Mechanical locking system for panels and method of installing same

Information

  • Patent Grant
  • 7841145
  • Patent Number
    7,841,145
  • Date Filed
    Friday, August 10, 2007
    17 years ago
  • Date Issued
    Tuesday, November 30, 2010
    14 years ago
Abstract
Floor panels are provided with a mechanical locking system including a flexible locking element in a locking groove, which during a horizontal motion is displaced vertically.
Description
TECHNICAL FIELD

The invention generally relates to the field of mechanical locking systems for floor panels and building panels.


FIELD OF APPLICATION OF THE INVENTION

The present invention is particularly suitable for use in floating floors, which are formed of floor panels which are joined mechanically with a locking system integrated with the floor panel, i.e., mounted at the factory, are made up of one or more upper layers of veneer, decorative laminate or decorative plastic material, an intermediate core of wood-fiber-based material or plastic material and preferably a lower balancing layer on the rear side of the core. The following description of known techniques, problems of known systems and objects and features of the invention will therefore, as a non-restrictive example, be aimed above all at this field of application and in particular laminate flooring formed as rectangular floor panels with long and short sides intended to be mechanically joined on both long and short sides. The long and short sides are mainly used to simplify the description of the invention. The panels could be square. It should be emphasized that the invention can be used in any panel and it could be combined with all types of known locking systems, where the floor panels are intended to be joined using a mechanical locking system connecting the panels in the horizontal and vertical directions on at least two adjacent sides. The invention can thus also be applicable to, for instance, solid wooden floors, parquet floors with a core of wood or wood-fibre-based material and a surface of wood or wood veneer and the like, floors with a printed and preferably also varnished surface, floors with a surface layer of plastic or cork, linoleum, rubber. Even floors with hard surfaces such as stone, tile and similar are included and floorings with soft wear layer, for instance needle felt glued to a board. The invention can also be used for joining building panels which preferably contain a board material for instance wall panels, ceilings, furniture components and similar.


BACKGROUND OF THE INVENTION

Laminate flooring usually comprises a core of a 6-12 mm fibre board, a 0.2-0.8 mm thick upper decorative surface layer of laminate and a 0.1-0.6 mm thick lower balancing layer of laminate, plastic, paper or like material. A laminate surface comprises melamine impregnated paper. The most common core material is fibreboard with high density and good stability usually called HDF—High Density Fibreboard. Sometimes also MDF—Medium Density Fibreboard—is used as core.


Traditional laminate floor panels of this type have been joined by means of glued tongue-and-groove joints.


In addition to such traditional floors, floor panels have been developed which do not require the use of glue and instead are joined mechanically by means of so-called mechanical locking systems. These systems comprise locking systems, which lock the panels horizontally and vertically. The mechanical locking systems are usually formed by machining of the core of the panel. Alternatively, parts of the locking system can be formed of a separate material, for instance aluminium or HDF, which is integrated with the floor panel, i.e., joined with the floor panel in connection with the manufacture thereof.


The main advantages of floating floors with mechanical locking systems are that they are easy to install. They can also easily be taken up again and used once more at a different location.


Definition of Some Terms

In the following text, the visible surface of the installed floor panel is called “front side”, while the opposite side of the floor panel, facing the sub floor, is called “rear side”. The edge between the front and rear side is called “joint edge”. By “horizontal plane” is meant a plane, which extends parallel to the outer part of the surface layer. Immediately juxtaposed upper parts of two adjacent joint edges of two joined floor panels together define a “vertical plane” perpendicular to the horizontal plane.


By “locking systems” are meant co-acting connectors which connect the floor panels vertically and/or horizontally. By “mechanical locking system” is meant that joining can take place without glue. Mechanical locking systems can in many cases also be joined by gluing. By “integrated with” means formed in one piece with the panel or a separate material factory connected to the panel.


Known Techniques and Problems Thereof

For mechanical joining of long sides as well as short sides in the vertical and horizontal direction (direction D1, D2) several methods could be used. One of the most used methods is the angle-snap method. The long sides are installed by angling. The panel is than displaced in locked position along the long side. The short sides are locked by horizontal snapping as shown in FIGS. 1a-1c. The vertical connection is a tongue 10 and a groove 9 during the horizontal displacement, a strip 6 with a locking element 8 is bent and when the edges are in contact, the strip springs back and a locking element 8 enters a locking groove 14 and locks the panels horizontally. The vertical displacement of the locking element during the snapping action is caused by the bending of the strip. Such a snap connection is complicated since a hammer and a tapping block is frequently used to overcome the friction between the long edges and to bend the strip during the snapping action. The friction on the long side could be reduced and the panels could be displaced without tools. The snapping resistance is however considerable, especially in locking systems made in one piece with the core. Wood based materials are generally difficult to bend. Cracks in the panel may occur during snapping and the locking element must be rather small in the vertical direction in order to allow snapping.


