Mechanical-pneumatic device to meter, condition, and classify chaffy seed

Information

  • Patent Grant
  • 6454098
  • Patent Number
    6,454,098
  • Date Filed
    Wednesday, June 6, 2001
    23 years ago
  • Date Issued
    Tuesday, September 24, 2002
    22 years ago
Abstract
An apparatus and method for conditioning and/or classifying seed is disclosed. The apparatus includes a seed conditioning/classification unit having an acceleration conduit and a convexly curved Coanda surface provided adjacent to the conduit at its outlet, curving upwardly therefrom. As the crude particulate feed stream is discharged from the outlet, it is conditioned by the Coanda effect into a first outlet stream of entraining gas and lightweight extraneous materials, which is channeled approximately along or parallel to the Coanda surface, and a second stream of relatively heavier materials such as seeds, which is expelled approximately parallel to the central axis of the conduit at the outlet. Seeds which are expelled from the conduit are also classified by momentum discrimination.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention is drawn to an apparatus for improving both seed quality and the flow characteristics of difficult to handle, entangled seed material.




2. Related Art




Unprocessed seed, such as the seed of various grasses, is usually a heterogeneous mix of stems, leaves, chaff, awns, hairs, empty glumes, and seed of various size and quality. Natural dispersal agents such as hairs and awns tend to cling to each other, bridging-over and causing the seed to adhere in a mass. These masses make uniform dispensing and placement during planting difficult. Moreover, gravitational separation of the seeds by differential mass and densities often occurs during seed storage and transport, and particularly in the drill box, often resulting in non-uniform seeding rates and stand failures. Extensive and costly processing of the seed is typically required to produce a product which is clean and substantially pure.




Prior processes for the treatment of chaffy seed grasses have included the use of a hammer mill to chop up or break-up the grass stem, with subsequent seed cleaning treatments to debeard and deglume the seed. However, the efficacy of hammer mills is typically low, and such devices may damage the seed. Examples of previously known devices including some of the general structural and operational features of the instant invention are disclosed in U.S. Pat. Nos. 640,793, 2,011,365, 2,416,008, 3,087,618, 3,347,373, 3,837,490, 4,030,606 and 4,340,469.




More recently, Beisel (U.S. Pat. No. 4,533,469) has developed an apparatus for removing stems and cleaning (i.e., degluming and debearding) grass seeds without seed damage. Removal of stems and cleaning is effected in this apparatus by a rotating cylindrical drum having a wire mesh body, which operates in cooperation with a vibrating, elongated sieve assembly. Beisel has also developed an apparatus for cleaning and classifying seeds utilizing a skewed Coanda jet effect. A seed stream is accelerated and discharged horizontally through a duct having a downwardly curved trough or Coanda surface at its outlet. Light materials such as seed hulls and trash follow a low trajectory and are separated from the heavier particles such as seeds, which follow progressively higher trajectories.




However, despite these improvements, the need persists for devices effective for conditioning and classifying seed.




SUMMARY OF THE INVENTION




We have now invented an apparatus and method for conditioning and/or classifying seed utilizing the Coanda effect and momentum discrimination. The invention is particularly useful for separating whole, chaffy seeds from lightweight extraneous material such as one or more of lint, dust, fuzz, chaff, and trash. The apparatus includes a seed conditioning/classification unit having a conduit which is defined by upper and lower surfaces and which has an outlet at one end. The central axis of the conduit at this outlet is generally horizontal. An inlet to the conduit is spaced upstream from the conduit's outlet for providing a crude particulate feed stream of the material to be conditioned which is entrained in a pressurized gas stream. To effect conditioning and classification, a convexly curved Coanda surface is provided adjacent to and curving upwardly from the upper surface of the conduit at the outlet. As the crude particulate feed stream is discharged from the outlet, it is conditioned (i.e., separated) by the Coanda effect into a first outlet stream of the entraining gas and lightweight extraneous materials, which is channeled approximately along or parallel to the Coanda surface, and a second stream of relatively heavier materials such as seeds, which is expelled approximately parallel to the central axis of the conduit at the outlet. Moreover, the seeds which are expelled from the conduit are also classified (i.e., separated into discernible fractions of seeds of different densities) by momentum discrimination, with higher density, high quality seeds being propelled farther from the conduit outlet than seeds of lower quality and density.




When handling unprocessed chaffy seed, particularly tough chaffy seeds such as Texas bluegrass, which tend to adhere together and form dense seed clumps, the apparatus preferably further includes a preconditioning unit and/or raw seed feed metering device or conveyor. The pre-conditioning unit is adapted for breaking up small seed clumps and for dislodging hairs, awns, and extraneous appendages from whole seed which are typically present in a chaffy seed material. Pre-conditioned seed from this unit may then be used as the feed for the conditioning/classification unit. A raw seed conveyor may also be provided for delivering the raw seed to the pre-conditioning unit. The conveyor may be adapted for shearing large clumps of seed into individual seeds or smaller fractions which may be metered into the preconditioning unit at a uniform rate.




