Mechanical regulation of von Willebrand factor

Information

  • Research Project
  • 10296176
  • ApplicationId
    10296176
  • Core Project Number
    R01HL153986
  • Full Project Number
    1R01HL153986-01A1
  • Serial Number
    153986
  • FOA Number
    PA-20-185
  • Sub Project Id
  • Project Start Date
    9/1/2021 - 4 years ago
  • Project End Date
    6/30/2025 - 5 months ago
  • Program Officer Name
    WARREN, RONALD Q
  • Budget Start Date
    9/1/2021 - 4 years ago
  • Budget End Date
    6/30/2022 - 3 years ago
  • Fiscal Year
    2021
  • Support Year
    01
  • Suffix
    A1
  • Award Notice Date
    8/26/2021 - 4 years ago
Organizations

Mechanical regulation of von Willebrand factor

PROJECT SUMMARY/ABSTRACT In human bodies, bleeding is stopped when a clot is formed at the site of vascular damage. Under rapid flow conditions, the plasma protein von Willebrand factor (VWF) plays an indispensable role in capturing both platelets and collagen on damaged vessel walls, allowing the formation of platelet plugs. The adhesion between VWF and platelets is mediated by the interaction between the A1 domain of VWF and the Ib? chain of the platelet receptor GPIb-IX complex. Gain-of-function mutations in A1 that enhance this interaction lead to type 2B von Willebrand disease (VWD). Targeting the A1?GPIb-IX interaction has been an emerging strategy to treat or preempt bleeding and thrombotic disorders, though success in this area has been very limited. The lack of progress is due largely to the enigmatic nature of how exactly A1 remains inactive in blood circulation and how it is instantly activated to bind to GPIb-IX upon bleeding. Our recent identification of an autoinhibitory module (AIM), consisting of N- and C-terminal flanking regions on A1 and their O-linked glycans, is crucial for understanding A1 mechanoactivation during bleeding. In addition, AIM can be unfolded by a tensile pulling force of 8 to 20 pN. Based on these preliminary discoveries, we hypothesize that O-linked glycan structures, particularly sialic acids, further stabilize AIM and contribute to the mechanical regulation of A1?GPIb-IX binding and that modulating AIM?s mechanical properties can be utilized to treat or preempt blood diseases. We propose to test this potentially paradigm-shifting hypothesis using state-of-the-art analytical biophysical tools, including single-molecule force spectroscopy, single-molecule fluorescence microscopy and all-atom molecular dynamics simulation. Three specific aims will be pursued to test the hypotheses. Aim 1 is to characterize the structure and biomechanical properties of AIM. Aim 2 is to determine how autoinhibition is regulated by O-linked glycosylation in AIM. And Aim 3 is to investigate the role of AIM in type 2B VWD and therapeutic applications. Completion of the proposed studies will identify the key molecular and biophysical mechanisms underlying how AIM mechanically regulates VWF function and platelet binding and will aid in devising novel therapeutic strategies for the prevention and treatment of human blood disease.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R01
  • Administering IC
    HL
  • Application Type
    1
  • Direct Cost Amount
    463196
  • Indirect Cost Amount
    143716
  • Total Cost
    606912
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    839
  • Ed Inst. Type
    BIOMED ENGR/COL ENGR/ENGR STA
  • Funding ICs
    NHLBI:606912\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    MSFB
  • Study Section Name
    Macromolecular Structure and Function B Study Section
  • Organization Name
    LEHIGH UNIVERSITY
  • Organization Department
    ENGINEERING (ALL TYPES)
  • Organization DUNS
    808264444
  • Organization City
    BETHLEHEM
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    18015
  • Organization District
    UNITED STATES