The present invention concerns a mechanical oscillator for a horological movement that has a very low isochronism error and that is insensitive to the direction of gravity. The present invention also concerns a horological movement comprising the mechanical oscillator.
A regulating device is the heart of a mechanical watch. It generates oscillations which separate the time into equal units and is responsible for the accuracy of the watch. In a conventional mechanical watch, the regulating device comprises a balance, a spiral spring and an pallet anchor escapement.
In a conventional regulating device, energy losses can be significant due to friction at the pivot of the balance and pallet anchor and of the different interfaces. The accuracy of the spiral spring can also be affected by its orientation of in space. Problems due to flat-hanging difference affect the isochronism of the watch and increase dry friction.
Patent EP2090941 to the present applicant describes an oscillatory system constituted of a balance and a return spring. A frequency correction device has flexible elastic straps that are supported on a T-shaped connection member or stop. The straps have ends connected to a fixation and adjusting interface via pins using locking screws, respectively. The interface is secured to a frame by a screw, and the member or stop is directly fixed to the balance. The member or stop is pressed against free ends of the straps during a part of oscillation period. The oscillatory system can significantly increase the power reserve of the watch.
However, the oscillatory system described in this document is sensitive to the direction of gravity. Indeed, the displacement of the center of mass effect create a “pendulum” effect that affects the stiffness of the blade, changing slightly the frequency of the pendulum.
The present disclosure concerns a mechanical oscillator for a horological movement, the oscillator comprising: a central fixed part being configured to be fixed to a frame of the horological movement; an inertial rim coaxial with a pivoting axis of the mechanical oscillator; at least two rigid links extending radially between the central fixed part and the inertial rim and supporting the inertial rim; and at least two flexible links extending radially from the central fixed part; each flexible link comprising a first flexible element and a second flexible element substantially coplanar to the first element, the first flexible element and the second flexible element being rigidly connected at their distal extremity; the proximal extremity of the first flexible element being fixed to the fixed part and the proximal extremity of the second flexible element being fixed to one of said at least two rigid links, such that the inertial rim can oscillate around the pivoting axis; the first flexible element comprising two first blades and the second flexible element comprises one second blade coplanar with said first blades, the second blade being between the two first blades.
The mechanical oscillator provides a very low isochronism error and has a low sensitivity to the direction of gravity. The stiffness of the flexible elements during the oscillation of the mechanical oscillator is constant. Deficiencies in the isochronism can be cancelled by a proper design of the mechanical oscillator, in particular by adjusting a ratio of a distance between the proximal extremity of the second flexible element and the pivoting axis, over the length of the flexible elements. The pivoting axis does not shift during the oscillation such that the mechanical oscillator has a low energy consumption. Moreover, the movable parts of the oscillator are not subjected to any friction, except with the surrounding air. The mechanical oscillator can be made of non-magnetic materials such as silicon.
The invention will be better understood with the aid of the description of an embodiment given by way of example and illustrated by the figures, in which:
The mechanical oscillator 10 further comprises four flexible links 2 extending radially from the central fixed part 1. The four flexible links 2 and the four rigid links 3 are angularly equally spaced. However, other arrangements are also possible. Each flexible link 2 comprises a first flexible element 5 and a second flexible element 7 substantially coplanar to the first element 5. Each of the first flexible element 5 and the second flexible element 7 is rigidly connected at their distal extremity. The proximal extremity of the first flexible element 5 is fixed to the fixed part 1 and the proximal extremity of the second flexible element 7 being fixed to one of the four rigid links 3, such that the inertial rim 4 can oscillate around the pivoting axis 11.
The oscillation movement of the mechanical oscillator 10 can be transmitted to an escapement (not shown) of a regulator in a horological instrument.
The first flexible element 5 and the second flexible element 7 are configured to bend substantially perpendicular to their radial extension. When the inertial rim 4 is pivoted around the pivoting axis 11 for a given angle, the first flexible element 5 and the second flexible element 7 bend such to exert a return force opposed to the pivoting direction. The inertial rim 4 can thus oscillate around an equilibrium angular position around the pivoting axis 11.
As shown in
The configuration of the first flexible element 5 and the second flexible element 7 allows for guiding the movement of the inertial rim 4 in a way that only a rotation movement around the pivoting axis 11 is possible.
