The invention relates generally to a rotary machine and, more particularly, to a sealing system for an interface between rotating and stationary components. In certain aspects, the sealing system includes a mechanical sealing system between a rotary shaft and a surrounding structure of turbo-compressors.
Performance and efficiency of rotary machines, e.g., turbo-compressors, are dependent on a clearance gap between rotating and stationary components within the turbine engine. For example, the clearance gap between the rotary shaft and the surrounding stationary housing provides a narrow flow passage, resulting in process fluid flow leakage that can reduce the rotary machine performance. As the gap between the rotating and the stationary components increases, the leakage flow increases and the efficiency of the machine decreases.
Dry gas seals are used in rotary machines such as turbo-compressors to seal leakage of a process gas between the rotating and stationary components. Dry gas seals are basically mechanical face seals, consisting of a mating (rotating) and a primary (stationary) ring. During operation, grooves in the rotating ring generate a fluid-dynamic force causing the stationary ring to separate from the rotating ring creating a “running gap” between the two rings. A sealing gas flows via the gap between the rotating and stationary rings. However, during stand-still and lower operating speeds of the rotary machines, flow of sealing gas via the gap between the rotating and stationary rings is reduced. The rotating and stationary rings mutually contact each other and cause mechanical friction, wear, and overheating.
In certain examples, actuator devices such as auxiliary pumps may be used to supply pressure to open the gap between the rotating and stationary rings and therefore avoid contact during stand-still and lower speed operating conditions. Flow of less sealing gas via the gap between the rotating and stationary rings causes over heating of the mechanical parts of the seal which eventually results in seal damage. Flow of excess sealing gas via the gap between the rotating and stationary rings results in high seal gas consumption and reduction in efficiency of the machine.
Accordingly, there is a need for a system and method for maintaining minimum contact force between rotating and stationary parts of a sealing system during transitional operating conditions of the rotary machine.
In accordance with one exemplary embodiment of the present invention, a rotary machine includes a machine rotor, a machine stator, and a fluid seal disposed between the machine rotor and the machine stator. The fluid seal includes a fluid seal stator, a fluid seal rotor, and a gap control mechanism coupled to the fluid seal stator, and configured to control a gap between the fluid seal stator and the fluid seal rotor.
In accordance with another exemplary embodiment of the present invention, a fluid sealing device includes a fluid seal stator, a fluid seal rotor, and an active gap control mechanism coupled to the fluid seal stator, and configured to control a gap between the fluid seal stator and the fluid seal rotor.
In accordance with another exemplary embodiment of the present invention, a method of operating a rotary machine includes actively controlling a gap between the fluid seal stator and the fluid seal rotor.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
As discussed in detail below, embodiments of the present invention provide a rotary machine, in which a fluid seal is disposed between a machine rotor and a machine stator. The exemplary fluid seal includes a fluid seal stator, a fluid seal rotor, and an active gap control mechanism coupled to the fluid seal stator. The exemplary fluid seal is configured to control the flow of a sealing fluid via a gap between the fluid seal stator and the fluid seal rotor. In one exemplary embodiment, the active gap control mechanism includes a plurality of electromagnetic devices coupled to the fluid seal stator. In another exemplary embodiment, the active gap control mechanism includes an electromechanical device, such as a piezoelectric device or a shape memory alloy device, coupled to the fluid seal stator. The active gap control mechanism in accordance with the exemplary embodiments of the present invention prevents mutual contact and facilitates maintenance of a gap between fluid seal stator and the fluid seal rotor during all operating conditions of the rotary machine. Specific embodiments of the present invention are discussed below referring generally to
Referring to
Referring to
During operation conditions of the dry gas seal 16, a sealing gas (inert gas, e.g. nitrogen) enters a flow inlet path 36, flows via the gap 22 between the fluid seal stator 18 and the fluid seal rotor 20 and exits via a flow exit path 38. The flow of the sealing gas generates an opening force to move the stator member 24 axially within the fluid seal housing 26 and maintain the gap 22 between the fluid seal stator 18 and the fluid seal rotor 20. A secondary leakage of the sealing gas may occur between the stator member 24 and the fluid seal housing 26. The mechanical seal 31 is provided to reduce the secondary leakage of sealing gas between the stator member 24 and the fluid seal housing 26.
During normal operating conditions of the machine (i.e., wherein the machine is operating at nominal speeds and under nominal values of supply pressure of the sealing gas) a constant gap 22 is maintained between the fluid seal stator 18 and the fluid seal rotor 20. The constant gap 22 is maintained due to a force equilibrium between the opening force exerted on one side 40 of the stator member 24 due to the sealing gas pressure and the spring force exerted on another side 42 of the stator member 24 by the spring 34. During lower operating speeds of the machine, the spring force acting on the side 42 of the stator member 24 becomes greater than the opening force exerted on the side 40. As a result, the stator member 24 contacts the rotor member 28 resulting in mechanical friction, overheating and wear of the components. If less sealing gas flows via the gap 22, the mutually contacting components overheat. If excess sealing gas flows via the gap 22, consumption of sealing gas increases. In the illustrated embodiment, an active gap control mechanism 44 is coupled to the fluid seal stator 18 to facilitate maintenance of gap 22 between the fluid seal rotor 20 and the fluid seal stator 18 during all operating conditions of the machine.
