The present disclosure relates to continuous and perpetual mechanical motion for energy production exclusively powered by the force or energy of gravity.
1. Field of Invention
The present invention is in the area of energy production but focused on and with the objective of obtaining this generation by only using the energy of gravity. When we think of exclusively using force of gravity to power the system, and when this force is present at any place and at any time and is constant, we are not referring to perpetual motion that will work forever while the mechanical equipment that makes up the system lasts. This would be the greatest innovation of recent times. It would promote a huge change in the world that will be referred to before and after this invention.
2. Description of Related Arts
For centuries the industrial development and global population growth have been demanding the availability of more energy. Formerly, energy was obtained from firewood and coal, which supplied the energy necessities of the world for a long period of time. For a long time we also had the use of windmills that were replaced by an easier and cheaper means at the time, which was oil and this way these sources were developed till present. We continue to burn firewood and coal and this developed into the burning of other types of wastes. When oil became expensive, the use of windmills returned and this also resulted in the use of solar energy. Recently we have the use of fats in general that are transformed into diesel. The continuous increasing need for energy is also forcing the development of other smaller sources of energy. Our field of invention is based on this history of energy, in search of new sources of energy.
In the last centuries thousands of attempts have been made to create a form of using gravity. Major values were invested with this purpose all over the world without obtaining results. For a long time in past centuries the English government offered a large amount as reward for whoever created the then called continuous motion.
Therefore, the objective of the present invention is to create a system to produce energy as well as the equipment necessary only using the planet's gravity as source of energy. To achieve the objective above, we developed a conception of different types of motions made up of a crankshaft and mechanical bars making up assemblies. Furthermore, these assemblies were placed side by side. In this case there is a 45 degrees lag between them. The movements of each assembly are combined and synchronized. Finally, each assembly has a bar on which a fixed weight is supported. This bar is supported on the positive or neutral bars through mobile locks that are placed or removed at the appropriate time.
An exclusively mechanical system was created made up of common market materials and parts such as a support structure built with metallic beams, a crankshaft, metallic bars connected to one another through rollers or supported to one another and a weight made of steel plates.
It was planned and designed to mount these parts with an arrangement made up of assemblies and place these assemblies side by side connected to each crankshaft arm.
This arrangement was designed with two specific and fundamental functions. The first to enable the transfer of energy from the force of gravity existing on the weight support bar and the weight itself through the positive or neutral bars and the central shaft going up to the crankshaft arm, generating a torque on its shaft.
The second function is to enable the choice of the bar on which the weight support bar and the weight itself will be supported, through placement or removal of the locks on the support arc-locks. We can choose between placing and removing the lock of the telescopic arm. It also enables the choice of moment and time when this support remains effective.
The value of the force of gravity existing on the weight support bar and the weight itself, when they are supported on the neutral bar, is always the same, independent of the point where the weight is connected to the weight support bar. Therefore, with the weight hanging on the central shaft or on the end of the weight support bar, the value of the force of gravity that drives the central shaft will always be the same.
The value of the force of gravity existing on the weight support bar and the weight itself, when these are supported on the green positive bar, is added or increased by a proportional value between the length of the green positive bar and the weight support bar, and therefore, the value of the force of gravity that arrives at the central shaft is added or increased. In the equipment presented in the drawings, the length of the green positive bars is 4-fold the weight support bar and, in this case, the value of the force of gravity that arrives at the central shaft is 25% greater, or two times greater than the force of gravity existing on the weight. When the support is in the blue bar, the additional force can be negative or positive, depending on the angle of the crankshaft.
In this presentation, the weight support bar and the weight itself were supported only on the yellow neutral bar and on the blue positive bar. When the support of the weight support bar and the weight itself are on the blue bar, a positive force will be generated and the crankshaft will be driven at a permanent and eternal motion.
Finally, this equipment, when concluded and built, must be locked. When unlocked, the crankshaft will turn and continue to turn forever.
The presented equipment is built exclusively mechanical, using common material existing in the market. We use beams and angle brackets, cut and rolled steel plates, worked to make up isolated assemblies, placed side by side to work in sequence.
The invention consists in the conception and creation of an assembly where there are bars with positive force and a bar with neutral force. Besides these bars there is another bar over which the weight is placed. This bar is connected to the system made up of an arc where the locks are placed. These locks have the purpose and objective of connecting the weight bar with one f the other four bars in the convenient position and also in the suitable time to enable the use of the force of gravity. To achieve this objective, I built a prototype machine where I conducted these force tests.
The table below shows the dimensions highlighted in the figures.
The presented equipment and the one being built with the measures indicated in
In
The force of gravity exerted over the weight is transferred to the assembly through the central shaft. This shaft, depending on where the locks are exercising the support, if they are on the positive or neutral arms and when, transfer more or less force to the blue bar. This in turn transfers the force to the crankshaft arm that is transferred to the crankshaft where the torque is applied.
The arrangement shown in
A fundamental part of the invention is the arrangement that was designed and created to enable handling the force of gravity existing on the weight support bar and the weight itself. The change in proportion of dimensions between each piece of the arrangement can improve the yield of the invention, but the important thing is the formation of the arrangement that creates the possibility of choosing how to transfer the force of gravity that exists on the weight support arm and on the weight to the crankshaft.
Another fundamental part is the function of the locks that can be placed and removed to choose the exact moment and period when they should be supported on one or another positive or neutral bar.
Shown below is the influence of the forces of gravity when the weight bar is supported on one of the other blue, green or yellow bars.
