This invention relates generally to media handling mechanisms, and more particularly to techniques for maintaining the top level of a stack of media sheets in a printing device.
A printing device, for example a printer, normally includes an input tray for accommodating a stack of media sheets. During printing operations, a pick mechanism in the printer continuously picks and feeds an individual media sheet atop the media stack to a print zone for imprinting images on it. As the media sheets are consumed, the media stack height decreases. Normally, such a decrease in the media stack height would lead to a decrease in a top level of the media stack and consequently an increase in a displacement between the pick mechanism and the top of the media stack. The increase in the displacement may result in a large variation of pick angle or pick force and may inevitably affect pick performance of the printer.
Solutions have been introduced to maintain the top level of the media stack. For example, an electrical motor with a feedback controller can be used to maintain a constant top level of the media stack. However, such a design occupies space and may increase the product cost due to its complexity. In addition, an electrical system may also require a higher electrical power consumption by the product.
Therefore, there is a need for a convenient and effective way to maintain the top level of the media stack in a printing device.
According to the present invention, a media handling mechanism in a printing device includes an input tray for holding a stack of media sheets at a top level. The input tray includes a platform on which the stack of media sheets rests. The media handling mechanism also has a driving means coupled to the input tray for driving the platform upward toward a media pick mechanism of the printing device and a restricting mechanism connected to the input tray. The restricting mechanism stops upward movements of the platform toward the media pick mechanism when the top level of the stack of media reaches a first predetermined level.
According to a second aspect of the invention, a media handling mechanism in a printing device includes an input tray for holding a stack of media sheets at a top level, and the input tray includes a platform on which the stack of media sheets rest. The media handling mechanism also includes a spring mechanism coupled to the input tray for driving the platform toward a media pick mechanism of the printing device, an indexer mounted to the input tray and a pawl also mounted to the input tray. The indexer has a plurality of engaging teeth, while the pawl has an engaging end for interacting with one of the engaging teeth. Furthermore, the engaging end is movable between a first position in which the engaging end engages said one of the engaging teeth for preventing the spring mechanism from driving the platform toward the media pick mechanism when the top level of the-stack of media sheets reaches a first level, and a second position in which the engaging end disengages said one of the engaging teeth such that the spring mechanism is free to drive the platform toward the media pick mechanism when the top level reaches a second level.
According to a further aspect of the invention, in a method for maintaining a top level of a media stack within a predetermined range during printing operations, the media stack rests on a platform of an input tray in a printing device. The platform is biased toward a media pick mechanism of the printing device. Furthermore, the platform is kept in position during printing operations until the top level reaches a second predetermined level due to consumption of the media stack. When the top level has reached the second predetermined level, the platform is driven upward toward the media pick mechanism. Subsequently, when the top level reaches a first predetermined level, any upward movements of the platform toward the media pick mechanism will be stopped.
Other aspects and advantages of the invention will become apparent from the following detailed description in conjunction with the accompanying drawings; the description illustrates by way of example the principles of the invention.
In
A winch shaft 136 between the side walls 108, 110 is mounted to the input tray under the platform 104 and is rotatable about an axis 135 (see FIG. 3). Furthermore, a torsion spring 134 with one end mounted on the winch shaft 136 winds around the winch shaft 136. The other end of the torsion spring 134 is mounted on a wind gear 132, which is freely rotatable about the winch shaft 136 and is located on the left side of the winch shaft 136.
In
Being wound up, the torsion spring 134 has a biasing force, which supports the platform 106 and the media stack 104 loaded. Furthermore, the torsion spring, the wind gear and the rack are configured such that when the input tray 100 is fully inserted, the biasing force provided by the torsion spring 134 that has been wound up is more than enough to support the platform 106 and the media stack loaded. Thus, when the input tray 100 is fully inserted, the torsion spring 134 tends to unwind itself due to its own biasing force if there is no restriction on either of its two ends. Note that when the input tray 100 is fully inserted, it is locked in position by a plunger (not shown). Unless actively released by a user, the input tray 100 as well as the wind gear 132 does not move relative to the rack 130. Therefore, when the input tray 100 remains fully inserted in the printer, the torsion spring 134 unwinds itself only when the winch shaft 136 is free to rotate about the axis 135. Furthermore, as the torsion spring 134 unwinds itself, the biasing force of the torsion spring 134 drives the winch shaft 136 and accordingly a pair of winches 148, 150 respectively mounted at two opposite sides of the winch shaft 136 to rotate in the counterclockwise direction B. A pair of wire ropes 138, each with one end mounted at a first position 154 of the platform and the other end at a second position 155 of the platform, respectively pass through a plurality of pulleys 140 mounted on the sides walls 108, 110 and wind around the winches. When the winch shaft 136 rotates in the counterclockwise direction, the winches 148, 150 wind up the wire ropes 138. As a result, the platform 106 and the top level of the media stack 104 will be raised. On the other hand, when the wire ropes unwind, the platform will be lowered.
