1. Field of the Invention
The invention relates to mechanical switches and to methods of operating and making mechanical switches.
2. Discussion of the Related Art
This section introduces aspects that may be helpful to facilitating a better understanding of the inventions. Accordingly, the statements of this section are to be read in this light. The statements of this section are not to be understood as admissions about what is in the prior art or what is not in the prior art.
A mechanical switch is an electrical switch that has a portion that is moved during the transformation of the switch between the open-switch state or non-conducting state and the closed-switch state or conducting state. Typically, in the open-switch state, a high resistance gap separates two conducting contacts of the mechanical switch so that substantially no electrical current flows between the conducting contacts. Typically, in the closed-switch state, the conducting contacts physically contact each other so that an electrical current can flow between the contacts.
In some mechanical switches a significant closing force pushes the conducting contacts together in the closed-switch state. The closing force stabilizes the relative positions of the conducting contacts to mechanical vibrations and temperature variations in the closed-switch state. Such stabilization helps to ensure that mechanical vibrations and temperature changes of the switch will not substantially change its contact resistance in the closed state.
In other mechanical switches, a liquid mercury body connects two conducting contacts in the closed-state and does not connect the conducting contacts in the open-switch state. Due to its liquid form, the mercury body is an electrical connector whose electrical resistance is substantially insensitive to small mechanical vibrations of the mechanical switch.
Various embodiments provide mechanical switches in which the controllable conducting path includes an easily melted metal region. The easily melted metal region is melted during the transformation of the electrical switch between the open-switch and closed-switch states.
In one aspect, a mechanical switch includes a pair of conducting contacts, metal located on and between the conducting contacts, a heater, and an electro-mechanical actuator. The heater is operable to apply heat that melts the metal. The electro-mechanical actuator is capable of moving one or both of the conducting contacts in a manner that causes the metal to either start physically bridging the conducting contacts or to stop physically bridging the conducting contacts.
In another aspect, a method of operating a mechanical switch includes moving a first conducting contact towards a second conducting contact such that metal bridges the conducting contacts. The method also includes heating the metal, wherein the heating causes the metal to be melted when the moved contact has moved towards the other contact. The act of moving the first contact causes the mechanical switch to be in a conducting state. The conducting contacts are configured to carry current through the mechanical switch in the conducting state.
Some embodiments of the above method also include allowing the melted metal to solidify into a solid bridge that connects the conducting contacts. These embodiments may also include heating the solid bridge such that metal therein remelts and moving one or both of the conducting contacts such that the metal does not physically bridge the conducting contacts.
In the Figures and text, like reference numerals indicate elements with similar structures and/or functions.
In the Figures, the relative dimensions of some features may be exaggerated to more clearly illustrate one or more of the structures therein.
Herein, various embodiments are described more fully by the Figures and the Detailed Description of Illustrative Embodiments. Nevertheless, the inventions may be embodied in various forms and are not limited to the embodiments described in the Figures and Detailed Description of Illustrative Embodiments.
In the closed-switch state of
In the open-switch state of
Typically, the melting temperature of the easily melted metal 12 is higher than room temperature, i.e., 20 degrees Centigrade (° C.), and is lower than about 350° C. The easily melted metal 20 may be an elemental metal or a metal alloy. Exemplary suitable easily melted metals may include indium (In), tin (Sn), lead (Pb), gallium (Ga) and bismuth (Bi). Exemplary suitable metal alloys may include tin/copper (Sn/Cu), tin/silver (Sn/Ag), tin/gold (Sn/Au), tin/zinc (Sn/Zn), tin/lead (Sn/Pb), tin/bismuth (Sn/Bi), tin/indium (Sn/In). Exemplary other suitable metals and metal alloys may include conventional metals/metal alloys for solders that are used for bonding metals.