1—When the weight bar and the weight itself are supported on the yellow neutral bar through the lock that is placed on the support arc of the locks, the force of gravity exerted on the weight will always be the same and will have the same value anywhere on the support bar where the weight is hanged from. Therefore, the value of the force of gravity that the weight support bar transfers to the central shaft is exactly the same. Hence, everything occurs as if the weight was hanging from the central shaft, even if it is really hanging from the central shaft or from the tip of the weight support bar as shown in the drawing. At any point of the assembly motion, that is, turning the crankshaft 360 degrees, the weight support bar will remain in the horizontal position. This is because the yellow neutral bar always remains in the vertical position. When connected to this bar, the weight support bar consequently remains in the horizontal position. With all the eight weight bars supported on the yellow neutral bar, the equipment will be balanced. It moves freely with any impulse and stops at any point.
2—When the weight bar and the weight itself are supported on the green positive bar through the lock placed on the support arc locks, the force of gravity exerted on the bar and weight that transfers to the central shaft have an additional force of proportional value between the length of the weight support bar and the green positive bar. Therefore, the length of the weight support bar on the equipment shown in
3—When the weight bar and the weight itself are supported on the blue positive bar, there is a much more complex and complicated situation in comparison to the support on the yellow neutral or green positive bar. Regarding the force of gravity existing on the weight support bar and the weight, this force will also have an increase or an additional force when this force is transferred to the central shaft, in the same way it occurs and has already been described when the support is on the green positive bar. That is, both on the green positive bar and the blue positive bar, the force of gravity transmitted to the central shaft is proportional to the length of the bars. However, when the force of the central shaft is transmitted to the crankshaft arm through the blue positive bar, a very complex and complicated formation of forces occurs, as already mentioned.
Starting from angle zero of the crankshaft in the clockwise direction, there will be a negative force that will reduce as the crankshaft arm moves. During this initial motion, the weight support bar will incline in the same direction of the blue positive bar. After a certain period as the crankshaft moves, the positive blue bar inverts its movement of inclination and consequently the weight support bar also inverts its movement of inclination. Furthermore, the resulting forces of the inclination of the blue positive bar in relation to the crankshaft arm changes in a very complicated manner. Hence, when the crankshaft begins its movement with the arm on angle zero, this arm is subject to a negative force that reduces to the point of equilibrium and then increases. All this highly complicated force transmission motion that occurs when the weight support arm is supported on the blue positive bar will be better understood below during detailing of the operation.
In
At this point, the force of this crankshaft arm is very strong and positive. It alone is enough to overcome the negative force of the first arm.
We then have four crankshaft arms that move in the clockwise direction, driven by the weight that is connected to the weight support bar, which is firmly connected to the arc-locks, and the lock supported on the blue positive bar. These parts in turn are connected to the central shaft that is connected the blue positive bar, which in turn is connected to the crankshaft arm. The forces are then generated in each of these weights and reach the crankshaft. The force of gravity of the weight that reaches the crankshaft on the arm that is on zero degree will generate a negative force (anticlockwise). The force of gravity of the three weights that are in front and reach the crankshaft on the arms that are on 45, 90 and 135 degrees will generate a positive force (clockwise) much higher than the negative force of the first arm at zero degree. Then, the crankshaft when unlocked will immediately turn in the clockwise direction driven by the second, third and fourth arm with forces much higher than the first arm with negative force.
When the crankshaft turns 14 degrees,
In the next 31 degrees of the crankshaft motion, only three crankshaft arms will be receiving the force from the weight support bar and the weigh itself, which will be connected to the blue positive bar. At this point, the force of the first arm at 14 degrees will be less negative and this negativity will continue to decrease in the next degrees. The two other arms will continue with strong positive force.
All the other crankshaft arms, four between angles zero and 14 degrees and five between angles 14 and 45 degrees, will be driven by the force of gravity of the weight support bar and the weight itself with a lock supported on the yellow neutral bar and the other lock away from the blue positive bar. Therefore, there will only be the force of gravity without any increase or addition. I point out that when any of the arms reach position 199°, it will pull over and lean on the tilt control arm of the arm weight, and thus the arm weight will lean to the left to position 273° of the crankshaft, and will reach the initial inclination of 12.7° to the left. At this point the latch is placed on the telescopic arm and the tilt control bar of the arm weight is disconnected.
It is important to highlight that the force or intensity of this torque, which will repeat at every 45 degrees, will vary within the 45 degrees motion. Hence, we will have a force intensity at every degree but it will always be positive.
To pair this available force, reducing the lows and highs, I planned the use of two equipments for high generation of energy placed side-by-side and distanced at 22.5 degrees. This method will stabilize the intensity of energy generated.
The industrial application of this equipment is broad and unlimited. The entire world seeks a source of producing energy without pollutants or heat that can destroy the atmosphere. A few days ago, the US president mentioned in his inaugural speech that the US will have the main goal of producing energy with renewable resources. He still has no idea that we will be able to produce energy with resources eternally available at any quantity, at any place or time, without noise, pollution or heat. This invention will certainly promote an industrial and world revolution in the coming decades.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 007288 2 | Mar 2012 | BR | national |
This application relates to and claims priority from and is a continuation-in-part of U.S. Utility application Ser. No. 13/757,488 filed Feb. 1, 2013, still pending. The contents of this application are incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 13757488 | Feb 2013 | US |
Child | 13797918 | US |