The invention relates to a restraint device for improving heart function by mechanically restraining a dilated left ventricle as a result of myocardial infarction (MI) or other heart diseases and injuries causing left ventricular remodeling.
Myocardial infarction (MI) initiates a cascade of events that eventually culminates in left ventricular (LV) dilation, depressed function, dyskinesis, heart failure, and eventually death. Surgical myocardial/epicardial restraint of the infarcted left LV has been shown to attenuate and reverse LV remodeling, resulting in improved myocardial mechanics and function. A minimally invasive, percutaneously deployed myocardial restraint device is desired to address these problems. Such a device would potentially benefit millions of MI survivors.
Patients suffer from ischemic mitral valve regurgitation (IMR) as a result of left ventricular dilatation, often caused by MI. This population of patients in the United States alone is estimated to be 1.2 to 2.1 million patients, with approximately 425,000 patients having moderate or severe IMR with heart failure. IMR results from left ventricular (LV) distortions caused by a myocardial infarction (MI) or heart attack. Patients with this disease survive their heart attack but the resulting injury causes the ventricle to dilate and fail over months and years. In many cases, this congestive heart failure (CHF) is worsened by IMR. Patients with CHF and IMR can become extremely sick and be very hard to manage medically. Most clinicians agree that a competent mitral valve would make the management of these patients much more straight-forward and cost effective. The restraint device proposed herein further offers a minimally invasive way to reduce the septal-lateral dimension of the LV, potentially improving mitral valve function.
The inventors are not aware of any comparable, commercially available technologies for restraining a myocardial wall as proposed by the invention. There are, however, a number of percutaneous mitral valve repair devices that have been developed to exploit the proximity of the coronary sinus to the mitral valve annulus to perform some type of “annuloplasty” to limit mitral regurgitation. The basic premise behind such devices is to place a device in the coronary sinus that will shrink the valve orifice and thus decrease mitral regurgitation. None of these techniques have shown reproducible efficacy in human trials and none has proposed to restrain the dilated LV.
The inventors have addressed the above needs in the art by developing a set of devices that may be deployed using a completely percutaneous transvenous approach or percutaneous transvenous approach in combination with a minimally invasive (small incision) surgical approach to provide mechanical restraint of a dilated left ventricle. In exemplary embodiments, the device includes a delivery wire that is straightened for percutaneous transvenous delivery to the heart. Once in the heart the delivery wire is passed through the ventricular septum to gain access to the left ventricle (LV). It is then passed through the infarcted region of the LV and assumes its preformed coiled shape once positioned in a pericardial space adjacent an exterior left ventricular heart wall. The coiled wire is then pulled snugly against the infracted region and held in place by an intracardiac anchor that may be small inflatable balloons, pads of material, flexible wire weave mesh disks, etc. that also serve to provide hemostasis. A trailing end of the delivery wire forms a tether that is anchored to the ventricular septum by an additional pair of intracardiac pads, mesh disks or balloons deployed on both sides of the ventricular septum and connected by the tether through the ventricular septum. A coaxial locking mechanism secures the intracardic anchors to the tether. The distance between the ventricular septum and the ventricular heart wall where the restraining coiled wire is positioned is shortened by tightening the tether connecting the restraining coiled wire to the anchor. The restraining coiled wire is preferably preformed to be concave toward the ventricle so as to cup the ventricular heart wall when deployed. The restraining coiled wire could also be designed to be flat for placement on other portions of the left ventricle.
In an alternative embodiment, the restraining coiled wire on the end of the delivery wire is replaced by a balloon affixed to the distal end of the delivery wire. The balloon is also adapted for transvenous delivery to the pericardial space and adapted to be inflated in the pericardial space for restraint against the surface of the LV once positioned.
In other exemplary embodiments, a flexible metallic (nitinol) retention mesh is directed into the pericardial space via a sub-xiphoid incision or thoracotomy and the retention mesh is subsequently joined to a delivery wire that is placed transvenously traversing both the ventricular septum and left ventricular free wall at the area of infarction in the same manner as described above for the totally transvenous embodiments. The delivery wire is used to pull the restraining mesh against the LV freewall and the LV-ventricular septal dimension is reduced by anchoring the retention cable in both the septum and LV cavity side of the freewall. Alternatively, a balloon may be directed into the pericardial space via a sub-xiphoid incision or thoracotomy, inflated, and then joined to the transvenous delivery wire. These devices are anchored using a similar technique as that described above.
The invention also includes methods for a percutaneous transvenous delivery of the mechanical restraint device of the invention to the heart. For example, an exemplary delivery method of the invention includes:
introducing a vascular introducer sheath into a vein and advancing the introducer sheath into a right ventricular cavity of the heart to gain access to the ventricular septum;
puncturing the ventricular septum with a transeptal needle;
advancing the introducer sheath and a dilator over the transeptal needle into the left ventricular cavity;
puncturing the left ventricular wall at a desired site and advancing the introducer sheath into pericardial space;
removing the dilator and needle;
delivering a delivery wire via the introducer sheath into the pericardial space where the delivery wire recoils in the pericardial space to a preformed coil shape or a balloon on the distal end of the delivery wire is deployed in the pericardial space by a similar method;
pulling the recoiled restraining coiled wire or balloon snug against an epicardial surface of the left ventricular wall;
withdrawing the introducer sheath while maintaining traction on a trailing end of the delivery wire as a tether;
anchoring the tether to a series (usually 2) of intracardiac anchors (small balloon, wire weave meshes, or material pad) placed on either side of the ventricular septum as the introducer sheath is withdrawn from the left ventricle into the right ventricle;
tightening the tether as desired; and
locking the septal anchors to the tether.