It is known that a snap system could have a separate plastic strip 6′, integrated with the panel and with a resilient part as shown in FIGS. 1d-1f. Such a locking system could be locked with less resistance than the traditional one-piece snap system. This locking system has however several disadvantages. The plastic strip is used to replace both the tongue and the strip with a locking element. The material cost is therefore high and the locking system is generally not compatible with the locking system used in old panels. The groove 9 is difficult to produce since it must have a locking element 8′. In fact 4 locking elements, two flexible locking elements on the strip and two (8,8′) in the panel, must be used to lock in the horizontal direction. It is difficult to fix the plastic strip over the whole length of the short side. This means that corner portions will not have any tongue and this could cause problems in some applications.


SUMMARY AND OBJECTS

A first overall objective is to provide a locking system, which could be locked by horizontal snapping and with less snapping resistance than the known systems. The costs and functions should be favourable compared to known technology. An aspect of the overall objective is to improve the function and costs of those parts of the locking system that locks in the horizontal direction when panels are pushed against each other.


More specifically an object is to provide a snap locking system where one or several of the following advantages are obtained.


The floor panel should preferably be possible to displace and lock with such a low force that no tools will be needed.


The locking function should be reliable and the vertical and horizontal locking should be strong and prevent that two locked panels will move when humidity is changing or when people walk on a floor.


The locking system should be able to lock floor panels vertically with high precision so that the surfaces are essentially in the same plane.


The locking system should be designed in such a way that the material and production costs could be low.


Another objective is to provide a snap locking system which could be compatible with traditional locking systems.


According to a first embodiment, a flooring system is provided, comprising a plurality of rectangular floor panels with long and short edges, which are mechanically connectable to each other along one pair of adjacent edges. The floor panels are provided with tongue and groove formed in one piece with the panels for mechanically locking together said one pair of adjacent edges at right angles to the principal plane of the panels, thereby forming a vertical mechanical connection between the panels. The panels are provided with a first locking element at one first edge formed in one piece with the panel and a locking groove at an opposite adjacent second edge, the locking groove being open towards a rear side or a front side of the panel. Each panel is provided with a second locking element, formed of a separate material and connected to the locking groove. The first and second locking elements form a mechanical connection locking the panels to each other horizontally parallel to the principal plane and at right angles to the joint edges. The second locking element is flexible and resilient such that two panels, can be mechanically joined by displacement of said two panels horizontally towards each other, while at least a part of the second locking element at said second edges is resiliently displaced vertically, until said adjacent edges of the two panels are brought into engagement with each other horizontally and the second locking element at said second edge is displaced towards its initial position against the first locking element at the first edge.


Although it is an advantage to integrate the flexible locking element with the panel at the factory, the invention does not exclude an embodiment in which flexible locking elements are delivered as separate components to be connected to the panel by the installer prior to installation.


The embodiment allows horizontal and vertical locking of all sides of floor panels with for instance an angling of the long sides, a simple horizontal displacement along the long sides and snapping of the short sides. In this preferred embodiment the flexible locking element is on the short sides. It could be on the long side or on the long and short sides.


The invention is especially suited for use in floor panels, which are difficult to snap for example because they have a core, which is not flexible, or strong enough to form a strong snap locking system. The invention is also suitable for wide floor panels, for example with a width larger than 20 cm, where the high snapping resistance is a major disadvantage during installation, in panels where parts of the locking system is made of a material with high friction, such as wood and in locking systems which are produced with tight fit or without play or even with pretension. Especially panels with such pretension where the locking strip is bent in locked position and presses the panels together are very difficult to displace and snap. A locking system that reduces the snapping resistance will decrease the installation time of such panels considerably.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1
a-f illustrate known systems.



FIGS. 2
a-b Illustrate two embodiments of the invention



FIGS. 3
a-c illustrate in several steps mechanical joining of floor panels according to an embodiment of the invention.