In
A pawl 142 mounted on the right side wall 108 has an engaging end 144 engagable with one of the ratchet teeth 116 of the wheel indexer 112. When the engaging end 144 engages one of the ratchet teeth 116, such an engagement stops the rotation of the wheel indexer 112 and consequently the rotation of the winch shaft 136. When the engaging end disengages said one of the ratchet teeth 116, however, the wheel indexer 112 is free to rotate. Furthermore, as shown in
The pawl 142 is rotatable about a pawl axle 147 on the right side wall 108 and includes a sensing end 146 at the other end. When the input tray 100 is fully inserted into the printer, the sensing end 146 can interact with a probe mechanism 117 mounted on the printer structure to obtain information about the top level of the media stack 104. Furthermore, an indexer spring 114 mounted on the right side wall 108 biases the sensing end 146 in an upward direction so as to keep the pawl 142 engaged to the wheel indexer 112. The pawl is configured such that as it engages the wheel indexer, it extends substantially horizontally, while the engaging surface 156 of the engaged ratchet tooth is substantially perpendicular to it.
As shown in
In
As the media stack 104 is consumed during printing operations, the media stack height decreases and the probe arms 122, 124 will rotate downward, since they are biased by the probe spring 120 to keep the probe roller 118 in contact with the top of the media stack 104. The right probe arm 124, which is positioned to interact with the sensing end 146 of the pawl 142, accordingly pushes the sensing end 146 downward. When the rotation of the pawl about the pawl axle 147 in the clockwise direction exceeds a certain amount, that is, when the top level of the media stack has reached a predetermined low level, the engaging end 144 of the pawl 142 disengages the wheel indexer 112. As previous discussed, when the pawl 142 disengages the wheel indexer 142, the torsion spring 134 will unwind itself due to its own biasing force so as to raise the platform 106 and accordingly the top level of the media stack 104.
As the top level of the media stack 104 rises, the probe roller 118 is pushed upwards by the media stack 104 and the probe arms 122, 124 rotate upward accordingly. With the right probe arm 124 moving upward, the pawl 142 rotates in the counterclockwise direction, since it is biased by the indexer spring 114 to engage one of the ratchet teeth 116. On the other hand, driven by the winch shaft 136 through the right winch 148 and the indexer gear 113, the wheel indexer 112 rotates in the clockwise direction shown by arrow A in
In addition, a tray cover (not shown) with a hole on it is mounted on the right side wall 108 above the pawl 142. The tray cover and the hole are configured such that only when the input tray 100 is fully inserted into and remain in the printer, can the right probe arm 124 pass through the hole and interact with the sensing end 146 of the pawl 142. During the insertion or removal of the input tray 100, the tray cover prevents the probe mechanism 117 from interacting with the pawl 142.
Elevation of the Top Level
When the input tray is outside the printer and when the media stack 104 is loaded into the input tray 100, the platform 106 drops to its lowest position due to the weights of the platform 106 and the media stack 104. Note that at this stage, the torsion spring is not wound up and does not provide the biasing force for supporting the platform. Furthermore, as the platform drops, the wheel indexer 112 rotates in the counterclockwise direction due to the unwinding of the wire ropes 138; this unwinding causes the winches and the winch shaft 136 to rotate in the clockwise direction. As discussed before, the wheel indexer is free to rotate in the counterclockwise direction without being disturbed by the pawl 142. Thus, the platform 106 drops to its lowest position.
During the insertion of the input tray 100 into the printer structure, the rack 130 interacts with the wind gear 132 to wind up the torsion spring 134. Winding of the torsion spring 134 produces a biasing force, which tends to unwind the torsion spring itself. In the beginning, if there is no engagement between the pawl and the wheel indexer, the biasing force also drives the winch shaft 136 to rotate in the counterclockwise direction and consequently the wheel indexer 112 to rotate in the clockwise direction. Since the pawl 142 is biased to extend horizontally, the pawl 142 engages one of the ratchet teeth of the wheel indexer 112 when the wheel indexer has rotated a certain amount in the clockwise direction. Due to such an engagement, the rotation of the wheel indexer and further the rotation of the winch shaft are stopped. As the input tray 100 is further inserted, the interaction between the rack 130 and the wind gear 132 winds up the torsion spring 135.
When the input tray is fully inserted, it is locked by the plunger, as discussed before, such that the wind gear does not move relative to the rack during the ensuing operations.
