Sep 2004 WO
2005077625 Aug 2005 WO
2005110677 Nov 2005 WO
2006008578 Jan 2006 WO
2006111437 Oct 2006 WO
2006113757 Oct 2006 WO
Related Publications (1)
Number Date Country
20060101769 A1 May 2006 US