In accordance with this discovery, it is an object of this invention to provide an improved apparatus and method for conditioning and/or classifying seed, particularly seeds of grasses and most particularly of chaffy seed grasses.




Another object of this invention is to provide an apparatus and method for removing and separating lint, dust, fuzz, chaff, and other trash from seeds.




Yet another object of this invention is to provide an apparatus and method for classifying seed.




Still another object of this invention is to provide an apparatus and method for producing free-flowing seed of uniform size and quality.




These and other objects and advantages of the invention will become readily apparent from the ensuing description.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view of a preferred embodiment of the apparatus of the invention which includes a feed conveyor, preconditioning unit, and conditioning/classifying unit.





FIG. 2

is a cross-sectional end view of a conditioning/classifying unit of the invention, coupled to a preconditioning unit.





FIG. 3

is an expanded cross-sectional end view of the conditioning/classifying unit of FIG.


2


.





FIG. 4

is a cross-sectional end view of a pre-conditioning unit of the invention.





FIG. 5

is a perspective view of the pre-conditioning unit of FIG.


4


.





FIG. 6

is a cross-sectional end view of a feed conveyor of the invention.





FIG. 7

is a top view of the feed conveyor of FIG.


6


.











DETAILED DESCRIPTION OF THE INVENTION




The apparatus and method of this invention are effective for conditioning and classifying particulate materials of different densities. While the invention is suitable for separating a variety of particles of interest, it is particularly effective for treatment of seeds, including but not limited to the seeds of grasses and most particularly of chaffy seed grasses. Depending upon the seed type and its condition, seeds treated in accordance with this invention may be both conditioned, that is the seed may be cleaned of or separated from extraneous material such as lint, dust, fuzz, and chaff, and the the seeds may also be classified or separated by density.





FIG. 1

shows the preferred apparatus of the invention used for the treatment of tough chaffy seeds such as Texas bluegrass. Not only does unprocessed seed of this type usually include trash and extraneous materials, but the seeds themselves have fine hairs and awns with attracting electric charges which cause them to adhere to one another in large masses which will not flow through conventional devices, resulting in fouling. To prepare a uniformly high quality, conditioned seed from this material, the apparatus includes a feed conveyor


70


for dispensing and conveying the unprocessed seed in uniform, metered amounts, a pre-conditioning unit


50


for removing extraneous seed appendages (e.g., awns, hairs, and fuzz) as well as stems and debris from the seed, and a conditioning/classifying unit


10


which both separates the extraneous material from the cleaned seed, and classifies the seed into quality classes based upon their density. Each of these components are combined into a self-contained, unitized system.




While each of the components are described in greater detail hereinbelow, the following overview is presented to provide insight into the relationship therebetween in a preferred embodiment. This brief description is intended only for illustration and is not limiting in scope. In brief, the unprocessed, raw chaffy seed is delivered into feed conveyor


70


having paired adjacent horizontal feed augers


75


and


76


(FIGS.


6


and


7


), which rotate towards each other on their upper surface to grasp the unprocessed seed between them in quantitative amounts and at a predetermined rate. While being held between the parallel feed augers, the unprocessed seed is lowered into a seed delivery auger


71


, which shears off small quantitative amounts of the seed material and conveys them in a separated state to the pre-conditioning unit


50


. Within the preconditioning unit, paddles


59


(

FIGS. 4 and 5

) rotate within a cylindrical scalping screen


53


, agitating the seeds and forcing the same through the screen to dislodge hairs, awns, and extraneous appendages therefrom. Seeds forced through the scalping screen pass into an air circulation area


54


between the screen and the housing of the pre-conditioning unit. Seed and extraneous material in this air circulation area are then entrained by vacuum or suction through outlet


56


and into the inlet


20


of the conditioning/classification unit


10


for further conditioning and classification. The seed conditioning/classification unit includes a horizontal conduit


11


which converges toward its outlet


16


(FIGS.


2


and


3


). The crude particulate feed stream from the pre-conditioning unit is accelerated in the conduit


11


by venturi action to the outlet


16


, whereupon it is conditioned and classified by the action of the convexly curved Coanda surface


30


. As the crude particulate feed stream is discharged from the outlet, a first outlet stream of the entraining gas with the lightweight extraneous materials is channeled along or parallel to the Coanda surface, while a second stream of relatively heavier materials such as seeds is expelled parallel to the central axis of the conduit. The expelled seeds are also classified by momentum discrimination into fractions of seeds of different densities.




Although the apparatus described above relates to a preferred embodiment for the treatment of chaffy seed grasses, it is understood that the conditioning and/or classification of other particles, including non-chaffy seeds which are not susceptible to clumping, may be conducted without one or both of a feed conveyor or a pre-conditioning unit, or using alternative embodiments as described below.