The mechanical oscillator 10 is geometrically symmetric with the ring-shaped inertial rim 4 and disc-shaped first and second fixed parts 1a, 1b, and the center of mass does not move when the inertial rim 4 is pivoted. The distal extremity of the first and second flexible element 5, 7 are not fixed and can move freely radially. The mechanical oscillator 10 thus has a constant stiffness (flexibility) and a high degree of isochronism. The symmetry of the mechanical oscillator 10 further allows for limiting a possible twisting effect on the distal connecting element 9.
In an embodiment, a middle stiffening element 8 is comprised in a middle portion of the first and second flexible elements 5, 7. The middle stiffening element 8 increases the stiffness of the first and second flexible elements 5, 7, out of the plane of the flexible elements 5, 7, and thus increases the resistance to shocks and perturbations of the mechanical oscillator 10. In that case, each of the first blades 5a, 5b and the second blade 7 have a middle stiffening element 8, independent from the middle stiffening element 8 of the other blades 5a, 5b, 7 such that each blade 5a, 5b, 7 can bend independently from each other.
Moreover, the distal connecting element 9 can play the role of a stiffening element or can comprise a distal stiffening element 15 (see
The complete mechanical oscillator 10 can then be formed by assembling the central part 13 with the upper part 14 on top of the central part 13 and a lower part 14′, identical to the upper part 14 and represented by the same
The first blades 5a of the upper part 14 and the first blades 5b of the lower part can have the same width, such that the stiffness (flexibility) of the first blades 5a, 5b is the same for the upper part 14 and the lower part.
The complete mechanical oscillator 10 of
As shown in the
A length L of the flexible link 2 can be defined as a distance between the proximal extremity of the flexible link 2 fixed to the central fixed part 1, and the distal extremity of the flexible link 2 fixed to the distal connecting element 9. A radius R can be defined as a distance between the fixation point of the second flexible element 7 (or proximal extremity of the second flexible element 7) of the flexible link 2 to one of the rigid links 3 and the pivoting axis 11.
In the configuration of
In an embodiment, the ratio of the radius R of the rigid ring 16 over the length L corresponds to about 0.6.
In an embodiment, the ratio R/L, of the length L over the radius R of the rigid hub 20 corresponds to about 0.2.
An optimal value of the ratio R/L, i.e. to obtain a good isochronism of the mechanical oscillator 10, depends on the dimensions of the flexible links 2, and thus on the dimensions of the first flexible element 5 (such as the first blades 5a, 5b) and the second flexible element 7 (such as the second blades 7), and on the Poisson's ratio of the material used to make the flexible links 2.
The optimal value of the ratio R/L can be determined by using a finite element method, for example, by using elements that can model an out-of-plane stress gradient, possibly taking into account large displacement hypothesis. Successive simulations can then be run such as to determine the ratio that corresponds to the specific configuration of the mechanical oscillator 10 and to a specific application.
An optimal value of the ratio R/L can further be determined by running by using an approximate empiric formula, when using silicon material with a Poisson modulus of about 0.28.
An optimal value of the ratio R/L can further be determined by adjusting the length of the flexible links 2 and/or the displacement (dimensions) of the fixation means 16, 20 of the flexible links 2. To this end, an adjusting device (not shown) can be included to the mechanical oscillator 10. By performing such adjustment and by measuring the oscillating frequency function of the amplitude a good isochronism of the mechanical oscillator 10 can be achieved.
According to an embodiment, an optimal value of the ratio R/L is determined by using the empirical equation 1:
ρ0(Rel,Res)=6.38·10−4Rel2−0.393·Rel·Res+3.26·10−2·Rel+5.408·Res−0.108
where Rel is the slenderness ratio of the flexible link 2 and with Rel=L/b, where b is the width of the flexible link 2; Res is the slenderness ratio of the flexible link 2 cross-section, with Res=h/b where h is the thickness of the flexible link 2.
Rel∈[0,10]
and
Res∈[0,0.25]
Determining an optimal value of the ratio R/L allows for achieving a constant stiffness of the flexible links 2 and thus, an isochronous mechanical oscillator 10.