FIGS. 4
a-d illustrate in several steps mechanical locking and unlocking of floor panels according to an embodiment of the invention.



FIGS. 5
a-c illustrate in several steps mechanical locking of floor panels according to another embodiment of the invention.



FIGS. 6
a-e show embodiments of the invention.



FIGS. 7
a-h show different embodiments of a flexible locking element.



FIGS. 8
a-8c show locking systems on long and short sides according to embodiments of the invention.



FIGS. 9
a-i show how known locking systems could be converted to a locking system according to an embodiment of the invention.



FIGS. 10
a-d show how the flexible locking element could be used as a flexible tongue enabling a vertical connection according to embodiments of the invention.





DESCRIPTION OF EMBODIMENTS OF THE INVENTION

To facilitate understanding, several locking systems in the figures are shown schematically. It should be emphasised that improved or different functions can be achieved using combinations of the preferred embodiments. The inventor has tested all known and especially all commercially used locking systems on the market in all types of floor panels, especially laminate and wood floorings and the conclusion is that at least all these known locking systems which have one or more locking elements cooperating with locking grooves could be adjusted to a system with one or more flexible locking elements according to the invention. Most of them could easily be adjusted in such a way that they will be compatible with the present systems. Several flexible locking elements could be located in both adjacent edges, one over the other or side-by-side. The flexible locking element could be on long and/or short sides and one side with a flexible locking element could be combined with an other side which could have all known locking systems, preferably locking systems which could be locked by angling or a vertical movement. The invention does not exclude floor panels with flexible locking elements on for example a long and a short side. Such panels could be installed by the known snap—snap installation methods. A preferred embodiment is a floorboard with a surface layer of laminate, a core of HDF and a locking system with a flexible locking element on the short side allowing easy snapping combined with a one piece mechanical locking system on long side which could be locked by angling. The long side locking system could have a small play of some 0.01 mm between at least some surfaces which are active in the vertical or horizontal locking such as tongue/groove and or locking element/locking groove. This small play facilitates displacement. Such a floorboard will be very easy to install with angling and snapping. Angles, dimensions, rounded parts etc are only examples and could be adjusted within the principles of the invention.


A first preferred embodiment of a floor panel 1, 1′ provided with a mechanical locking system according to the invention is now described with reference to FIGS. 2a-2b.



FIG. 2
a illustrates schematically a cross-section of a joint preferably between a short side joint edge 5a of a panel 1 and an opposite short side joint edge 5b of a second panel 1′.


The front sides 61 of the panels are essentially positioned in a common horizontal plane HP, and the upper parts of the joint edges 5a, 5b abut against each other in a vertical plane VP. The mechanical locking system provides locking of the panels relative to each other in the vertical direction D1 as well as the horizontal direction D2.


To provide joining of the two joint edges in the D1 and D2 directions, the edges of the floor panel have a locking strip 6 with a first locking element 8, and a groove 9 made in one piece with the panel in one joint edge 5a and a tongue 10 made in one piece with the panel at an opposite edge 5b. The tongue 10 and the groove 9 and provide the vertical locking D1.


The mechanical locking system comprises a separate flexible second locking element 15 connected into a locking groove 14 formed in the opposite edge 5b of the panel. Parts of the flexible locking element could bend in the length direction and could be displaced in the locking groove. The flexible locking element 15 has a groove portion P1 that is located in the locking groove 14 and a projecting portion P2 projecting outside the locking groove 14. The projecting portion P2 of the second flexible locking element 15, made of a separate material, in one of the joint edges cooperates with a first locking element 8 made in one piece with the panel and formed in the other joint edge.


In this embodiment, the panel 1 could for example have a body or core 60 of wood-fibre-based material such as HDF, plywood or solid wood. The panels 1, 1′ could also be made of stone, metal or ceramic materials. These materials are not flexible. The tongue 10 and/or the strip 6 with the locking element 8 could also be made of a separate material connected to the panel.


The flexible locking element 15 has a protruding part P2 with a rounded outer part 31 and a sliding surface 32 which in this embodiment is formed like a bevel.


The first locking element 8 has a first locking surface 20 which cooperates with a second locking surface 22 of the second flexible locking element 15 and locks the joint edges 5a, 5b in a horizontal direction D2. In this embodiment, the locking surfaces 20, 22 are slightly angled (A) against the vertical plane VP. The second locking element 15 will therefore lock as a wedge and tolerances could be eliminated with vertical pre-tension caused by the vertical flexibility of the second flexible locking element.