Referring now to

FIGS. 2 and 3

, the conditioning/classifying unit


10


includes a convergent conduit


11


defined by an upper surface


12


and lower surface


13


joined by opposed sides


14


and


15


(FIG.


1


), and an outlet


16


at one end for discharge of the particulate material. The conduit


11


is disposed such that its central axis at the outlet


16


(shown as the extended dashed arrow in

FIG. 3

) is generally horizontal. Crude particulates for treatment in the unit are admitted into conduit


11


through an inlet


17


spaced upstream from the outlet


16


. In a preferred embodiment, inlet


17


for the crude particulate feed stream includes a first inlet


18


for a pressurized or high velocity gas stream from source


19


and a second inlet


20


for the crude particulate feed stream to be treated. It is envisioned that inlet


20


may be provided at any position around the circumference of conduit


11


whereby the crude particulate feed stream may be delivered into the path of the gas stream. However, in the preferred embodiment, the crude particulate feed stream is entrained into a pressurized gas stream using a suction ejector or venturi.




A variety of suction ejectors and venturis are suitable for use herein. In a preferred embodiment, the apparatus includes a suction ejector


21


having a narrow nozzle


22


, downstream from pressurized gas source


19


, which opens into conduit


11


. The second inlet


20


for the particulate feed is positioned adjacent to the tip of this nozzle


22


. The pressurized gas expands in nozzle


18


, changing from high pressure to high velocity gas as it exits opening


22


and enters conduit


11


. The high velocity gas passing over opening


20


creates a vacuum or suction which entrains ambient air and suspended particulate material (including seed) therein and into the conduit. The air entrained particulate material enters and expands in the conduit


11


where it becomes pressurized and exits at outlet


16


at increased velocity.




Alternatively, rather than use of suction ejection, the crude particulate stream may be delivered into the path of the gas stream, for example, by pneumatic or mechanical conveyance, or it may be dispensed into the gas stream by gravity. The skilled practitioner will recognize that other alternative configurations of inlet


17


may be utilized without separate inlets for the gas and particulate material. For instance, the stream of particulate material entrained in the gas may be generated remotely from the conditioning/classification unit and admitted through a single inlet


17


.




To separate extraneous material or light debris such as lint, dust, fuzz, chaff, and other trash from the heavier particles such as seeds in the feed stream, a convexly curved Coanda surface (also referred to as a Coanda radius)


30


is provided adjacent to the upper surface


12


of the conduit at the outlet


16


, curving upwardly from this upper surface. As a stream of crude particulates is discharged from the outlet


16


and passes across the Coanda surface


30


, the Coanda effect lifts the entraining gas stream upwards in the direction of the curvature of the Coanda surface and away from the original direction of travel. The lightweight extraneous material is entrained with the gas and removed from the system. In contrast, relatively heavier particulate materials, such as seeds, are propelled forward from the outlet


16


, free from both the lightweight extraneous material and the entraining gas. Thus, the crude particulate stream discharged from outlet


16


is separated into a first outlet stream including the entraining gas and the relatively lightweight extraneous material which is channeled approximately along or parallel to the Coanda surface, and a second outlet stream of the heavier particulate material which is expelled approximately parallel to the central axis of the conduit at the outlet. In addition to conditioning, the heavier particulate material or seed is also classified by momentum discrimination. This classification is described in greater detail hereinbelow.




The angle of curvature θ of the Coanda surface will typically vary somewhat with the particles and extraneous material being separated. Suitable Coanda surfaces should be capable of providing an effective degree of lift for conditioning and classifying a mixed or crude particulate feed material stream as it is discharged from the outlet


16


of conduit


11


. An effective degree of conditioning is defined herein as a level of removal or separation of lightweight extraneous material, which may itself be completely or partially particulate in nature, from relatively heavier particulates in a crude particulate feed material which is substantially greater than the control (untreated) crude particulate feed. Similarly, an effective degree of classification is defined herein as that level producing at least two fractions of particles of different densities from a crude particulate feed material. The optimum angle of the Coanda surface may be determined by routine experimentation. Without being limited thereto, for the conditioning and classification of grass seeds, preferred angles of inclination for the Coanda surface vary between about 20° to 45°, particularly between about 30-45°, and most particularly between about 40-42° (inclination measured relative to the upper surface of the conduit at the outlet). The Coanda surface may be spaced from the upper surface


12


of conduit


11


at the outlet


16


, but is preferably contiguous therewith as shown.




