The present invention relates generally to the field of protecting a human brain upon a trauma. More specifically, the present invention provides an apparatus to reduce amplitude of mechanical waves from the trauma to the human brain.
Boundary effect of mechanical waves of a blunt trauma can be exploited for reducing amplitude of the mechanical waves delivered to a brain tissue, using a multi-layered protective shell to increase number of boundaries inside the protective shell of a headgear as practically many as possible to a point there would not be a serious tissue injury to the brain tissue. Separately in a model of a two-layer medium panel with a first layer adjoining a second layer without a gap, it is known that there is no phase change at a boundary between the first layer and the second layer having a lower hardness than that of the first layer in reflected mechanical waves from incident mechanical waves traveling from the first layer to the second layer. Combination of both the incident and reflected mechanical waves in phase with each other temporarily increases an amplitude of the incident mechanical waves which increases an amplitude of transmitted mechanical waves in the second layer from the incident mechanical waves. If a series of the incident mechanical waves impacts the first layer, an amplitude of the reflected mechanical waves off the boundary merges with an amplitude of successive mechanical waves following a first wave of the mechanical waves coming toward the first layer. The amplitude of the successive mechanical waves following the first wave of the mechanical waves temporarily increases upon the addition of the amplitude of the reflected mechanical waves in phase with the successive mechanical waves, which increases a magnitude of an impact of the successive mechanical waves following the first wave of the mechanical waves to the second layer. If the first layer is made of a material that has a lower hardness than that of the second layer, the reflected mechanical waves off the boundary between the first and the second layers from the first wave reverse the phase and merge with the successive mechanical waves coming toward the first layer in a way the amplitude of the successive mechanical waves decreases. It results in a reduction of the magnitude of the impact of the successive mechanical waves to the second layer.
Collision between two objects is a bidirectional process involving a first object having a first kinetic energy colliding a second object having a second kinetic energy. If the first object is an inanimate object and the second object is a human head, the second object needs to reduce the kinetic energy of an impact from the first object, to transfer the kinetic energy of its own efficiently away from the second object and to lower a reflected portion of the kinetic energy of its own back to the second object in order to decrease an overall kinetic energy delivered to the second object. A method to increase the transfer of the kinetic energy of its own of the second object is to cover the second object with an A layer having a high transfer function which allows the kinetic energy from the second object to be transferred to a B layer having a lower transfer function than the A layer. The B layer is placed on an opposite side of the A layer to a side of the A layer contacting the second object. An opposite side of the B layer is placed in contact with the second layer of the two-layer medium panel. Separately, a method to reduce the reflected portion of the kinetic energy of the second object back to the second object is to use a softer material for the A layer than a bony material of the second object, and to use a softer material for the B layer than that of the A layer. In a direction toward the second object, a boundary between the B and A layers bounces off the mechanical waves residing in the B layer of both the reflected mechanical waves of the second object and a transmitted portion of the mechanical waves from the second layer of the two-layer medium panel heading toward the second object. Since the B layer is softer than the A layer, there is a phase reversal of the mechanical waves which are reflected back toward the second layer of the two-layer medium panel, thereby reducing an amplitude of the mechanical waves heading toward the second object. At a boundary between the A layer and the second object, there is another phase reversal of the mechanical waves heading toward the second object since the A layer is softer than the second object, further reducing the amplitude of the mechanical waves toward the second object.
The mechanical waves from the first object transmitted through the second layer to the B layer can be amplified or deamplified at a colliding boundary between the second layer and the B layer based on a phase of the mechanical waves inside the B layer generated from the second object. Since the phase of the mechanical waves inside the B layer generated from the second object may not be made in phase or out of phase with the phase of the mechanical waves from the first object and would not be controllable, it would be advantageous to deplete the kinetic energy of the mechanical waves inside the B layer from the second object before it reaches the second layer of the two-layer panel. It also applies to depletion of the mechanical waves from the first object coming out of the second layer heading toward the second object. One way of depletion of the kinetic energy of the mechanical waves inside the B layer is to make the B layer retain gas in a natural state and reversibly release the gas to ambient air upon collapsible compression of the B layer. Of materials transferring kinetic energy from the mechanical waves, air (gas) has by far a lowest density of molecules per area, thereby having a lowest index of transfer function as a medium for the mechanical waves. A fraction of the kinetic energy of the mechanical waves from the second object toward the first object will be released from the B layer before impacting the second layer of the two-layer medium panel and a fraction of of the kinetic energy of the mechanical waves from the first object toward the second object similarly will be released from the B layer before impacting the A layer. The depletion of the mechanical waves by releasing the gas can also be applied to the first layer of the two-layered medium panel and the A layer, except for the second layer of the two-layered medium panel. A main role of the second layer is to protect the second object against mechanical damage such as fracture of a human skull.
In one embodiment to improve on efficiency of a protective headgear in reduction of an amplitude of mechanical waves of a blunt trauma to a human brain, a basic motif of the present invention for the protective headgear comprises an at-least four-layer shell having a first and outermost layer being softer than a second layer which is hardest and made undeformable, an innermost layer being softer than a human skull, and a third layer in between the innermost layer and the undeformable second layer. The third layer in between the innermost layer and the second layer is softer than the innermost layer and the second layer. All three layers except the second layer are to an extent compressible and depressibly deformable by an impact of the blunt trauma at an angle to a planar surface of each layer. Each layer is configured to have a measurable thickness and to be placed next to adjacent layers tightly without a gap.