FIG. 2
b shows another embodiment. The inner part P1 of the flexible locking element 15 is fixed in the locking groove 14 and the protruding part P2 could flex vertically towards the locking groove 14 and the inner part P1 and back again towards the first locking element. In this embodiment the bending of the protruding part P2 takes place around a center point CP. The locking surfaces 20, 22 are formed such that they meet each other when the protruding part P2 snaps back towards its initial position.



FIGS. 3
a-3c show how the flexible locking element 15 is displaced in the locking groove 14. The flexible locking element 15 is displaced vertically when the displacement surface 32 presses against the bevelled part of the first locking element 8 as shown in FIG. 3a. When the top edges of the panels 1, 1′ are in contact or in the intended locked position, the flexible locking element 15 springs back and locks to the first locking element 8 as shown in FIG. 3c.



FIGS. 4
a-4c show that a locking system with a flexible locking element 15 could also be locked and unlocked with angling. FIG. 4d shows that a locking system with a flexible locking element could be unlocked with a needle shaped tool 16, which is inserted along the joint edge to push back the flexible locking element 15 and to unlock the locking system. Such an unlocking could be used to unlock panels which are installed in a herringbone pattern long side to short side with angling of short sides and snapping of short sides to long side.



FIGS. 5
a-5c show locking according to the embodiment in FIG. 2b. It is an advantage if the tip 11 of the tongue 10 is partly in the groove 9 when the sliding surface 32 is in contact with the locking element 8. This facilitates snapping and installation of the panels.



FIGS. 6
a-6e show different embodiments of the invention. FIG. 6a shows a system with two tongues 10, 10′ and with a locking groove 14 open towards the front side. FIG. 6b shows a system with the locking groove partly in the part of the tongue 10 which is outside the vertical plane VP. FIGS. 6c and 6d are similar to 6a but these systems have only one tongue. FIG. 6e shows an embodiment according to FIG. 2b but with the locking groove open towards the front side. In this embodiment the floor panel is a parquet floor with a surface layer of wood and a lamella core. The flexible locking element 15 has a protrusion 36 to increase the friction between the flexible locking element 15 and the locking groove 14.


The flexible locking element 15 should preferably be connected to the locking groove with high precision, especially when parts of the flexible locking element 15 are displaced in the locking groove 14 during locking. Depending on the compressibility and friction between the flexible locking element and the locking groove, the flexible locking element as whole or different parts could be connected with a small play, for example 0.01-0.10 mm, a precise fit or a pretension. Wax or other friction reducing materials or chemicals could be applied in the locking groove and/or between the locking elements.


Even with a play, a precise fit between the upper joint edges could be accomplished. The protruding part P2 could be formed to press against the locking surface 20 of the locking element 8. For example the protruding part P2 could be formed with a small angle to the vertical plane VP. The protruding part P2 of the flexible tongue will tilt and press the edges together. The flexible locking element 15 could be formed to cause a permanent pressure force vertically in the locked position. This means that the flexible locking element 15 will only partly spring back to the initial position. The flexible locking element could optionally be designed with such dimensions that after locking it will move slightly towards its initial position. Gradually a perfect connection will be accomplished.



FIGS. 7
a-7h shows different embodiments of the flexible locking element 15. In FIG. 7a the flexible locking element 15 is moulded and has on one of the edge sections ES a friction connection 36 which could be shaped for instance as a local small protrusion. This friction connection keeps the flexible locking element in the locking groove 14 during installation, or during production, packaging and transport, if the flexible locking element is integrated with the floor panel at the factory. In FIG. 7b the flexible locking element 15 is an extruded plastic section.



FIG. 7
c shows a blank 50 consisting of several flexible locking elements 15 connected to each other. In this embodiment the flexible locking element 15 is made with moulding, preferably injection moulding.


Any type of polymer materials could be used to produce the flexible locking elements such as PA (nylon), POM, PC, PP, PET or PE or similar materials having the properties described above in the different embodiments. These plastic materials could be reinforced with for instance glass fibre. A preferred material is glass fiber reinforced PA.