The shape and dimensions of the conduit


11


should be sufficient to allow passage of the particulate feed stream therethrough. In the preferred embodiment, the conduit


11


is a venturi, with its internal cross sectional area decreasing toward the outlet


16


, to accelerate the crude particulate feed entrained in the pressurized gas stream. In a particularly preferred but non-limiting embodiment, the upper and lower surfaces


12


and


13


are substantially planar and are convergent or tapered toward the outlet


16


. The outlet


16


in this embodiment has a rectangular cross section, with the preferred distance between the first and second surfaces thereat ranging between about 1.25 to 6.25 mm. The precise position and level of central axis of the conduit


11


at the outlet


16


is also variable, and seeds may be both effectively conditioned and classified with the axis disposed in a range of ±20° from true horizontal. In the preferred embodiment, the axis will be positioned within ±10° of true horizontal, and in the particularly preferred embodiment it is horizontal. Conditioning of the seed may still be effected at angles of inclination greater than 20° owing to the Coanda effect and the tendency of the air stream and entrained light material (such as lint, dust, fuzz, and chaff) to follow the Coanda surface. However, the classification of the seeds into discernible fractions of different densities becomes more difficult with increasing inclination of the conduit beyond this range due to the decreased linear separation between the fractions. For conditioning chaffy seed grasses in a unit of these dimensions, pressurized gas source


19


is preferably adjusted to deliver entraining gas at approximately 60 cfm at 40 psi.




Collection or venting of the extraneous lightweight material or trash which have been separated from the crude particulate feed stream may be facilitated by providing an optional chamber or channel in the path of the first stream, downstream from the Coanda surface. In the preferred embodiment shown in

FIG. 1

, an outlet channel


31


is defined by an additional surface


32


and baffle


33


extending away from the outlet


16


. Additional surface


32


is positioned adjacent to and extending from Coanda surface


30


(on the opposite side thereof from the outlet


16


). To allow ingress of ambient air near the outlet


16


and Coanda surface


30


, while allowing discharge of the second outlet stream containing the seeds or other heavy particulate materials, baffle


33


is spaced from the terminus of the lower surface


13


at the outlet


16


, forming a slot


34


therebetween. Baffle


33


should not block or impede the discharge of the second outlet stream from the outlet


16


. Thus, the end


35


of baffle


33


which is proximal to outlet


16


is preferably positioned intermediate between additional surface


32


and a straight line which is collinear with and extends from the central axis of the conduit at the outlet


16


. Although outlet channel


31


may be open at the sides, it is preferably closed, with the sides of additional surface


32


and baffle


33


being joined. Outlet channel


31


may be further connected to an optional container or additional conduit(s) for exhaust or collection of the first outlet stream.




The size of the slot


34


is not critical, and need only be of sufficient size to allow passage of the second outlet stream therethrough after it is discharged from the outlet


16


, while allowing ingress of air to the Coanda surface and outlet channel


31


. Without being limited thereto, in the preferred embodiment the slot length, measured as the lateral distance from the outlet


16


to the proximal end


35


of baffle


33


, is approximately 75 mm. The size and dimensions of the outlet channel


31


also are not critical, and need only be sufficient to allow passage of the first outlet stream therethrough. Without being limited thereto, the additional surface


32


and baffle


33


are typically substantially planar, with a spacing therebetween ranging between about 40 to 80 mm or greater, most preferably the spacing is about 55 mm. In a preferred embodiment shown in

FIG. 1

, the cross sectional area of the outlet channel


31


increases downstream or in a direction away from the outlet


16


, such that the outlet channel is generally V shaped. Use of a V shaped outlet channel allows the first outlet stream to expand, thereby reducing its velocity and increasing the pressure needed to move the stream through any additional downstream conduits.




Although the conditioning/classifying unit


10


of the invention may be provided and used as a stand alone device, in the preferred embodiment it is used in combination with an optional pre-conditioning unit and/or feed conveyor. Indeed, as mentioned above, for conditioning tough, chaffy seed grasses such as Texas bluegrass, we have found that it is necessary to use both the preferred pre-conditioning unit and feed conveyor to prevent fouling of the device. Both conditioning and classification of seed are enhanced by pretreatment of a raw, unprocessed seed in a pre-conditioning unit effective for breaking up seed clumps and dislodging hairs, awns, and extraneous appendages which are typically present on chaffy seeds. In the preferred embodiment, the pre-conditioning unit includes a scalping chamber having a perforated wall with a agitator positioned therein adapted to forcefully direct a raw feed material against the inner surface of the perforated wall, and an outer collection chamber for collecting the feed passing or expressed through the perforations. As the seeds are pressed against the perforated wall and through the perforations therein, awns, hair, fuzz and other extraneous appendages are dislodged or sheared from the surface of the seeds. Large debris does not pass through the perforations and may be removed.




