The present invention generally relates to a tire lifting device. More specifically, the present invention relates to a remotely controlled tire lifting device for lifting and removing vehicle tire.
Construction and transportation maintains the economic viability of the world, which depends on heavy equipment. Heavy equipment moves soil, lifts beams, paves road, and serves in many other aspects of the constantly moving and building society. When the building and moving becomes large in scale, machines are utilized to take the heavy loads that are impossible for humans to manipulate. Further, all the transportation, heavy construction and moving equipment depends on the basic invention of wheel. Further, the wheels are coupled with tires to provide roll on operation. The wheel when coupled with a tire on heavy equipment becomes a considerable issue when service is required. Service technicians are required to remove, replace or repair damaged or worn wheels and tires. To remove tires from heavy equipment or trucks, the weight of the vehicle needs to be separated from the wheel and tire. Generally, jack and lifts are used to lift the equipment of the ground to gain access to the wheel and tire that requires service.
With the equipment raised off the ground, the service technician begins the process of removing the wheel and tire for the required service. Then, the tire technician loosens the nut or studs and then jacks the vehicle up to remove the tire off the hub. The wheel and tire combinations of a commercial truck can weigh up to 215 pounds. So, either more than one technician is required to lift the tire onto a dolly or some mechanical aid for the single technician is required. After the tire is removed, repaired or replaced, and re-mounted on the wheel, the tire must be reinstalled on the vehicle. Even if the tire is on a dolly and the vehicle could be raised and lowered incrementally, getting the tire positioned in such a way the studs line up could be a real chore. Further, replacing the vehicle tire in the gravel parking lot, field farm or industrial equipment exacerbates the problem more and could lead to severe back, leg, or arm strain to the technician.
Therefore, there is a need for a remotely controlled tire lifting device that removes the manual labor required to lift and remove vehicle tier and wheels.
The present invention relates to a tire lifting device that allows a user to lift vehicle and remove vehicle tires remotely without manual labor. Thereby, the device provides a more efficient and effortless handling of vehicle tire removal operation.
The tire lifting device of the present invention comprises a frame with at least two fixed wheels and at least one steerable wheel. The device further comprises a hydraulic jack, which is configured to raise or lower a roller stand receiving the wheel and tire. The roller stand further comprises rollers that allows the tire and wheel to spin freely. The device further comprises a tire guides located at the sides of the device. The tire guides are welded to a height adjustable support tubes. The tire guides are sized to accept tires and wheel from vehicles. The device further comprises dual action cylinders to hold the tire guides upright during use and retracts the tire guides when the load such wheel and tire, is to be removed from the device.
The tire lifting device is designed to operate by remote control unit and the device functions are powered either by electric or hydraulic operations. The Tire Lifting device is positioned by the remote control unit under the mounted wheel and tire and quickly adjusted to secure the wheel and tire by utilizing the roller platform. Then, the tire lifting device is adjusted in height by the hydraulic jack. The roller platform contacts the tire and allows the tire to rotate while still mounted to the vehicle. This enables the technician to access the wheel lugs by easily rotating the wheel and tire. The tire guides secure the tire and prevent movement of the wheel and tire after the wheel nuts/lugs are removed manually. This arrangement allows the full weight of the wheel and tire to be carried by the device.
Further, on loosening the wheel and tire from the vehicle, the device could be positioned away from the vehicle utilizing a power drive of wheels and the remote control unit. The procedure is performed in reverse on re-mounting of the tire and wheel onto the vehicle.
Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The foregoing summary, as well as the following detailed description of the invention, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, exemplary constructions of the invention are shown in the drawings. However, the invention is not limited to the specific methods and structures disclosed herein. The description of a method step or a structure referenced by a numeral in a drawing is applicable to the description of that method step or structure shown by that same numeral in any subsequent drawing herein.
A description of embodiments of the present invention will now be given with reference to the Figures. It is expected that the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive.