The mechanical switch 4 also includes one or more electro-mechanical actuators 14L, 14R that provide mechanical force(s), e.g., as indicated by arrows. The mechanical force(s) move one or both conducting contacts 10L, 10R. In particular, the applied force(s) reduce the distance between the conducting contacts 10L, 10R to close the mechanical switch 4 and increase the distance between the conducting contacts 10L, 10R to open the mechanical switch 4. Herein, an electro-mechanical actuator refers to a structure that is able to apply a mechanical force in response to being driven by an electrical current/voltage. Exemplary electro-mechanical actuators may include moving plate capacitors, electromagnets, piezoelectric materials, current-controlled thermally expandable structures.
In some embodiments of the mechanical switch 4, some motions of one or both of the conducting contacts 10L, 10R may be caused by mechanical relaxation of a spring or resilient bar rather than being generated by the electro-mechanical actuators 14L, 14R. For example, some such embodiments include one or more resilient bar(s) that are stressed by the opening or closing of the mechanical switch 4, i.e., during motion caused by the one or more electro-mechanical actuators 14L, 14R. Then, relaxation of the stressed resilient bar drives the movement needed to return the mechanical switch 4 to its original switch state.
The mechanical switch 4 also includes one or more variable heat sources 16 as schematically indicated in
In some embodiments, the mechanical switch 4 is able to close only once.
In other embodiments, the mechanical switch 4 is operable to perform a series of transformations between the open-switch state and the closed-switch state in a substantially reversible manner. In some such embodiments, each transformation includes melting the metal 12 and then, solidifying the metal 12.
In various embodiments, the mechanical switch 4 may also be encapsulated in a hermetically sealed chamber 9. The chamber 9 may retain an inert atmosphere, e.g., of argon, around the mechanical switch 4 to impede corrosion thereof.
Since the metal 12 ensures the low resistance of the electrical contact between the metal contacts 10L, 10R, some embodiments of the mechanical switch 4 may not apply force(s) to the metal contacts 10L, 10R in either the closed-switch state or the open-switch state. In such embodiments, forces are applied only to make mechanical transformations between switch states. Thus, these embodiments of the mechanical switch 4 are latching switches.
The method 30 includes moving a first conducting contact towards a second conducting contact such that the easily melted metal portion forms a metal bridge between the two conducting contacts (step 32). Due to the metal bridge, the mechanical switch is in the closed-switch state, wherein the current path through the mechanical switch includes the conducting contacts and the metal portion. The moving step results from applying mechanical force to one or both conducting contacts.
Such mechanical forces may be generated by various structures in different embodiments. In some embodiments, the forces are electrostatic and are generated by charging or discharging a capacitor. The capacitor has one or more moveable plates mechanically coupled to one or both conducting contacts. In other embodiments, the mechanical forces are generated electrically by adjusting a current level in a member that thermally expands or contracts in response to the adjustment. The member is mechanically coupled to one of the conducting contacts. In another embodiment, the mechanical forces are spring-like restoring forces generated by relaxing a spring or a resilient mechanical structure, or may even be magnetic forces.
The method 30 includes heating the easily melted metal portion such that melted metal thereof forms part of the physical bridge portion between the first conducting and second contacts (step 33). The heating typically involves raising the temperature of the metal to a temperature greater than room temperature. The metal preferably has a melting temperature that is lower than about 350° C. Due to the melted metal bridging the conducting contacts, the resistance of the current path between the conducting contacts is typically less sensitive to vibrations of the mechanical switch.
The heating may be generated by various methods in different embodiments. The heating may result from passing an electrical current directly through the metal portion such that resistive dissipation therein causes the melting. Alternatively, the heating may be generated by a separate heater. Such a heater may include resistive wire(s) near and in thermal contact with the easily melted metal portion. Then, passing an electrical current through the resistive wire(s) generates the heat to melt the easily melted metal portion.
The method 30 includes stopping the heating of the easily melted metal portion so that the metal solidifies to form a solid bridge that physically connects the conducting contacts (step 34).
The method 30 includes passing an electrical current through the mechanical switch and the conducting contacts therein while the metal portion forms a solid bridge there between (step 35). The electrical current is a current that the mechanical switch is designed to carry in the closed-switch state.
The method 30 includes heating the solid bridge such that metal therein remelts (step 36). Any of the heating methods described above with respect to step 33 may generate the heat that remelts the solid bridge.