A particularly preferred pre-conditioning unit is shown in

FIGS. 4 and 5

. As shown therein, the pre-conditioning unit


50


includes an outer collection chamber or housing


51


, within which is disposed scalping chamber


52


. Scalping chamber


52


has an inner perforated wall


53


having a diameter smaller than the interior of the housing


51


, thereby forming an interstitial space


54


which is of sufficient size to allow flow or circulation of seeds therein. The size of the perforations or openings in perforated wall


53


may vary with the particular seeds of interest, and are selected to allow the passage of individual, whole seeds therethrough while substantially preventing the passage of clumps containing a plurality of seeds. Preconditioning unit


50


further includes an inlet


55


at one end of the housing for delivering raw seed into the interior of scalping chamber


52


, and a first outlet


56


from housing


51


for removing seeds which have passed into the interstitial space


54


. To urge the raw seeds deposited within the scalping chamber


52


to pass through the perforations in wall


53


, an agitator


57


is provided within the scalping chamber which is effective for forcefully directing said raw seed material against the interior of the perforated wall. Seeds and other smaller extraneous material which pass through the perforated wall


53


into interstitial space


54


are then moved through outlet


56


and into inlet


17


of conduit


11


. Circulation of the seeds in interstitial space


54


toward the outlet


56


may be assisted by placement of optional air or gas jets in housing


51


. Such jets are preferably positioned to discharge the air into the interstitial space


54


at an angle to a line normal to the interior wall of the housing. A second outlet


58


from the scalping chamber


52


may also be provided on the end of the housing opposite from inlet


55


, for removing large debris such as stems, trash, and rocks which do not pass through the perforated wall


53


.




The shapes of the housing


51


, scalping chamber


52


, and agitator


57


are not critical and may vary with the particulate being treated. However, in the preferred embodiment shown in the Figures, the housing and scalping chamber are substantially cylindrical, with the scalping chamber being positioned substantially coaxially within the housing, eliminating corners or dead spaces where seeds could accumulate. The perforated wall


53


of the scalping chamber may be produced from a continuous material such as sheet metal, but is preferably a screen, grid, or mesh. The agitator


57


preferably includes at least one rotating sweep or paddle


59


attached to a central shaft


60


, positioned with its outermost edge near or adjacent to the interior surface of the perforated wall


53


. Although paddles


59


may be rigid or flexible, and may be constructed from a variety of materials, they are preferably flexible rubber. Alternatively, agitator


57


may be constructed as a rotating polygon, screw (e.g., an extruder screw), brushes, or eccentric cylinder), with its outermost edges adjacent to or near the interior wall of perforated wall


53


. Further, it is also understood that rather than using a rotating agitator, the scalping chamber


52


may rotate and the agitator may be stationary or moving at a different velocity.




Outlet


56


may be in direct or indirect communication with the inlet of the conditioning/classification unit


10


. In the preferred embodiment, outlet


56


is in direct communication with inlet


17


, particularly second inlet


20


thereof. In the particularly preferred embodiment for the treatment of tough chaffy seeds, outlet


56


is positioned at approximately the top of housing


51


, while second inlet


20


of conduit


11


is positioned approximately on the bottom thereof. In this embodiment, pressurized gas discharged from nozzle


22


will draw the seed material from the interstitial space adjacent to outlet


56


into second inlet


20


and conduit


11


, whereupon it will be entrained toward outlet


16


.




Delivery of the raw seed to the pre-conditioning unit may be provided by use of an optional feed conveyor


70


. In the preferred embodiment, feed conveyor includes a rotating feed screw or auger


71


(feed delivery auger) in a container, hopper, or trough


72


having a raw seed feed inlet


73


and outlet


74


in communication with inlet


55


of scalping chamber


52


. The shaft of feed auger


71


may be an extension of shaft


60


of the pre-conditioning unit. The direction of rotation of feed auger


71


is selected to deliver or carry the raw seed feed toward the outlet


74


and hence to the inlet of the scalping chamber. A pair of variable-drive, counter-rotating screws or augers


75


and


76


which are larger than feed auger


71


may also be provided above feed auger, with the feed auger is positioned below the space or interface


77


between augers


75


and


76


. All of the augers are preferably approximately horizontal, and may be powered by one or more motors


78


.




Augers


75


and


76


are positioned with their axes substantially parallel, and their outer edges closely spaced from one another and nearly touching, and are adapted or constructed to rotate in opposite directions and towards each other on their upper surfaces as shown in FIG.


6


. The spacing and speed of rotation of augers


75


and


76


may be determined by the practitioner, but are preferably effective to shear seed clumps into smaller fractions, without significantly damaging the seeds, as they are passed through interface


77


and onto feed auger


71


at a predetermined rate. The smaller feed auger


71


is adapted to turn at a higher rpm effective for further shearing the clumps into still smaller fractions and deliver the separated seed to the pre-conditioning unit


50


. Without being limited thereto, for the treatment of tough chaffy seeds, the preferred speed of rotation of the feed auger


71


is between approximately 600 to 1200 rpm, while augers


75


and


76


operate between approximately 5 to 25 rpm.