Referring to
Referring to
Referring to
Referring to
The tire guides 108 are welded to the adjustable height support tubes 110, which are pinned together using bent shaft quick release pins. The tire guides 108 are sized to accept tire and wheel from vehicles such as OTR trucks, skid steer, front tractor tires, and other similar sized industrial tires. Referring to
Referring to
Referring to
Referring to
The remote control unit 114 further comprises an icon 132 that allows easy location of the operating application, which allows full control of the device 100 over all sorts of terrain and use on distinct types of wheel and tire. The application allows control of the roller width, jack height, guide width, ground speed and direction, and allows micro-positioning of the wheel and tire for installation or removal with a dramatic reduction in physical labor. The application work with any a computing device such as a computer, tablet, or smartphone.
In one embodiment, the frame 102 of the device 100 is fabricated from 0.5″ thick cold rolled steel plate. The steel is cut to shape from sheet stock using a water jet machining center. Further, all the bolt holes and openings are formed. Furthermore, various small parts such as side support hinge plates and the double acting cylinder mounts are also cut from the 0.5″ thick sheet stock. The frame 102 is then placed in a jig and robotically welded to join all sections into one contiguous base and the small parts are also welded in place. After welding, the device 100 is powder painted and thermally cured to make a scratch and corrosion resistant surface.
In one embodiment, the support tubes 110 are cut to length from the steel and holes are formed using the water jet machining center. The support tube 110 comprises a large outer tube and a small interior tube. The larger outer tube accepts the slightly smaller interior tube. The outer tube and the interior tube have mating holes that align and accept the quick release pin to adjust the height of the tire guides 108. The lower outer tubes are drilled to accept hardened steel bolts allowing the support tubes 110 and tire guides 108 to be moved in or out under control by the dual action cylinders 118, which are controlled by the tablet working with an onboard computer.
In an embodiment, the tire guides 108 are formed using 1″ wide by 0.25″ thick steel bars, which are formed into 14″ wide by 6″ deep U channels. These channels are welded onto the upper support tubes 110 with the U opening toward the center of the device 100. The 14″ wide tire guides 108 would accommodate almost any vehicle tire and wheel including over the road wheels and tires, most farm tires, and industrial wheels/tires like skid steer units. In another embodiment, the tire guides 108 could be fabricated to adjustable in width. The back section is drilled to accept 2 bolts that retain the U shape while allowing the tire guides 108 to be adjusted in width.
In one embodiment, the steel components could be supplied in almost any vibrant color, so a distinctive color may be chosen to enhance the product recognition factor, which could dramatically improve the market adoption of the device 100. In one embodiment, the fixed wheels 104 comprises fixed casters with sealed, pre-lubricated bearings. The casters and wheels are galvanized to prevent rust and corrosion. Each caster of the fixed wheels 104 could support up to 675 pounds with a large safely margin. The combination of the fixed wheel 104 and the steerable drive wheel 106 allows the device 100 to be driven forward and backward to the optimum position to mount or dismount the wheel/tire.
In one embodiment, the steerable wheel 106 is urethane rubber coated, steel drive wheel. The drive or steerable wheel 106 is steerable at variable speed to allow easy positioning of the device 100. The DC drive motor and steering motor runs on the 18V battery are operated in conjunction under on-board computer control. The device 100 could quickly move between the vehicle and the tire repair station or could move minutely to position wheel/tire in optimum location. The steerable wheel 106 is capable of rotating ±90° from straight back and this movement is sufficient to allow micro-positioning as required. The steerable wheel 106 could support up to 1/3 of the 1,000 pound-maximum product loads with a significant safety margin.
In one embodiment, the hydraulic DC operated pump and reservoir 116 is mounted in the end of the hydraulic housing which is located under the frame 102 of the device 100. The DC pump maintains a 100 PSI pressure and comes on when the flow requirement is engaged by the computer operating the solenoid valves to move the tire guides 108 or raise or lower the jack assembly 112. The fluid flows out of or back through the solenoid valves as required and is retained in the reservoir. The reservoir has a sight glass that allows the operator to observe the fluid level in the reservoir when the device 100 is at rest.
In one embodiment, the dual action cylinders 118 are a commercially available long stroke, double acting cylinders that have the capability to move the tire guides 108 and the wheel/tire to insure proper sitting on the rollers 120 on the jack 112. The controlling computer utilizes optical position sensors in the lower pin area to determine the angle, so the tire guides 108 are positioned at similar angles on each side, insuring the wheel/tire is positioned in a center location on the rollers 120.