The method 30 includes moving one or both of the conducting contacts such that the conducting contacts become farther apart (step 37). The moving is continued until the melted metal portion splits into separate portions, which no longer physically bridge the conducting contacts. Then, the current path through the mechanical switch is broken, i.e., the switch is in the open-switch state. The moving may be produced by any of the structures/methods already described with respect to above step 32.
The method 30 may include stopping the heating so that the metal refreezes to form physically separate metal drops on each conducting contact (step 38).
The method 30 may include sequentially repeating steps 32-38 a plurality of times to produce a sequence of closings and openings of the mechanical switch.
The switch arms 42L, 42R include support portions 46L, 46R, elongated arms 48L, 48R, and end portions 50L, 50R. The support portions 46L, 46R physically fix proximal ends of the switch arms 42L, 42R to a top surface of a support substrate 52. The elongated arms 48L, 48R rest above the top surface of the support substrate 52 and are able to laterally flex parallel to the top surface about thinner regions 56L, 56R. Such lateral movement or flexing of the elongated arms 48L, 48R can open or close a gap 58 between the left and right the end portions 50L, 50R of the switch arms 42L, 42R. The left and right end portions 50L, 50R include metal contacts 60L, 60R and at least one easily melted metal droplet 62L, 62R on each metal contact 60L, 60R. Each switch arm 42L, 42R includes a part of an electrically conducting path (not shown) that is configured to carry an electrical current between external electrical ports (not shown) on the two support portions 46L, 46R via the metal contacts 60L, 60R in the closed-switch state.
When the metal contacts 60L, 60R are near or in contact, the metal droplet(s) 62L, 62R can be melted to form a metal bridge between the metal contacts 60L, 60R. In the closed-switch state, a solid metal bridge forms part of the electrical conduction path between the metal contacts 60L, 60R. To ease the formation of a one-piece metal bridge, the metal droplet(s) 62L, 62R are formed of a metal or a metal alloy that has a low melting temperature, e.g., a melting temperature of less than about 350° C. The metal or metal alloy is however, typically a solid at room temperature. The metal or metal alloy can have any of the compositions already described for the easily melted metal 12 of
For controlling the physical solid/liquid state of the metal droplet(s) 62L, 62R, the left and right switch arms 42L, 42R include resistive heater wires 66L, 66R, which are located near the metal contacts 60L, 60R. The resistive heater wires 66L, 66R electrically connect via conducting lead lines 68L, 68R to conducting connection pads 70L, 70R, which are located in the support portions 46L, 46R. The resistive heating wires 66L, 66R may have the same composition and a smaller cross section than the conducting lead lines 68L, 68R so that a larger percentage of current-produced heat dissipation occurs in the distal end portions 50L, 50R that are located adjacent metal droplet(s) 62L, 62R rather than in the remainders of the switch arms 42L, 42R. The metal connection pads 70L, 70R electrically connect across a variable voltage source 72. The variable voltage source is able to generate a voltage suitable to create a current that dissipates enough heat in the resistive heating wires 66L, 66R to melt the nearby metal droplet(s) 62L, 62R.
The comb-drive actuator 44 is a capacitor that has metallic left and right plates 80L, 80R, which are able to move relatively to each other. The left and right plates 80L, 80R have arrays of teeth, T, that inter-digitate to increase the area of the plates 80L, 80R. The plates 80L, 80R of the comb-drive actuator 44 either abut against the inner side surfaces of the switch arms 42L, 42R or are rigidly fixed to said side surfaces. For that reason, motion of the plates 80L, 80R causes lateral movement or bending of the switch arms 42L, 42R and thus, can transform the mechanical switch 40 between the open-switch and closed switch states. In particular, electrostatic forces between the plates 80L, 80R control such transformations. The left and right plates 80L, 80R electrically connect across a variable voltage source 82 that controls the voltage and electrostatic forces between the plates 80L, 80R.