While the above described pre-conditioning unit


50


and feed conveyor


70


are preferred for the processing of tough chaffy seeds, it is understood that a variety of alternative pre-conditioning units and/or feed conveyors may be suitable for use herein when processing non- or less chaffy seeds which are not susceptible to a significant degree of clumping, or other relatively free-flowing particulate materials. For instance, a variety of conventional size-reducing devices are suitable for use herein as pre-conditioning units including, but are not limited to, mills, crushers, and shredders, such as described by Snow et al. [“Size Reduction and Size Enlargement”, In: Chemical Engineer's Handbook, Perry and Chilton (ed.), fifth ed., McGraw-Hill, New York, 1973, pp. 8-1 to 8-57], or inclined sieves such as described by Beisel (U.S. Pat. No. 4,533,469), the contents of each of which are incorporated by reference herein. Similarly, the particulate materials may also be conveyed to the preconditioning unit, for example, by a conventional conveyor belt, single or double screw feed, pneumatic feed, or gravity feed.




The apparatus and method of the invention are particularly suited for the treatment of crude seed mixtures comprising immature and mature whole seed and one or more of lint, dust, fuzz, and chaff. In use, raw seed is deposited into trough


72


, whereupon counter-rotating augers


75


and


76


draw the seed through the interface


77


, shearing the same into smaller clumps which fall onto feed auger


71


. Feed auger


71


in turn carries the seed to outlet


74


and the pre-conditioning unit


50


, whereupon the seed passes through outlet


74


directly into the interior of scalping chamber


52


through inlet


55


. Within scalping chamber


52


, the raw seed is contacted by rotating paddles


59


, forcing the raw seeds against the interior of the perforated wall


53


and through the perforations, and thereby causing the seed clumps to be further broken into pieces small enough to pass therethrough while concurrently removing many of the hairs, awns, and other extraneous appendages on the seeds. Seeds and other extraneous lightweight materials passing through the scalping chamber into interstitial space


54


are then circulated toward outlet


56


and into inlet


17


(and


20


) of the conditioning/classifying unit


10


by the combined action of the rotation of the scalping chamber, suction ejector


21


, and the optional air jets. From the inlet


17


, the seeds are entrained in the pressurized gas stream, and are accelerated as they pass through conduit


11


. As this stream containing the crude seed mixture is discharged from the outlet


16


, it is separated into first and second outlet streams by the Coanda effect exerted by Coanda surface


30


. The Coanda effect lifts the gas stream upward in the direction of the Coanda bend and away from the original direction of travel. Lightweight materials lack sufficient momentum and are entrained with the gas stream. In contrast, heavier particles such as seed are propelled forward from outlet


16


, free of the entraining gas stream. Consequently, the first outlet stream, which includes the entraining gas and extraneous lightweight material such as the lint, dust, fuzz, and chaff, is channeled approximately along or parallel to the Coanda surface


30


, and continues through outlet channel


31


where it may be collected or discarded. However, the second outlet stream of relatively heavier particles such as whole seed, is expelled through slot


34


, approximately parallel to the central axis of the conduit at the outlet


16


.




Seed expelled through outlet


16


and slot


34


is separated from lightweight debris and trash originally present in the raw seed feed and may be collected as is for subsequent use. However, the seeds may also be readily classified into at least two, and preferably more, fractions of different densities prior to collection. As the seeds are expelled, those having the highest density (typically mature seeds of higher quality) are expelled the greatest distance from the outlet


16


. Lower density seeds, are propelled shorter distances, with the lowest density seeds (e.g., low quality immature seeds), being propelled the shortest distance from the outlet, while seeds of moderate density (e.g., seeds of lower purity which may retain some attached glumes or other extraneous matter) are propelled to a distance intermediate between these two extremes. This moderate density fraction may be collected and recycled through the apparatus.




It is understood that the foregoing detailed description is given merely by way of illustration and that modifications and variations may be made therein without departing from the spirit and scope of the invention.



