1. Technical Field of The Invention
The present invention generally relates to a mechanical stop adapted to be mounted onto a rigid bar or tube. More specifically, the present invention relates to a mechanical stop that is adapted to be plastically deformed into frictional contact with the outer surface of a rigid bar, thereby providing a mechanical stop on the rigid bar that does not create any stress risers within the rigid bar.
2. Description of the Prior Art
Many bars and tubes in machine and automotive components require a ring or clamp that fixes itself onto the bar or tube to create a mechanical stop. These types of mechanical stops can be formed in many ways. Often, the bar is machined to receive such a stop, or a stop is welded onto the bar or tube. Machining and welding of the bar or tube causes stress risers within the bar or tube, which are undesirable.
As seen from the above, there is a need for an improved mechanical stop that can be mounted onto a bar or tube without causing stress risers within the bar or tube. A principle object of this invention is to provide a mechanical stop that is frictionally attached to a bar or tube to provide a stop thereon.
The disadvantages of the prior art are overcome by providing a mechanical stop, in accordance with the present invention, in which the mechanical stop includes a single piece conically shaped body having a plurality of inwardly extending projections, each of the inwardly extending projections having a distal end, the distal ends defining an opening within the mechanical stop. The conically shaped body is adapted to be plastically deformed to a substantially flat shape after being placed onto a rigid bar. The opening has a first dimension prior to the conically shaped body being plastically deformed and a second dimension after the conically shaped body has been plastically deformed to a substantially flat shape.
The first dimension is larger than the rigid bar, such that the rigid bar will fit within the opening prior to plastic deformation, and the second dimension is smaller than the rigid bar, such that after said conically shaped body is plastically deformed into a substantially flat shape, the distal ends of the inwardly extending projections will frictionally engage the outer surface of the rigid bar to secure the mechanical stop thereon.
In an aspect of the present invention the distal ends of the mechanical stop include a flange extending therefrom to increase the amount of surface to surface contact between the mechanical stop and the rigid bar.
Another aspect of the present invention includes a method of mounting a mechanical stop onto a rigid bar including the steps of: placing a mechanical stop onto the rigid bar by inserting the rigid bar through the opening within the mechanical stop, plastically deforming the conically shaped body of the mechanical stop into a substantially flat shape such that the opening is reduced to a size that is smaller than the rigid bar, whereby the distal ends of the inwardly extending projections are forced into frictional engagement with the outer surface of the rigid bar.
In still another aspect of the present invention, the method includes the steps of: placing a second mechanical stop onto the rigid bar such that the distal ends of the inwardly extending projections of the mechanical stops abut one another; and plastically deforming the conically shaped bodies of the mechanical stops into a substantially flat shape such that the openings are reduced to a size that is smaller than the rigid bar, whereby the distal ends of the inwardly extending projections are forced into frictional engagement with the outer surface of the rigid bar, and the substantially flat mechanical stops are positioned adjacent one another on the rigid bar.
These aspects of the present invention provide a mechanical stop for a rigid bar that does not require machining or welding of the rigid bar, thereby allowing the mechanical stop to be mounted to the rigid bar without adding any stress risers to the rigid bar.
Referring to
The mechanical stop 14 is shown generally in
The conically shaped body 18 of the mechanical stop 14 is adapted to be plastically deformed to a substantially flat shape after being placed onto the stabilizer bar 12. The opening 26 has a first diameter 28 prior to the conically shaped body 18 being plastically deformed to a substantially flat shape, as shown in
The first diameter 28 is larger than the stabilizer bar 12, such that the stabilizer bar 12 will fit within the opening 26 prior to the conically shaped body 18 being plastically deformed. The second diameter 30 is smaller than the stabilizer bar 12, such that after said conically shaped body 18 is plastically deformed into a substantially flat shape, the distal ends 22 of the inwardly extending projections 20 will frictionally engage the outer surface 24 of the stabilizer bar 12 to secure the mechanical stop 14 thereon.
Referring to
Referring to
Referring to
To add further strength to the stabilizer bar assembly 10, outer edges 34 of the mechanical stops 14 may be fastened to one another. As shown in
The foregoing discussion discloses and describes the preferred embodiments of the invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that changes and modifications can be made to the invention without departing from the true spirit and fair scope of the invention as defined in the following claims. The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation.
Number | Name | Date | Kind |
---|---|---|---|
2972489 | Collier et al. | Feb 1961 | A |
3104097 | Kozicki | Sep 1963 | A |
3140378 | Benninghoff | Jul 1964 | A |
5056975 | Ando | Oct 1991 | A |
5352055 | Hellon et al. | Oct 1994 | A |
5630609 | Shin | May 1997 | A |
5857800 | Nell | Jan 1999 | A |
6123352 | Muzio | Sep 2000 | A |
6255631 | Kichline, Jr. et al. | Jul 2001 | B1 |
6470553 | Retzbach | Oct 2002 | B1 |
6631543 | Retzbach | Oct 2003 | B1 |
6705813 | Schwab | Mar 2004 | B1 |
20020121733 | Lewis et al. | Sep 2002 | A1 |
20020149167 | Wiesemann et al. | Oct 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050180812 A1 | Aug 2005 | US |