FIGS. 7
d and 7e show a flexible locking element 15 with a length L, middle section MS and edge sections ES. This flexible locking element could bend in the length direction and the protruding part P2 could be displaced vertically in the locking groove if a force F is applied to the protruding part P2. FIG. 7f shows a double tongue 15. FIG. 7g shows an extruded section with a resilient punched inner part P1. FIG. 7h shows a flexible tongue 15 with protruding parts P2 at the edge sections ES.


With these production methods and basic principles a wide variety of complex two and three-dimensional shapes could be produced at low cost. Of course the flexible locking element 15 could be made from metal, preferably aluminium, but wood based sheet material such as HDF and compact laminate could also be used to form flexible locking elements with machining and punching and in combination with for example flexible rubber materials or similar.



FIGS. 8
a-8c show how the flexible locking element 15 is connected to a groove 14 at a short side 5a of a floor panel. FIG. 8a shows an embodiment with a flexible tongue as shown in FIG. 7b and FIG. 8b shows an embodiment according to FIG. 7a. FIG. 8c shows a floor panel with a flexible locking element on the short sides 5a, 5b and an angling system C, D on the long sides 4a, 4b. Of course the long sides can also have one or several flexible locking elements. The flexible locking element 15 has in this embodiment a length L that is smaller than the width FL of the floor panel. As a non-restricting example it could be mentioned that sufficient locking strength could be achieved with a flexible locking element with a length L which is smaller than 0.8 times the floor width FW. Even a length L of 0.5 times FW could be sufficient. Such a flexible locking element could have a weight of about 1 gram and the material cost could be considerably lower than for other known technologies where separate materials are used. It is also very easy to connect to the locking element since it is not very important that the flexible locking element is connected at a precise distance from the corner portions 23. A further advantage is that the tongue 10 extends along essentially the whole short side as in traditional floor panels. This gives a strong vertical connection especially at the corner portions 23. Of course the flexible locking element could cover essentially the whole width FW.


The flexible locking element could be connected to the locking groove in several ways. A preferable method is that the flexible locking element is mechanically fixed. Of course glue or mechanical devices can also be used. To simplify the understanding the panel is located with its rear side up and the flexible locking element is on the short side. The panel could also be turned with the front side up. The flexible locking element is separated from blanks 50, if it is moulded, or from rolls if is extruded. It is then pressed or rolled into the locking groove when a short side of the panel is displaced under a fixing unit and the locking element is connected with friction. A lot of alternatives are possible within the main principles that the flexible locking element is separated and fixed with a friction force.



FIGS. 9
a to 9i are examples which show that known locking systems, especially traditional snap systems with a bendable strip (9a-9c or 9g-9i) or lip 69d-9f) could be adjusted to a snap system with a flexible locking element 15 according to the invention. Generally only a simple adjustment of the locking groove is necessary. It could be made in the same machine and with the same number of cutting tools.



FIGS. 10
a-10d show that the principles used in a locking system with a flexible locking element could also be used to replace the tongue 10 with a flexible tongue 30 in order to provide a locking system, which could be locked by vertical folding. One panel 1′ could be moved along the vertical plane VP vertically towards another panel 1. The flexible tongue 30 is in this case displaced horizontally according to the same principles as described for the flexible locking element and all embodiments of the flexible locking element could be used. Of course the flexible locking element could be combined with a flexible tongue. Such a locking system could be locked with angling, snapping and vertical folding. FIG. 10d shows that it is an advantage if the flexible tongue 30 on a short side is positioned between the upper and lower parts of the tongue 10′ and groove 9′ on the long sides. This gives a stronger locking at the corner portions.


Within the invention a lot of alternatives are possible to accomplish snapping with a flexible locking element.


All features of the embodiment described above could be combined with each other or used separately. They could be used on long and/or short sides. The method to produce a separate locking element, which is inserted into a groove, could of course be used to improve friction properties and strength even if the locking element is not flexible or displaceable in the vertical direction. The methods and principles could also be used together with a flexible tongue that could be bent in horizontal direction during locking. The flexible locking element could also be combined with a strip 6 or lip which is partly bent during snapping. The degree of such a bending could be considerable smaller than in present known systems.


The system could be used to connect tile shaped panels installed on a wall. The tiles could be connected to each other and to a locking member fixed to the wall.