In the exemplary method, the coiled wire or balloon is preferably preformed to be concaved toward the ventricle to cup the ventricular heart wall when deployed. The coiled wire or balloon could also be designed to be flat for placement on other portions of the left ventricle. The desired site in the left ventricular wall is preferably at a location of left ventricular dilation or other injury such as that caused by myocardial infarction.
Alternatively, the method of deploying the myocardial restraint device in the heart may include replacing the step of recoiling the restraining coil or deploying the balloon into the pericardial space with the step of delivering a coiled wire, wire mesh or balloon restraining device via a minimally invasive sub-xiphoid incision or thoracotomy into the pericardial space where it is connected to a delivery wire which has been previously placed through the infarct into the pericardial space (as described above in the completely transvenous approach). Once this connection is made (using a screw, magnet, balloon, or other similar mechanisms) the delivery wire is pulled snug against the infarct and anchored and tethered to the ventricular septum as previously described for the completely transvenous approach.
Other anchoring devices and anchoring methods also may be used in a manner consistent with the following description.
The various novel aspects of the invention will be apparent from the following detailed description of the invention taken in conjunction with the accompanying drawings, of which:
The invention will be described in detail below with reference to
The inventors have developed approaches to post infarction left ventricular mechanical restraint. In exemplary embodiments, a myocardial restraint device is provided that is designed to tether the left ventricular freewall to the ventricular septum and includes 4 main components. First, a delivery wire is provided comprising a thick metal wire (nitinol or stainless steel) preformed into a broad, tight, spiral coil that is concave in shape so that it will effectively “cup” the left ventricular freewall when pulled against the epicardial surface. In an exemplary embodiment, the coiled wire is circular in shape and 5-10 cm in diameter. Conversely, a balloon may be deployed on the distal end of the delivery wire and advanced through the left ventricular freewall, and inflated to anchor the tether. Second, a tether is provided that is formed from the trailing end of the delivery wire to function as a restraining wire. Third, an intraventricular septal anchor is provided that may include a broad nitinol pad, wire weave meshes, or balloons on both the right and left ventricular sides of the septum that is connected by a central stalk running through the septal muscle. Fourth, a locking mechanism such as a coaxial locking mechanism is threaded over the tether to hold the septal anchor in place. Several embodiments of such a myocardial restraint device will be described below.
In each embodiment described below, the myocardial restraint device is placed at a location to be restrained (e.g., at location of infarct) strictly transvenously or via a combination of transvenous and minimally invasive surgery. For example, the wire can be placed transvenously through the septum and then through the left ventricle free wall and the coiled portion uncoiled to form a restraining disc as an anchor in the pericardial space. Alternatively, the tether may be connected to a webbing/mesh restraining device advanced into place via a small sub-xiphoid incision or thoracotomy and connected to the tether in the pericardial space. On the other hand, a balloon or other restraining device may be advanced transvenously through the left ventricle free wall to anchor the tether in place, or a restraining balloon may be delivered via a small sub-xiphoid incision or thoracotomy, advanced into position, and then attached to the tether and inflated. Such myocardial constraint configurations are illustrated in the respective embodiments of
A first exemplary embodiment of the myocardial restraint device of the invention is depicted in
As illustrated in
Those skilled in the art will appreciate that the balloons and coils used as anchoring devices to reestablish more normal LV geometry and function in the exemplary embodiments may be preformed to be concave toward the ventricle so that it will effectively “cup” the left ventricular freewall when pulled against the epicardial surface. Of course, other anchoring mechanisms may be deployed transvenously and/or through a small sub-xiphoid incision or thoracotomy in a manner consistent with contemporary minimally invasive surgical techniques. Also, in all the embodiments, a series of small pads, meshes or balloons may be used to anchor the device against both the infarcted LV wall and the interventricular septum. Such pads, meshes or balloons may also be used to minimize the possibility of fluid leakage as a result of the punctures through the septum and LV wall.
Those skilled in the art will appreciate that the mechanical restraint device described herein may be used to attenuate the effects of chronic post infarct ventricular remodeling and to mitigate ischemic mitral valve regurgitation (IMR) in patients as a result of left ventricular dilation. The device proposed herein offers a minimally invasive way to reduce the septal-lateral dimension of the LV, potentially improving mitral valve function.
Those skilled in the art will also appreciate that the invention may be applied to other applications and may be modified without departing from the scope of the invention. For example, those skilled in the art will appreciate that the devices and techniques of the invention may be used to replace the tricuspid valve as well as the mitral valve. Accordingly, the scope of the invention is not intended to be limited to the exemplary embodiments described above, but only by the appended claims.
The present application claim priority to U.S. Provisional Patent Application No. 61/578,492, filed Dec. 21, 2011. The content of that application is herein incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2012/071229 | 12/21/2012 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61578492 | Dec 2011 | US |