In one embodiment, the hydraulic jack 112 is a commercially available, double acting hydraulic jack, which has a lift stroke of 12.5″ and will lift a load of 16,000 pounds. The heavy-duty jacks 112 are made for frequent commercial use. The ram is nickel-plated for corrosion resistance and smooth operation against the seals. The double action allows for fine positional control using the tablet working in conjunction with the on-board controlling computer.
In one embodiment, the roller width drive 124 is a central bi-directional DC motor upon which Acme ball screws are mounted. The ball nuts are mounted in steel slides that move in or out as the motor is turned. The drive employs two different screws, a left and a right-handed ball screw to move the ball nuts in or out when the motor turns. There are two drive nuts 126, one on each side of the roller end, and they are synchronized to keep the rollers 120 parallel. The 13″ wide steel rollers 120 with sealed, pre-lubricated bearings are capable of supporting 575 pounds each. Having the wheel and tire on the rollers 120 allows the technician to easily rotate it to align the studs for installation after it is micro-positioned with the device 100.
In one embodiment, the onboard computer is fabricated to control the hydraulic and DC electric motors to perform the movement functions of the device 100. This ruggedized computer is placed in a sealed housing under the steel frame 102. The Bluetooth 4.0 and 802.11ac WiFi data access provides excellent and reliable uptime and the proprietary operating program allows macro and micro positioning. The controlling computer is supplied with, but not limited to, processor, memory, hard drive size, operating system, audio, ports, battery, wireless unit, Bluetooth and charging port.
In one embodiment, the remote control unit 114 is ruggedized tablet designed to use in the harsh shop environment. The thick rubber case and hardened touch screen is perfect for the maintenance operation. The remote control unit 114 comprises a fast 4G LTE broadband and 802.11ac WiFi data access to provide excellent and reliable uptime. The tablet is supplied with, but not limited to, display, processor, memory, hard drive size, operating system, media drive, audio and video unit, ports, battery, camera, wireless unit, Bluetooth and recharging unit.
In one embodiment, a PCBs of the remote control unit 114 and on board computer are fabricated based on the final assembler's requirements. The standard thickness, double sided FR4 circuit board material is populated with surface mounted components. Any through-hole devices are inserted after the surface mounted assembly, soldering, and cleaning. Both circuit boards are designed to have all the components oriented, so they can be mounted with the LED illuminators projecting out of the lenses mounted in the housings. After assembly, the PCBs are protected with a moisture adsorption preventive conformal coating.
In one embodiment, the frame 102 of the device 100 is supplied with at least two LED (Light Emitting Diode). In one embodiment, the LED is an 18-Watt LED floodlights, which is mounted on the frame 102 opposite to the steerable wheel 106 and projecting outward and slightly upward. These commercially available lights illuminate the workspace where the wheel and tire are mounted and the ground upon which the device 100 is being driven. The lights are 4″ square with aluminum heat dissipating housings. The 6-LED chip lighting modules project light out at a 60° angle providing a broad viewing angle for work and efficient nighttime operations. The LED lighting has a very long operating life and could easily withstand the harsh environment. The 12-volt lighting is operated by the on board controlling computer and is driven through a power supply operating from the 18 V battery.
The tire lifting device 100 according to the present invention, has the following advantages: allows to remove or replace wheels and tires from a vehicle; enables to operate the device 100 with a wireless remote control unit 114; rotates vehicle wheels on rollers 120 for access to wheel rugs; provides roller adjustable function for different size tires; provides an adjustable tire guides 108 for securing the wheel and tire in the device 100; eliminates manual labor of lifting wheel and tire to mount or remove; saves service technician from physical injury or strain; and provides long service of device 100 by utilizing high quality material.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.
The foregoing description comprise illustrative embodiments of the present invention. Having thus described exemplary embodiments of the present invention, it should be noted by those skilled in the art that the within disclosures are exemplary only, and that various other alternatives, adaptations, and modifications may be made within the scope of the present invention. Merely listing or numbering the steps of a method in a certain order does not constitute any limitation on the order of the steps of that method. Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions. Although specific terms may be employed herein, they are used only in generic and descriptive sense and not for purposes of limitation. Accordingly, the present invention is not limited to the specific embodiments illustrated herein.