It will be apparent to those skilled in the art that various modifications and variations of the present invention can be made without departing from the spirit and scope of the invention. Thus, it is intended that the present invention include the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A method for disconnecting a first floor panel connected to an adjacent floor panel by a first connection device and a second connection device, the floor panels extending in a planar direction, the second connection device preventing separation of the floor panels in the planar direction and comprising: (i) on the adjacent floor panel, a locking strip with a first locking element and a space adjacent to the first locking element,(ii) on the first floor panel, a displacement groove, and(iii) a displaceable second locking element occupying partially the displacement groove, which displaceable second locking element is biased so that a portion of the displaceable second locking element occupies partially the space, the second locking element cooperating with the first locking element to obtain a horizontal connection in the planar direction,wherein the method comprises: inserting a tool into the space so as to move the displaceable second locking element from the space into the displacement groove, wherein the direction of the movement is vertical, perpendicular to the planar direction.
  • 2. A method as claimed in claim 1, wherein the method further comprises the step of angling up the first floor panel.
  • 3. A method as claimed in claim 1, wherein the method comprises the step of inserting the tool from a corner section.
  • 4. A method as claimed in claim 2, wherein the method comprises the step of inserting the tool from a corner section.
  • 5. The method of claim 1, wherein the displaceable second locking element is moved from the space completely into the displacement groove.
  • 6. The method of claim 1, wherein the opening of the displacement groove faces a direction which is substantially perpendicular to a front side of the first floor panel.
  • 7. The method of claim 1, wherein the tool is a needle shaped tool.
  • 8. The method of claim 1, wherein the displaceable second locking element is moved against the bias from the space into the displacement groove.
  • 9. The method of claim 1, wherein the second locking element is in direct contact with the first locking element to obtain the horizontal connection in the planar direction.
  • 10. A method for disconnecting a first floor panel connected to an adjacent floor panel by a first connection device and a second connection device, the floor panels extending in a planar direction, the second connection device preventing separation of the floor panels in the planar direction and comprising: (i) on the adjacent floor panel, a locking strip with a first locking element and a space adjacent to the first locking element,(ii) on the first floor panel, a displacement groove, and(iii) a displaceable second locking element occupying partially the displacement groove, which displaceable second locking element is biased so that a portion of the displaceable second locking element occupies partially the space, the second locking element cooperating with the first locking element to obtain a horizontal connection in the planar direction,wherein the method comprises:inserting a tool into the space so as to move the displaceable second locking element from the space into the displacement groove, wherein the direction of the movement is vertical, perpendicular to the planar direction,wherein the method further comprises the step of displacing the first floor panel in the planar direction by moving the connected panels apart.
  • 11. The method as claimed in claim 10, wherein the method comprises the step of inserting the tool from a corner section.
  • 12. The method as claimed in claim 11, wherein the method comprises the step of inserting the tool from a corner section.
  • 13. The method of claim 10, wherein the displaceable second locking element is moved from the space completely into the displacement groove.
  • 14. The method of claim 10, wherein the opening of the displacement groove faces a direction which is substantially perpendicular to a front side of the first floor panel.
  • 15. The method of claim 10, wherein the tool is a needle shaped tool.
  • 16. The method of claim 10, wherein the displaceable second locking element is moved against the bias from the space into the displacement groove.
  • 17. The method of claim 10, wherein the second locking element is in direct contact with the first locking element to obtain the horizontal connection in the planar direction.
Priority Claims (1)
Number Date Country Kind
04025167 Oct 2004 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. Ser. No. 11/092,748, filed on Mar. 30, 2005, U.S. Ser. No. 11/575,600, filed on Mar. 20, 2007, which is a national stage application of PCT/SE2005/001586 and U.S. Ser. No. 11/577,628, filed on Apr. 1, 2007, which is a national stage application of PCT/SE2005/001586. The entire contents of U.S. Ser. No. 11/092,748, U.S. Ser. No. 11/575,600 and U.S. Ser. No. 11/577,628 are hereby incorporated herein by reference.