In other embodiments of the micro-mechanical switch 40, one of the support arms 42L, 42R is rigidly fixed to the support substrate 52 along its whole length so that the movement or bending of the remaining support arm 42R, 42L alone occurs during the opening and closing the micro-mechanical switch 40. In one such embodiment, the region 56R also has the same thickness and width as the remainder of the elongated arm 48R. In the same embodiment, the gap 55 below the right elongated arm 48R in
The switch arms 42L, 42R include support portions 46L, 46R; elongated arms 48L, 48R; end portions 50L, 50R; thin regions 56L, 56R; metal contacts 60L, 60R; metal droplet(s) 62L, 62R; resistive heater wires 66L, 66R; conducting lead lines 68L, 68R; and conducting connection pads 70L, 70R. These elements have substantially the constructions and functions already described for the like-numbered elements of the micro-mechanical switch 40 of
The U-shaped metal bar 92 has proximal ends 94 that are rigidly fixed to the top surface of the support substrate 52 and has a distal end 96 that can abut against or be rigidly fixed to the end portion 50L of the left switch arm 42L. Except for the proximal ends 94, the U-shaped bar 92 is separated from the top surface 54 of the support substrate 52 by an empty gap so that the U-shaped bar 92 is free to expand along its length in response to being electrically heated. The proximal ends 94 of the U-shaped bar 92 electrically connect across a variable voltage source 82.
The U-shaped bar 92 functions as an electro-mechanical actuator for the micro-mechanical switch 90 when operated by the variable voltage source 82. In particular, the variable voltage source 82 is able to drive a current through the U-shaped bar 92 that causes thermal changes to the length of the U-shaped bar 92. Such current-induced length expansions, move of the distal end 96 of the U-shaped bar 92 against the end portion 50L of the left switch arm 42L thereby causing the end portion 50L to rotate or move toward the right end portion 50R of the right switch arm 42R. Such a rotation or motion is sufficient to reduce the gap 58 between the metal contacts 60L, 60R so that the micro-mechanical switch 90 is transformed to the closed-switch state. That is, the electrically-controlled thermal expansion of the U-shaped bar 92 produces the mechanical force for closing the micro-mechanical switch 90. In some embodiments, thermal contraction of the U-shaped bar 92 is also able to provide the mechanical force for transforming the micro-mechanical switch 90 to the open-switch state, i.e., when the distal end 96 is rigidly fixed to the end portion 50L.
In other embodiments of the micro-mechanical switch 90, the right switch arm 42R may be rigidly fixed to the support substrate 52 so that movement or bending of the left support arm 42L alone is involved in the opening and closing of the micro-mechanical switch 90. For example, the gap 55 of
Referring still to
Referring still to
Other micro-mechanical embodiments of the mechanical switch 4 of
The method 100 includes forming a sacrificial oxide layer 132 over a selected part of the top surface of a crystalline silicon wafer substrate 130 (step 102). The formation of the sacrificial oxide layer 132 may involve, e.g., growing a layer of phosphosilicate to a thickness to about 0.5 or more micrometers (μm) via a conventional process. The sacrificial oxide layer 132 may be formed on another dielectric isolation layer, which is itself located on the silicon wafer substrate 130. Exemplary dielectric isolation layers include, e.g., layers of about 2 μm to about 5 μm of silicon nitride or silicon dioxide. The formation of the sacrificial oxide layer 132 also includes patterning the sacrificial oxide under the control of a conventional mask to produce a sacrificial oxide layer 132 with desired lateral dimensions. The patterned sacrificial oxide layer 132 will be removed later to enable the switch arms to flex laterally.
The method 100 includes performing a conventional deposition process to form a silicon nitride layer 134 on part of the patterned sacrificial oxide layer 132 and a selected part of the top surface of the support substrate 130 (step 104). The silicon nitride layer 132 may have a thickness of about 0.35 μm or more.
The method 100 includes forming a polysilicon layer 136 on the silicon nitride layer 134 by any conventional process known to those of skill in the art (step 106). The polysilicon layer 136 may have a thickness of about 0.7 μm or more and may be heavily n-type or p-type doped by conventional processes know to those of skill in the art to increase its conductivity.