Furthermore, when the input tray is fully inserted, the probe mechanism 117 mounted on the printer structure can interact with the pawl through the hole (not shown) on the tray cover. Since the platform 106 and the top of the media stack 104 are at the lowest position, the probe arms are biased downward to keep the probe roller 118 in contact with the top of the media stack 104. Consequently the right probe arm 124 presses the sensing end 146 of the pawl 112 downward, and the pawl disengages the wheel indexer 116. Then the torsion spring 134 is free to unwind itself due to its own biasing energy stored. Such an unwinding of the torsion spring 134 rotates the winch draft 136 in the counterclockwise direction. This rotation consequently raises the platform 106 and the top level of the media stack. As the top level rises up, the probe roller 118 and the right probe arm 124 move up accordingly. As a result, the engaging end 142 of the pawl rotates downward since it is biased by the indexer spring 114 to engage the wheel indexer 112. Furthermore, rotation of the winch draft 136 also drives the wheel indexer 112 to rotate in the clockwise direction until the pawl 142 engages another ratchet tooth of the wheel indexer 112. As discussed, the engagement between the pawl 142 and the wheel indexer 112 stops the unwinding of the torsion spring 134 and the rise of the platform 106. In addition, the intervals among adjacent ratchet teeth, the pawl and the probe mechanism are configured such that when the pawl 142 engages the wheel indexer 112, the top level of the media stack 104 is raised to approximately the predetermined high level. Furthermore, during printing operations, the platform 106 will not be further raised so long as such an engagement exists.
As the media stack 104 is consumed and the media stack height decrease, the top level of the media stack 104 drops accordingly. When the top level reaches the predetermined low level, the pawl 142 disengages the wheel indexer 112 when the sensing end 146 is pressed downward by the right probe arm 124 of the probe mechanism 117. Then the torsion spring 134 is free to unwind itself. Similarly, the platform and the top level are raised until the pawl 142 engages the wheel indexer 112. At that time, the top level of the media stack 104 has been raised to approximately the predetermined high level. Once the pawl 142 engages the wheel indexer 112, the unwinding of the torsion spring and the rise of the top level of the media stack are stopped. Thus, the top level of the media stack 104 is maintained within a range between the predetermined high level and the predetermined low level. By selecting the intervals among the ratchet teeth of the wheel indexer, the length of the pawl, the length of the probe arms, the diameter of the wheel indexer and the diameter of the probe roller, such a range can be predetermined.
When the input tray 100 is pulled out of the printer, the interaction between the rack and the wind gear unwinds the torsion spring. When the wind gear separates with the rack, which means that the torsion spring is not restricted from unwinding itself by the wind gear, the platform will drop to its lowest position due to the weights of the platform and the media stack on it.
Alternatives can be made to the preceding embodiment. For example, a tension spring placed under the platform 106 with an end fixed to the case base 103 can be used to replace the torsion spring 134 for driving the platform in the upward direction. In that case, the rack 130 and the winches 148, 150 may not be necessary. The rise of the platform 106 can be stopped by the interaction between an indexer and the pawl. In addition, in such a mechanism, the user may need to press the platform down while loading the media stack when the input tray is out of the printer due to the constantly upward biasing force of the spring.
Furthermore, the whole probe mechanism 117 can be taken away. In that case, the sensing end 146 of the pawl 142 rests atop the media stack 104 directly for determining the top level of the media stack. In that case, the sensing end 146 needs to be biased to be in contact with the top of the media stack. The probe mechanism 117 in the previous discussed exemplary embodiment helps to minimize any possible adverse impacts on the pick-up of media sheets due to the pressure exerted on the media stack caused by the engagement between the pawl and the wheel indexer.
Only printers are discussed in the exemplary embodiment. It is understood that the media handling mechanism of the invention is also suitable for other printing devices such as copiers and fax machines.
Number | Date | Country | Kind |
---|---|---|---|
200202540 | Apr 2002 | SG | national |
Number | Name | Date | Kind |
---|---|---|---|
4362297 | Landa | Dec 1982 | A |
4930763 | Horii et al. | Jun 1990 | A |
5078380 | Kitazawa | Jan 1992 | A |
5215299 | Luft | Jun 1993 | A |
5501444 | Yukimachi et al. | Mar 1996 | A |
5584476 | Marzullo et al. | Dec 1996 | A |
6260839 | Araki et al. | Jul 2001 | B1 |
6354586 | Samoto | Mar 2002 | B1 |
6422773 | Lim | Jul 2002 | B1 |
6457707 | Hendrix et al. | Oct 2002 | B1 |
6672579 | Araki et al. | Jan 2004 | B2 |
6783126 | Amamoto | Aug 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20030201597 A1 | Oct 2003 | US |