The invention relates to a mechanical press for fine blanking, forming and/or stamping of work pieces, the press having a machine frame assembled of a head piece and an O-shaped frame, a fine blanking or forming head with a fixed upper tool part suspended from the head piece and projecting into the O-piece, a ram vertically guided on a stroke axis in the O-shaped frame provided with a table top for fixing a lower tool part and a positioned below the ram toggle mechanism.
DE 199 35 656 A1 discloses a line of presses with a modified position above a table toggle mechanism which is driven via an electric motor by an eccentric shaft rotatably run on bearings provided with a torsion rigid eccentric and using an interconnected flywheel. The eccentric has a connecting rod with a respective connecting rod bearing. The connecting rod at its end not adjoining the eccentric has a head, on which are developed two bearing points arranged apart from each other. These bearing points, with the center of the connecting rod, define a triangle. A first splicing plate is connected via a bearing pin to the head piece of the machine frame, providing a fixed bearing. The other end of the splicing plate is pivoted to the connecting rod by another bearing pin. A second splicing plate is attached to the ram at one end and to the connecting rod at the other end. The fixed bearing of the modified toggle is positioned above the press ram and the articulation point allocated to this fixed point swivels around this fixed point. The upper articulation point defines a curved path. Such a modified toggle mechanism causes ram movement to slow down, so that the material in the lower dead point has enough time for plastic flow.
However, it is disadvantageous that the fixed bearing of the splicing plate allocated to the connecting rod and the ram lie on different axes and further that the fixed bearing for the eccentric shaft is positioned near the ram. As a result, in the upper dead point, an almost effective length of the splicing plates can not be achieved, so that the rigidity and thus the power transmission onto the ram is always accompanied by horizontally acting force components, whereby the ram wear and also the power applied to the ram have to be increased. This has negative consequences for the machine frame, which has to be designed to be more massive, and for the driving power of the motors, which have to achieve higher turning moments.
The ram 3 is actuated by a ram drive which includes a modified toggle mechanism 5 driven by an eccentric shaft 6, in turn driven via a transmission means, for example a toothed wheel, and by an electrical motor. Between the electrical motor and the toothed wheel an attached transmission gear, an epicyclic gear, for example, can be positioned.
The kinematics of the toggle mechanism 5 can be seen from
The connecting rod 8 is connected by link bars 13 and 14 to the machine frame 2 and to the ram 3. The link bar 13, through bearing pin 15 pivotally attaches arm 13 to the connection area 16 of the connecting rod 8, and bearing pin 17 attaches arm 13 to the machine frame 2. Bearing pin 17 of the link bar 13 forms a fixed bearing L2 which is positioned above the ram 3 and table 4. The link bar 13 in
The fixed bearing L2, that is the fixed point, with which the articulated arm 13 is fixed to the machine frame 2, does not lie on the vertical stroke axis HU of the ram 3. Thus, link bars 13 and 14 do not reach a sufficient effective length at the upper dead point OT, so that operation translates in part to an unwanted horizontal force component applied to the ram 3. This adversely affects the useful life of the ram and contributes to a reduction in force that the ram can apply in the fine blanking or forming operation. This leads to higher turning moments, in order to compensate for the generation of unwanted horizontal force components. Also, to compensate, the machine frames must be made more massive, that is, made with higher weight and stability, in order to compensate for the horizontal forces.
The present invention provides a mechanical press for fine blanking, forming and stamping operations that operates without a flywheel, yet significantly enhances the rigidity of the toggle mechanism at the upper dead point, reduces the massiveness of the machine frame, and works with a significantly reduced driving power despite of the abolished flywheel.
According to the present invention, the vertical stroke axis of the ram is positioned on the axis between the ram and fixed bearing. which are in connection with a triangular-shaped connecting rod through upper and lower articulated arms connecting the fixed bearing, the connecting rod, and the ram. This structural arrangement can reach an almost effective length at the upper dead point of the ram.
At the effective length, the aforedescribed structure is in a near parallel arrangement, relative to the vertical stroke axis, meaning that force applied by this structure to the ram is only minimally, if not at all, in a horizontal direction. Thus, very low horizontal forces act on the ram, so that an almost optimum transmission of power from the motor through the eccentric shaft and aforedescribed structure to the ram, while avoiding considerable loss and wear of the ram can be realized.
This result is achieved by positioning a toggle mechanism containing the above structural arrangement, which does not have a flywheel, below the ram, the toggle mechanism having a first and second side, which first and second side are respectively positioned on first and second sides of the ram. In a more specific aspect of the present invention, the toggle mechanism having first and second sides includes a connecting rod having a substantially equilateral triangle shape having upper and lower articulation points positioned at triangle corners, in which the lower articulation point is attached to a lower articulated arm that is also affixed to a first fixed bearing positioned on the O-shaped frame, the lower articulated arm pivoting around the first fixed bearing, the upper articulation point of the connecting rod being attached to an upper articulated arm that is pivotally attached to the ram, the connecting rod, at a third triangle corner, being connected to a gear housed in a second fixed bearing on the O-shaped frame, whereby, during motor-driven actuation of a shaft in connection with the gear housed in the O-shaped frame, at a moment when the ram is located at an upper dead point of the vertical stroke axis, the upper articulated arm, the connecting rod, and the lower articulated arm reach an almost effective length with regard to the vertical stroke axis of the ram, the effective length deviating only a few degrees from the vertical stroke axis to thereby have length substantially similar to a length of the vertical stroke axis. The motors that drive actuation can be three-phase synchronous motors that drive the first and second sides of the toggle mechanism in parallel and simultaneously, wherein the motors are adjustable to equal path-time characteristics by means of a computer control that is connected to the motors.