The method 100 includes laterally patterning the polysilicon layer 136 under the control of a mask (step 108). The patterning may involve performing a conventional reactive ion etch (RIE) to remove undesired polysilicon. The mask may be formed of a conventional photoresist via a lithographic process. The patterning step includes removing the mask after the polysilicon layer 136 has been patterned.
The patterning produces the resistive heater wires 66L, 66R; conducting lead lines 68L, 68R; and conducting connection pads 70L, 70R of
The method 100 includes forming a second silicon nitride layer 138 on the patterned polysilicon layer 136 and the exposed underlying silicon nitride (step 110). This second silicon nitride layer 138 may have a thickness of about 0.35 μm or more.
The method 100 includes laterally patterning the second silicon nitride layer 138 under the control of a mask, e.g., a photoresist mask (step 112). The patterning may involve performing a RIE to remove both silicon nitride layers in selected areas. The patterning completes, e.g., the formation of the insulating dielectric layers 74L, 74R, 76L, 76R as shown in
The method 100 includes depositing a thin metal layer 140 under the control of another patterned photoresist mask and then, lifting off the mask to produce intermediate structure 142 of
The method 100 includes forming a patterned photoresist mask 144 over the support substrate 130 via a conventional lithographic process (step 116). The patterned photoresist mask 144 exposes the seed metal layer 140 and covers other portions of the surface of the substrate 130. The patterned photoresist mask 144 is thicker than the desired final layer of electroplated metal.
The method 100 includes performing a two-step electroplating of metal for the support portions of the switch arms and electro-mechanical structures of the mechanical switch (step 118). The first step involves electroplating a thin Cr layer 146 having a thickness of about 50 nm and electroplating a thin titanium layer (Ti) 148 having a thickness of about 50 nm onto the metal seed layer. The second step involves electroplating a thick Ni layer 150, e.g., a Ni layer with a thickness of about 10 μm or more, e.g., about 20 μm of Ni, and may include electroplating a thin Au layer over the Ni, e.g., about 0.5 μm of Au. After performing the electroplating, the photoresist mask 144 is stripped away by a convention process. The two-step electroplating step 118 produces an intermediate structure 152 shown in
The electroplating step 118 can produce several structures of the mechanical switches 40, 90, 40′, 90′ of
The method 100 includes stripping the photoresist mask 144 by a conventional stripping process and forming a new lithographically patterned photoresist mask 154 over the remainder of the intermediate structure 152 produced by the electroplating step 118 (step 120). The new patterned photoresist mask 154 exposes, e.g., the distal ends of the metal support portions 72L, 72R of the switch arms 42L, 42R of
The method 100 includes electroplating a barrier layer 156 onto the exposed end portions of the metal switch arms of the intermediate structure 152, e.g., to form the conducting contacts 60L, 60R of
The method 100 includes depositing metal 158 onto the barrier layer 156 of the step 122 under the control of a mask, e.g., to form intermediate structure 160 of
The method 100 includes wet etching the structure produced at the step 124 to remove the sacrificial oxide layer 132 thereby release the switch's arm(s) and the electromechanical actuator (step 126). An exemplary wet etchant for the sacrificial oxide layer 132 is a solution about 50 weight percent HF in water.
The release step produces the micro-mechanical switch, e.g., an embodiment of the micro-mechanical switch 40, 90, 40′, 90′ as illustrated in
In other embodiments of methods for fabricating micro-mechanical switches, e.g., the micro-mechanical switches 40, 90, 40′, 90′ of
From the above disclosure, the figures, and the claims, other embodiments will be apparent to those of skill in the art.
Number | Name | Date | Kind |
---|---|---|---|
6512322 | Fong et al. | Jan 2003 | B1 |
6689976 | Dove et al. | Feb 2004 | B1 |
6864767 | Streeter et al. | Mar 2005 | B2 |
7189934 | Youngner | Mar 2007 | B2 |
20030131595 | Takeuchi et al. | Jul 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20080061911 A1 | Mar 2008 | US |