US Referenced Citations (153)
Number Name Date Kind
124228 Stuart Mar 1872 A
1194636 Joy Aug 1916 A
1723306 Sipe Aug 1929 A
1743492 Sipe Jan 1930 A
1787027 Wasleff Dec 1930 A
1809393 Rockwell Jun 1932 A
1902716 Newton Mar 1933 A
1925070 Livezey Aug 1933 A
1995264 Mason Mar 1935 A
2015813 Nielsen Oct 1935 A
2026511 Storm Dec 1935 A
2088238 Greenway Jul 1937 A
2089075 Siebs Aug 1937 A
2204675 Grunert Sep 1937 A
2303745 Karreman Dec 1942 A
2596280 Nystrom May 1952 A
2732706 Friedman Jan 1956 A
2740167 Rowley Apr 1956 A
2865058 Andersson Dec 1958 A
3023681 Worson Mar 1962 A
3077703 Bergstrom Feb 1963 A
3325585 Brenneman Jun 1967 A
3378958 Parks et al. Apr 1968 A
3436888 Ottosson Apr 1969 A
3512324 Reed May 1970 A
3517927 Kennel Jun 1970 A
3526071 Watanabe Sep 1970 A
3535844 Glaros Oct 1970 A
3554850 Kuhle Jan 1971 A
3572224 Perry Mar 1971 A
3579941 Tibbals May 1971 A
3720027 Christensen Mar 1973 A
3742669 Mansfeld Jul 1973 A
3760547 Brenneman Sep 1973 A
3849235 Gwynne Nov 1974 A
3919820 Green Nov 1975 A
4082129 Morelock Apr 1978 A
4100710 Kowallik Jul 1978 A
4107892 Bellem Aug 1978 A
4113399 Hansen, Sr. et al. Sep 1978 A
4196554 Anderson Apr 1980 A
4227430 Janssen Oct 1980 A
4299070 Oltmanns Nov 1981 A
4304083 Anderson Dec 1981 A
4426820 Terbrack Jan 1984 A
4512131 Laramore Apr 1985 A
4599841 Haid Jul 1986 A
4648165 Whitehorne Mar 1987 A
5007222 Raymond Apr 1991 A
5148850 Urbanick Sep 1992 A
5182892 Chase Feb 1993 A
5247773 Weir Sep 1993 A
5344700 McGath et al. Sep 1994 A
5349796 Meyerson Sep 1994 A
5465546 Buse Nov 1995 A
5548937 Shimonohara Aug 1996 A
5598682 Haughian Feb 1997 A
5618602 Nelson Apr 1997 A
5634309 Polen Jun 1997 A
5694730 Del Rincon et al. Dec 1997 A
5755068 Ormiston May 1998 A
5899038 Stropiana May 1999 A
5950389 Porter Sep 1999 A
6006486 Moriau Dec 1999 A
6052960 Yonemura Apr 2000 A
6065262 Motta May 2000 A
6173548 Hamar et al. Jan 2001 B1
6182410 Pervan Feb 2001 B1
6216409 Roy et al. Apr 2001 B1
6314701 Meyerson Nov 2001 B1
6363677 Chen et al. Apr 2002 B1
6385936 Schneider May 2002 B1
6418683 Martensson et al. Jul 2002 B1
6446413 Gruber Sep 2002 B1
6490836 Moriau Dec 2002 B1
6505452 Hannig et al. Jan 2003 B1
6536178 Pålsson et al. Mar 2003 B1
6553724 Bigler Apr 2003 B1
6591568 Pålsson Jul 2003 B1
6601359 Olofsson Aug 2003 B2
6647689 Pletzer Nov 2003 B2
6647690 Martensson Nov 2003 B1
6679011 Beck et al. Jan 2004 B2
6711869 Tychsen Mar 2004 B2
6729091 Martensson May 2004 B1
6763643 Martensson Jul 2004 B1
6769219 Schwitte et al. Aug 2004 B2
6851237 Niese et al. Feb 2005 B2
6854235 Martensson Feb 2005 B2
6865855 Knauseder Mar 2005 B2
6880307 Schwitte et al. Apr 2005 B2
7040068 Moriau et al. May 2006 B2
7051486 Pervan May 2006 B2
D528671 Grafenauer Sep 2006 S
7251916 Konzelmann et al. Aug 2007 B2
7275350 Pervan Oct 2007 B2
7328536 Moriau et al. Feb 2008 B2
7377081 Ruhdorfer May 2008 B2
7568322 Pervan Aug 2009 B2
7584583 Bergelin et al. Sep 2009 B2
7614197 Nelson Nov 2009 B2
20020031646 Chen et al. Mar 2002 A1