The fixed bearings for the eccentric shafts and the lower articulated arms are positioned at their base at the O-shaped frame. This, in connection with the driving concept according to this invention, positions the fixed bearings at the base of the machine frame, and thus very near the center of gravity of the whole press construction. This allows for a reduction of mass of the machine frame.
According to a further aspect of the invention, the second fixed bearing has a pair of frame portions having openings in sides thereof and a pocket located between the pair of frame portions, the eccentric shaft being positioned in the openings in the sides and within the pocket.
In a further aspect of the invention, the ends of the eccentric shafts that face each other are mechanically connected to each other by a coupling piece.
In accordance with the present invention, the three-phase synchronous motors are controlled in unison by the computer and triggered as one unit, so that the path-time characteristics of the motors are identical.
In a further aspect of the invention the ends of the eccentric shafts facing each other are not connected to each other. The three-phase synchronous motors, independently of each other, transmit their respective driving power, without a transmission gear, to the eccentric shafts. Each three-phase synchronous motor is separately triggered by the computer and adjusted as necessary to have to identical path-time characteristics. It also should be noted that different path-time characteristics can be selected to compensate a possible overturning of the ram in case of eccentric loading of the tool.
Three-phase synchronous motors with high torque at low rotational speed of the motor, for example torque motors, have been found to be well suited for use in the present invention.
Also well suited for inclusion are epicyclic transmission gears which provide for a lower inertia of mass in a compact design.
In yet another aspect of the invention, the head piece is held at the O-shaped frame by a threaded connection, such as screw and threaded bore, without torsion stress. Further, the head piece and the O-shaped frame may be constructed of thin-walled high-strength ductile cast iron.
The following description and attached figures make apparent the details of the present invention and advantages that flow therefrom.
a and 3b depict schematic views of the kinematics according to the invention in the lower and upper dead points UT and OT, respectively;
a and 3b schematically show the kinematics of the toggle mechanism in the lower and upper dead points of the ram of the press according to the present invention. As shown in
An eccentric shaft 6, in mechanical connection with eccentric 7, is driven by a three-phase synchronous motor, of which two are provided, one for each side of the toggle mechanism, in order to drive a respective pair of eccentric shaft and eccentric. On each side of the toggle mechanism, the eccentric shaft and eccentric is positioned below the ram 3, as shown in
As shown in
The connecting rod 8, as shown in
A fixed bearing FL1, aligned on the vertical stroke axis HU of the ram 3, having a base at machine frame 2, is fixed in place at the end of lower articulated arm 26, so that articulated arm 26 can pivot about fixed bearing FL1. Upper end of the articulated arm 26 is pivotally attached to the lower articulation point 23 of the connecting rod 8.
On the vertex of triangle DE, the connecting rod 8 is attached to the eccentric 7 at articulation point 28. The eccentric 7 is turnable around a stationary fixed bearing FL2, which is fixed to the machine frame 2. Fixed bearing FL2 is substantially in alignment with the lower articulation point 23, so that the fixed bearing FL1 of the lower articulated arm 26 and the fixed bearing FL2 of the eccentric shaft 6 with their bases can be positioned in or on the machine frame 2 and thus lie near the center of gravity of the whole press construction.
a shows ram 3 at lower dead point UT. Lower articulated arm 26 attached to the fixed bearing FL1 has pivoted, as indicated by swiveling path S1. Upper articulated arm 24 has moved about a curved path S2.
b shows ram 3 at upper dead point OT. Articulated arms 24, 26 and the base side G of the connecting rod 8 are almost in a linear arrangement i.e., almost effective length, as the articulated arms 24 and 26 are angled only about 4° with respect to the stroke axis HU of the ram 3.
Thus, during transmission of power to ram 3, the generation of a horizontal force component is minimized, so that the transmission of power from the drive to the ram occurs almost without loss, and furthermore, wear on the ram 3 at its ram guiding is reduced.
Pockets 30 in the O-shaped frame 29 provide the fixed bearings FL2 for the eccentric shafts 6, and support the three-phase synchronous motors 34 and 35 (see
In the present invention, small motors with high turning moments at low rotation speeds, which motors do not have a flywheel, can be employed as the three-phase synchronous motors 34, 35. Such motors can be used because of the special kinematics of the toggle mechanism according to the present invention, which allows for using torque motors.
The three-phase synchronous motors 34 and 35 operate in parallel. Motors 34 and 35 are each connected to a computer 38 associated with the press machine. The computer 38 processes the machine data and provides the two motors with identical path-time characteristics (see
The desired machine operating values depend on the machine and process data of the fine blanking or forming operation. The values are determined by a virtual guiding axis. The virtual axis does not actually exist, i.e., it is virtual. The rotation speed and position values of the virtual axis are determined by the computer and fed as actuating variables to the motors in co-ordination with process parameters.
The two torque motors, with regard to the virtual guiding axis, run as slave axes.
A fine blanking or forming head 41 with an upper tool part 43 can be attached to the head piece 39, as shown in
Number | Date | Country | Kind |
---|---|---|---|
09007351 | Jun 2009 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4920782 | Hellwig | May 1990 | A |
4944221 | Leinhaas | Jul 1990 | A |
6405576 | Endo et al. | Jun 2002 | B1 |
6708609 | Koerner et al. | Mar 2004 | B1 |
6805045 | Korner et al. | Oct 2004 | B1 |
20020104364 | Fahrenbach | Aug 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20100319554 A1 | Dec 2010 | US |