In one embodiment, the second layer is made of a combination of hard polymers such as polycarbonate, ethylene propylene diene, fluropolymers, or styrene-butadiene-styrene block copolymer. The hard polymers of the second layer are made to have a Rockwell R value of higher than 140 so as to withstand a blunt impact without deformation of a planar surface of the second layer over a gravitational force up to 300 g±30 g (10% S.D.) and over a range of temperature from 0° F. to 175° F. without material failure. The second layer is configured in a hemispherical bowl shape to enclose the third layer.
In one embodiment, the outermost and innermost layers are made of a polymer foam which is configured in a closed-cell structure to achieve a high ratio of indentation force deflection to density. Examples of the polymer foam include polyolefin foams, polyethylene foams, and flexible polyurethane foams. Ideally the polymer foam for both the outermost and innermost layers has a 25% indentation force deflection value of higher than 45 and a foam support factor of higher than 3.0. The outermost layer is configured to have a Rockwell R value ranging from 70 to 140. The innermost layer is configured to have a hardness of a Shore D scale value of between 65 and 90, as a Shore D scale value of bone is known to be just below 100. The outermost layer in the hemispherical bowel shape adherently encloses the second layer. The innermost layer in a similar hemispherical bowel shape is configured to enclosably cover an area of the human head comprising a part of frontal, an entire parietal, a majority of temporal and occipital regions.
In one embodiment, the third layer is made of a polymer foam in a flexible open-cell configuration so as to release a portion of transmitted mechanical waves to an ambient air. Examples of the polymer foam include open-cell polyester-urethane foams, open-cell polyurethane foams, open-cell polyolefin foams, and open-cell polyethylene foams. The polymer foam for the third layer has a 25% indentation force deflection value of higher than 45 and a foam support factor of between 1.5 and 3.0. The third layer is configured to have a hardness of a Shore D scale value of at least 10 below the Shore D scale value of the innermost layer. The third layer is configured in a similar hemispherical bowel shape to that of the second layer and is configured to be tightly encased in a hemispherical space provided by the second layer and the innermost layer. A circumferential rim of the third layer and an encircling margin of a plurality of fenestrations of the third layer is configured to be fixedly adhered to a corresponding rim and a corresponding encircling margin of a plurality of fenestrations of the second layer and of the innermost layer, respectively, leaving the rest of surface of the third layer unattached so as to assist movement of air in and out of open cells of the third layer.
As described below, the present invention provides a mechanical-waves attenuating protective headgear. It is to be understood that the descriptions are solely for the purposes of illustrating the present invention, and should not be understood in any way as restrictive or limited. Embodiments of the present invention are preferably depicted with reference to
Since the collision is a bidirectional process, the human head (not shown) collides the innermost layer 20 in an opposite direction 22 toward the colliding object (not shown) at a time of the collision with the colliding object, thereby generating its' own incident mechanical waves 32 heading toward the outermost layer 17. At the boundary between the innermost layer 20 and the third layer 19, a part of the incident mechanical waves 32 is reflected off as reflected mechanical waves 33 and a part of the mechanical waves 32 is transmitted as transmitted mechanical waves 34 heading toward the boundary between the third layer 19 and the second layer 18. In the third layer 19, a part of the mechanical waves 34 is released from the third layer as mechanical waves 36 to the ambient air, which is coincided with the collapsing compression of the third layer 19. Another part of the mechanical waves 34 is reflected off at the boundary between the third layer 19 and the second layer 18 heading back in the direction of 21. A remaining part of the mechanical waves 34 is transmitted through the second layer 18 as transmitted mechanical waves 37 moving toward the boundary between the second layer 18 and the outermost layer 17. At the boundary between the second layer 18 and the outermost layer 17, the transmitted mechanical waves 37 is reflected off as reflected mechanical waves 38. A remaining part of the mechanical waves 37 is transmitted to an outer surface of the outermost layer 17 as transmitted mechanical waves 39. A part of the mechanical waves 39 is reflected off at the outer surface of the outermost layer 17 as reflected mechanical waves 40. A sum of these incident, reflected and transmitted mechanical waves is represented as final incident mechanical waves 41 in the direction of 21 to the human head receiving the impact of the blunt trauma of the collision.
Similarly, the incident mechanical waves 32 from the human head (not shown) move toward the colliding object (not shown) and are reflected off at the boundary 44 between the innermost layer and the third layer. Since the hardness of the third layer is lower than that of the innermost layer, the reflected mechanical waves 33 is in phase with the mechanical waves 32, which results in a higher amplitude of the transmitted mechanical waves 34 through the third layer. The reflected mechanical waves 35 at the boundary 43 between the third layer and the second layer merges with the mechanical waves 34 in a reverse phase. Additionally, a part of the mechanical waves 34 is released to the ambient air as the mechanical waves 36, thereby reducing a part of the amplitude of the transmitted mechanical waves 37 to the second layer. The transmitted mechanical waves 37 are reflected off as the mechanical waves 38 in phase with the transmitted mechanical waves 37, which increases am amplitude of the transmitted mechanical waves 39 to the outermost layer. At an outer surface 46 of the outermost layer, the transmitted mechanical waves 39 are reflected off as the reflected mechanical waves 40 in a reverse phase as a hardness of the colliding object is higher than that of the outermost layer. Merging of two mechanical waves 39 and 40 together reduces an amplitude of transmitted mechanical waves (not shown) in the direction of 22 to the colliding object (not shown).
It is to be understood that the aforementioned description of the apparatus is simple illustrative embodiments of the principles of the present invention. Various modifications and variations of the description of the present invention are expected to occur to those skilled in the art without departing from the spirit and scope of the present invention. Therefore the present invention is to be defined not by the aforementioned description but instead by the spirit and scope of the following claims.