Isochronism deficiency can originate from a deformation of the flexible links 2 according to a non-natural axis implying a stiffening of the flexible links 2. This effect can be cancelled by using a ratio R/L being equal to about 0.6. Isochronism deficiency can further originate from the bending of the first flexible element 5 and the second flexible element 7 during the oscillation of the inertia rim 4. The bending depends on the dimensions of the first and second flexible elements 5, 7, in particular the bending amplitude increases with decreasing the thickness of the first and second flexible elements 5, 7 and with increasing their length. Here, the isochronism deficiency can be cancelled by decreasing the ratio R/L.
In an embodiment, the ratio R/L, is between 0.1 and 0.6, depending on the Poisson modulus.
The isochronism of the mechanical oscillator 10 can be influenced by external effects such as the maintenance of the oscillations of the mechanical oscillator 10 by an escapement or a variation in the inertia of the mechanical oscillator 10 when the latter oscillates. In that case, the ratio R/L, can be such that the external effects are compensated, i.e., the isochronism deficiency originating from a deformation of the flexible links 2 compensates the one due to the external effects. In other words, the ratio R/L can be selected such that the isochronism deficiency of the mechanical oscillator 10 is substantially null.
More particularly, a ratio R/L between 0.2 and 0.6 allows for obtaining an isochronism deficiency of the mechanical oscillator 10 as low as ±1.5 second per day for an amplitude θz of the angular movement between 10° and 15° (corresponding to phi0, ⅔*phi0) of the mechanical oscillator 10 around the pivoting axis 11. The ratio R/L can be between 0.05 and 0.6. Using a wider range of ratio R/L may result in a non-null isochronism deficiency. For instance, obtaining a negative isochronism deficiency may be useful for compensating a positive isochronism deficiency originating from an external perturbation (such as an escapement).
The material used to make the mechanical oscillator 10 disclosed herein is preferably silicon but can also include any other suitable materials such as quartz, glass, metallic glass, metal, polymer or any combination of these materials.
The mechanical oscillator 10 can be fabricated by using an suitable machining process including for example Deep Reaction Ion Etching (DRIE), Wire-Electro-Discharge Machine (w-EDM), femto-second laser structuring, LIGA, molding or classical machining of monolithic parts or assembled parts.
In the case silicon is used as material forming the mechanical oscillator 10, a correction of the thermal drift can be performed by adding a silicon oxide layer of an appropriate thickness. This correction can be made to cover a temperature range comprised between 8° C. and 38° C. The thickness of the oxide layer is usually comprised between 0 and 3 micrometers.
The inertia rim 4 provide the inertia of the mechanical oscillator 10. In the configurations of
The oscillation frequency of the mechanical oscillator 10 can be adjusted by adjusting the inertia of the mechanical oscillator 10. This can be achieved, for example by adding, or removing, small quantities of material on the inertia rim 4. For instance, a material such as gold or any other adapted material can be deposited on the inertia rim 4. The added material has preferably a high density and can adhere well enough on the surface of the inertia rim 4. Other method than deposition can be used for adding and/or removing material, such as adding to the inertia rim 4 or cutting out from the inertia rim 4 pieces of material.
The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention.
For example, the distal extremity of the first flexible elements 5 and the second flexible elements 7 can be linked by a coupling ring 12. Such coupling ring 12 is represented in
Moreover, other configurations of the mechanical oscillator 10 are possible. For example, the mechanical oscillator 10 can comprise at least two flexible links 2, for instance, three, four, five, six or eight flexible links 2. The mechanical oscillator 10 can comprise at least two rigid links 3, for instance, three, four, five, six or eight rigid links 3. The number of flexible links 2 need not to be equal to the number of rigid links 3.
The first flexible element 5 can comprise one or a plurality of coplanar first blades 5a, 5b, for example, more than two. Similarly, the second flexible element 7 can comprise a plurality of coplanar second blades.
Number | Date | Country | Kind |
---|---|---|---|
16190886 | Sep 2016 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3277394 | Holt et al. | Oct 1966 | A |
3352000 | Altenburger | Nov 1967 | A |
9323222 | Stranczl | Apr 2016 | B2 |
9541902 | Stranczl | Jan 2017 | B2 |
9921547 | Cusin | Mar 2018 | B2 |
20160011567 | Stranczl | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
2090941 | Aug 2009 | EP |
Entry |
---|
European Search Report dated May 18, 2017 for EP16190886.8. |
Number | Date | Country | |
---|---|---|---|
20180088529 A1 | Mar 2018 | US |