Claims
  • 1. An apparatus for conditioning or classifying seed or both comprising a pre-conditioning unit and a seed conditioning/classifying unit, said pre-conditioning unit comprising:a. an outer collection housing; b. a scalping chamber comprising a perforated wall disposed within said housing, said scalping chamber having a diameter smaller than the interior of said housing to provide an interstitial space which is effective to allow flow of seeds therebetween, said perforated wall of said scalping chamber comprising perforations effective for allowing the passage of individual, whole seeds therethrough while substantially preventing the passage of clumps containing a plurality of seeds; c. an inlet to said scalping chamber for delivering raw seed material for treatment into the interior of said scalping chamber; d. an agitator within said scalping chamber effective for forcefully directing said raw seed material against the interior of said perforated wall of said scalping chamber thereby breaking up seed clumps and dislodging hairs, awns, and extraneous appendages from whole seed in said raw seed material; e. an outlet from said interstitial space of said housing for removing a crude particulate feed stream comprising whole seed and one or more of lint, dust, fuzz, and chaff which have passed through said perforated wall into said interstitial space; and said seed conditioning/classifying unit comprising:f. a conduit defined by an upper surface and lower surface and having an outlet at one end, wherein the central axis of said conduit at said outlet therefrom is generally horizontal; g. an inlet to said conduit spaced from said outlet of said conduit for providing said crude particulate feed stream entrained in a pressurized gas stream, said inlet to said conduit being in communication with said outlet from said interstitial space of said housing; h. a convexly curved Coanda surface adjacent to said upper surface of said conduit at said outlet therefrom and curving upwardly from said upper surface, wherein said Coanda surface is effective for separating said crude particulate feed stream as it is discharged from said outlet of said conduit into a first outlet stream channeled approximately along said Coanda surface, and a second outlet stream expelled approximately parallel to said central axis of said conduit at said outlet therefrom, wherein said first outlet stream comprises said gas and one or more of said lint, dust, fuzz, and chaff, and said second outlet stream comprises whole seed.
  • 2. The apparatus of claim 1 further comprising an additional surface adjacent to and extending from said convexly curved Coanda surface.
  • 3. The apparatus of claim 2 further comprising a baffle spaced from said outlet of said conduit and forming a slot between said lower surface of said conduit and said baffle, said baffle having a first end proximal to said outlet of said conduit which said first end is positioned intermediate between said additional surface and a straight line extending from said outlet of said conduit which is collinear with said central axis of said conduit at said outlet therefrom, such that said baffle does not intersect or extend across said straight line, and further wherein said baffle extends in a direction away from said outlet of said conduit, said additional surface and said baffle defining an outlet channel for said first outlet stream while said second outlet stream is discharged through said slot.
  • 4. The apparatus of claim 3 wherein the distance between said first end of said baffle and said additional surface is between about 40 to 80 mm.
  • 5. The apparatus of claim 3 wherein the cross-sectional area of said outlet channel increases downstream from said outlet.
  • 6. The apparatus of claim 1 wherein said first and second surfaces of said conduit are substantially planar.
  • 7. The apparatus of claim 6 wherein a cross section through said conduit at said outlet therefrom is approximately rectangular.
  • 8. The apparatus of claim 1 wherein the distance between said first and second surfaces of said conduit at said outlet therefrom is between about 1.25 to 6.25 mm.
  • 9. The apparatus of claim 1 wherein said inlet to said conduit comprises a first inlet for said pressurized gas stream and a second inlet for said crude particulate feed, said second inlet being positioned downstream of said first inlet effective for entraining said crude particulate feed into said pressurized gas stream.
  • 10. The apparatus of claim 9 wherein said first inlet for said pressurized gas stream comprises a nozzle convergent toward said outlet of said conduit and having a nozzle outlet upstream of said second inlet.
  • 11. The apparatus of claim 10 wherein said second inlet is in the lower surface of said conduit.
  • 12. The apparatus of claim 1 wherein said conduit is convergent toward said outlet therefrom and is effective for accelerating said crude particulate feed stream entrained in said pressurized gas stream as it is directed toward said outlet of said conduit.
  • 13. The apparatus of claim 1 wherein said convexly curved Coanda surface comprises a Coanda angle of between about 20° to 45°.
  • 14. The apparatus of claim 1 wherein said housing and said scalping chamber are substantially cylindrical, and said scalping chamber is coaxial with said housing.
  • 15. The apparatus of claim 14 wherein said agitator comprises at least one rotating paddle, positioned with its outermost edge adjacent to the interior surface of said perforated wall.
  • 16. The apparatus of claim 1 wherein said inlet to said conduit comprises a first inlet for said pressurized gas stream and a second inlet for said crude particulate feed stream, said second inlet being positioned downstream of said first inlet effective for entraining said crude particulate feed stream into said pressurized gas stream, and said outlet from said interstitial space of said housing is in communication with said second inlet for said crude particulate feed stream.
  • 17. The apparatus of claim 16 wherein said second inlet is positioned approximately on the bottom of said conduit, said outlet from said interstitial space of said housing of said pre-conditioning unit is approximately at the top of said housing, and said second inlet and said outlet from said interstitial space of said housing are in direct communication with one another.