20020056245 Thiers May 2002 A1
20020083673 Kettler et al. Jul 2002 A1
20020092263 Schulte Jul 2002 A1
20020112429 Niese et al. Aug 2002 A1
20020170257 McLain et al. Nov 2002 A1
20020178674 Pervan Dec 2002 A1
20030009971 Palmberg Jan 2003 A1
20030024199 Pervan et al. Feb 2003 A1
20030024200 Moriau et al. Feb 2003 A1
20030037504 Schwitte et al. Feb 2003 A1
20030101674 Pervan et al. Jun 2003 A1
20030101681 Tychsen Jun 2003 A1
20030180091 Stridsman Sep 2003 A1
20030188504 Ralf Oct 2003 A1
20030196397 Niese et al. Oct 2003 A1
20030196405 Pervan Oct 2003 A1
20040031227 Knauseder Feb 2004 A1
20040060255 Knauseder Apr 2004 A1
20040068954 Martensson Apr 2004 A1
20040139678 Pervan Jul 2004 A1
20040168392 Konzelmann et al. Sep 2004 A1
20040182036 Sjoberg et al. Sep 2004 A1
20040200175 Weber Oct 2004 A1
20040211143 Hanning Oct 2004 A1
20040261348 Vulin Dec 2004 A1
20050193677 Vogel Sep 2005 A1
20050210810 Pervan Sep 2005 A1
20050235593 Hecht Oct 2005 A1
20050252130 Martensson Nov 2005 A1
20060032168 Thiers et al. Feb 2006 A1
20060070333 Pervan Apr 2006 A1
20060101769 Pervan et al. May 2006 A1
20060236642 Pervan Oct 2006 A1
20060260254 Pervan Nov 2006 A1
20070006543 Engstrom Jan 2007 A1
20070028547 Grafenauer Feb 2007 A1
20070151189 Yang Jul 2007 A1
20070193178 Groeke et al. Aug 2007 A1
20080000179 Pervan et al. Jan 2008 A1
20080000186 Pervan Jan 2008 A1
20080010931 Pervan Jan 2008 A1
20080010937 Pervan Jan 2008 A1
20080028707 Pervan Feb 2008 A1
20080034708 Pervan Feb 2008 A1
20080066415 Pervan Mar 2008 A1
20080104921 Pervan May 2008 A1
20080110125 Pervan May 2008 A1
20080134607 Pervan Jun 2008 A1
20080134613 Pervan Jun 2008 A1
20080295432 Pervan et al. Dec 2008 A1
20090193748 Boo et al. Aug 2009 A1
Foreign Referenced Citations (45)
Number Date Country
2456513 Feb 2003 CA
33 43 601 Jun 1985 DE
199 40 837 Nov 2000 DE
199 58 225 Jun 2001 DE
202 05 774 Aug 2002 DE
203 20 799 May 2005 DE
10 2004 001 363 Aug 2005 DE
0 013 852 Aug 1980 EP
0 652 340 May 1995 EP
1 308 577 May 2003 EP
1 350 904 Oct 2003 EP
1 350 904 Oct 2003 EP
0 974 713 Dec 2005 EP
1.138.595 Jun 1957 FR
2 256 807 Aug 1975 FR
240629 Oct 1925 GB
1171337 Nov 1969 GB
2 051 916 Jan 1981 GB
3-110258 May 1991 JP
05-018028 Jan 1993 JP
7-310426 Nov 1995 JP
10-219975 Aug 1998 JP
WO 9426999 Nov 1994 WO
WO 9627719 Sep 1996 WO
WO 9627721 Sep 1996 WO
WO 9747834 Dec 1997 WO
WO 9838401 Sep 1998 WO
WO 9966151 Dec 1999 WO
WO 9966152 Dec 1999 WO
WO 0020705 Apr 2000 WO
WO 0047841 Aug 2000 WO
WO 0102669 Jan 2001 WO
WO 0102672 Jan 2001 WO
WO 0151732 Jul 2001 WO
WO 0166877 Sep 2001 WO
WO 0177461 Oct 2001 WO
WO 03016654 Feb 2003 WO
WO 03025307 Mar 2003 WO
WO 03083234 Oct 2003 WO
WO 03087497 Oct 2003 WO
WO 03089736 Oct 2003 WO
WO 2004020764 Mar 2004 WO
WO 2004079130 Sep 2004 WO
WO 2004083557 Sep 2004 WO
WO 2004085765 Oct 2004 WO
Related Publications (1)
Number Date Country
20080134614 A1 Jun 2008 US
Continuations (2)
Number Date Country
Parent 11575600 US
Child 11889351 US
Parent 11092748 Mar 2005 US
Child 11575600 US