In the illustrated embodiment, the active gap control mechanism 44 is an electromagnetic device coupled to the fluid seal stator 18. The active gap control mechanism 44 includes an electromagnetic coil 46 coupled to the fluid seal housing 26 and an electromagnetic plunger 48 coupled to the stator member 24. When an electric power is supplied to the mechanism 44, the electromagnetic coil 46 generates a magnetic force that attracts the plunger 48. The actuation of the mechanism 44 causes the stator member 24 to be moved away from the rotor member 28. As a result, the gap 22 between the fluid seal stator 18 and the fluid seal rotor 20 is increased and the mechanical contact between the stator 18 and the rotor 20 is avoided. When electric power is reduced or removed from the mechanism 44, the stator member 24 moves towards the rotor member 28.
Referring to
In one example, when the distance between the stator member 24 and the rotor member 28 is less than a first threshold limit, the control unit 54 activates the power source 52 to supply electric power to the coil 46. As a result, the stator member 24 is biased away from the rotor member 28 and the gap 22 is maintained between the fluid seal stator 18 and the fluid seal rotor 20. When the distance between the stator member 24 and the rotor member 28 is greater than a second threshold limit (which may be the same or different from the first threshold limit), the control unit 54 deactivates the power source 52 to remove electric power from the coil 46. As a result, the stator member 24 is moved towards the rotor member 28 and the gap 22 between the fluid seal stator 18 and the fluid seal rotor 20 is reduced. In the illustrated embodiment of
In certain embodiments, the control unit 54 may further include a database and an algorithm implemented as a computer program executed by the control unit computer or processor. The database may be configured to store predefined information about the rotary machine and the dry gas seal. For example, the database may store information relating to type of the machine, machine speed, load, type of dry gas seal, type of sealing gas, supply pressure of sealing gas, amount of sealing gas required, gap between the fluid seal rotor and the fluid seal stator, cooling requirement, type of power source, or the like. The database may also include instruction sets, maps, lookup tables, variables, or the like. Such maps, lookup tables, and instruction sets, are operative to correlate characteristics of the rotary machine to control the gap between the fluid seal stator and the fluid seal rotor. The database may also be configured to store actual sensed/detected information pertaining to the rotary machine and the dry gas seal. The algorithm may facilitate the processing of sensed information pertaining to the rotary machine and the dry gas seal. Any of the above mentioned parameters may be selectively and/or dynamically adapted or altered relative to time. For example, the gap between fluid seal rotor and the fluid seal stator may be altered depending on the speed or load of the machine. In another example, the gap may be altered depending on the cooling requirement. In yet another example, the gap may be altered depending on the sealing gas consumption. Similarly, any number of examples may be envisaged.
Referring to
When an electric power is supplied to the mechanism 44, the electromagnetic coils 46 generates a magnetic force that attracts the plungers 48. The actuation of the mechanism 44 causes the stator member 24 to be moved away from the rotor member 28. As a result, the gap 22 between the fluid seal stator 18 and the fluid seal rotor 20 is increased and the mechanical contact between the stator 18 and the rotor 20 is avoided.
Referring to
Referring to
Referring to
Referring to
The control unit 54 actuates the power source 52 to control the amount of current or voltage in the piezo electrical device 56 to control the gap between the fluid seal stator 18 and the fluid seal rotor 20. In a similar manner as discussed above with respect to
In another exemplary embodiment, the electromechanical device 56 is a shape memory alloy device. In certain embodiments, the shape memory alloy device includes a plurality of wires that produce movement when an electric current is passed through the wires. The wires may include alloys of copper, nickel, aluminum, or copper, zinc, aluminum, or iron, silicon, manganese, or nickel, titanium, and carbon (nitinol). When the wires are cooled below a transition temperature, the wires are converted to martensite phase and are deformable. When the wires are heated above the transition temperature, the wires are converted to austenite phase resulting in restoration of the original shape of the wires. In certain exemplary embodiments, a plurality of shape memory alloy devices may be used.
When an electric power is supplied to the mechanism 44, the shape memory alloy device actuates the stator member 24 in such a way so as to move stator member 24 away from the rotor member 28. As a result, the gap 22 between the fluid seal stator 18 and the fluid seal rotor 20 is increased and the mechanical contact between the stator 18 and the rotor 20 is avoided. The control unit 54 actuates the power source 52 to control the amount of current and subsequently temperature in the shape memory alloy device to control the gap between the fluid seal stator 18 and the fluid seal rotor 20. The active gap control mechanism in accordance with the exemplary embodiments of the present invention prevents mutual contact and facilitates maintenance of a gap between the fluid seal stator and the fluid seal rotor during all operating conditions of the rotary machine.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 11556294 | Nov 2006 | US |
Child | 12629484 | US |