  • 18. The apparatus of claim 1 further comprising a raw seed feed conveyor in communication with said inlet to said scalping chamber for delivering raw seed material for treatment into the interior of said scalping chamber.
  • 19. The apparatus of claim 18 wherein said raw seed feed conveyor comprises:a. a container having an inlet for said raw seed feed and an outlet in communication with said inlet to said scalping chamber; b. a pair of substantially parallel, approximately horizontal, counter-rotating screw augers positioned within said container below said inlet of said container, the upper surfaces of said counter-rotating augers rotating towards each other, wherein said counter-rotating augers are positioned relative to one another with their outer edges spaced from one another a distance effective to shear seed clumps into smaller fractions as said seed clumps are passed through the space therebetween; and c. an approximately horizontal rotating feed auger positioned in said container below said space between said counter-rotating augers to receive seed, said feed auger rotating in a direction effective to deliver said raw seed feed to said outlet from said container.
  • 20. The apparatus of claim 19 wherein said feed auger is smaller in diameter and rotates at a higher revolutions per minute than said counter-rotating augers.
  • 21. The apparatus of claim 1 further comprising an outlet from said interior of said scalping chamber.
  • 22. A method for conditioning seed comprising:a. providing an apparatus for conditioning or classifying seed or both comprising a pre-conditioning unit and a seed conditioning/classifying unit, said pre-conditioning unit comprising: 1. an outer collection housing; 2. a scalping chamber comprising a perforated wall disposed within said housing, said scalping chamber having a diameter smaller than the interior of said housing to provide an interstitial space which is effective to allow flow of seeds therebetween, said perforated wall of said scalping chamber comprising perforations effective for allowing the passage of individual, whole seeds therethrough while substantially preventing the passage of clumps containing a plurality of seeds; 3. an inlet to said scalping chamber for delivering raw seed material for treatment into the interior of said scalping chamber; 4. an agitator within said scalping chamber effective for forcefully directing said raw seed material against the interior of said perforated wall of said scalping chamber thereby breaking up seed clumps and dislodging hairs, awns, and extraneous appendages from whole seed in said raw seed material; 5. an outlet from said interstitial space of said housing for removing a crude particulate feed stream comprising whole seed and one or more of lint, dust, fuzz, and chaff which have passed through said perforated wall into said interstitial space; and said seed conditioning/classifying unit comprising: 6. a conduit defined by an upper surface and lower surface and having an outlet at one end, wherein the central axis of said conduit at said outlet therefrom is generally horizontal; 7. an inlet to said conduit spaced from said outlet of said conduit for providing said crude particulate feed stream entrained in a pressurized gas stream, said inlet to said conduit being in communication with said outlet from said interstitial space of said housing; 8. a convexly curved Coanda surface adjacent to said upper surface of said conduit at said outlet therefrom and curving upwardly from said upper surface, wherein said Coanda surface is effective for separating said crude particulate feed stream as it is discharged from said outlet of said conduit into a first outlet stream channeled approximately along said Coanda surface, and a second outlet stream expelled approximately parallel to said central axis of said conduit at said outlet therefrom, wherein said first outlet stream comprises said gas and one or more of said lint, dust, fuzz, and chaff, and said second outlet stream comprises whole seed;b. delivering said raw seed material into the interior of said scalping chamber; c. rotating said agitator within said scalping chamber to agitate said raw seed material, forcefully directing said raw seed material against the interior of said perforated wall of said scalping chamber thereby breaking up seed clumps and dislodging hairs, awns, and extraneous appendages from whole seed in said raw seed material and forcing said whole seed through said perforated wall into said interstitial space; d. moving said crude particulate feed stream from said interstitial space into said inlet of said conduit; e. providing a pressurized gas stream to said inlet of said conduit effective for entraining said crude particulate feed stream through said conduit and said outlet of said conduit; f. recovering said second outlet stream comprising whole seed separated from said first outlet stream expelled from said outlet of said conduit.
  • 23. The method of claim 22 wherein said recovering of said second outlet stream further comprises classifying said seed by separately recovering said seed ejected at different distances from said outlet of said conduit.
  • 24. The process of claim 22 wherein said seed comprises chaffy seed.
US Referenced Citations (31)
Number Name Date Kind
2080 Philips et al. May 1841 A
469559 Groom Feb 1892 A
799113 Titzel Sep 1905 A
1114619 James Oct 1914 A
1119950 Harrington Dec 1914 A
1525760 Rushton Feb 1925 A
2062626 Williams et al. Dec 1936 A
2681476 Van Doorn Jun 1954 A
2681477 Van Doorn Jun 1954 A
2834061 Van Doorn May 1958 A
2861299 Day Nov 1958 A
2866547 Gladfelter et al. Dec 1958 A
3087615 Powell Apr 1963 A
3368677 Bradley Feb 1968 A
4026437 Biddle May 1977 A
4159942 Greer et al. Jul 1979 A
4249343 Dannelly Feb 1981 A
4344843 Leifeld Aug 1982 A
4462722 Reba Jul 1984 A
4505196 Beisel Mar 1985 A
4533469 Beisel Aug 1985 A
4657667 Etkin Apr 1987 A
4801374 Harold Jan 1989 A
4853112 Brown Aug 1989 A
4872972 Wakabayashi et al. Oct 1989 A
4933072 Beisel Jun 1990 A
5525510 McCabe et al. Jun 1996 A
5542612 Beisel Aug 1996 A
5725102 Gustavsson Mar 1998 A
6015648 Mitsumura et al. Jan 2000 A
6253923 Felkins Jul 2001 B1
Foreign Referenced Citations (5)
Number Date Country
245654 Nov 1946 DE
2642884 Mar 1978 DE
0266778 May 1988 EP
1026035 Oct 1953 FR
0865430 Sep 1981 SU