The present invention relates to projection displays and more specifically to the cooling of the spatial light modulators used in such displays.
Projection display systems tend to operate in a high temperature environment due to the internal lamp assembly used to provide illumination flux to the system. A particularly critical component is the spatial light modulator (SLM), such as a DMD or other micro-electro mechanical system device, where the illumination is focused on to its surface to be modulated and then reflected onto a display screen. It is essential that these devices be properly cooled to a specified operating temperature range for reliable, long life operation of the projector.
Traditionally, projection display devices have been cooled by attaching an air-cooled heat sink to the SLM. Heat dissipated in the SLM is then transferred to the air surrounding the heat sink, which is enclosed inside the projector chassis and often preheated by other components relative to the ambient air temperature outside the projector. A typical conventional cooling approach is shown in
Other methods conduct heat directly from the display device to the system's chassis wall so that heat is transferred from the chassis wall to the lower temperature ambient air surrounding the outside of the system. However, due to manufacturing tolerances in the parts, these approaches do not always provide optimal contact at the interfaces along the thermal path.
As projection systems become smaller, reducing the available space for cooling systems, and the light sources become brighter, improved display device cooling is required.
What is needed is an adjustable mechanism that allows the space between the SLM and the chassis wall to be tightly closed, thereby assuring a good thermal path. The solution of the present invention meets this need by providing a direct thermal path between the SLM package and the chassis wall, which consists of an adjustable mechanical linkage. Multiple embodiments of adjustable mechanical linkages are disclosed herein.
The present invention discloses a method and mechanical adjustable mechanism for cooling a display device. The display device, typically a spatial light modulator such as a micromirror device, has extremely bright light focused on its surface and is mounted inside a closed case or chassis. The mechanically adjustable thermal path conducts heat from the display device directly to the system's chassis wall where the heat is then transferred to the lower temperature ambient air. Providing a reliable mechanical conductive path reduces or eliminates the need for large heat sinks and noisy cooling fans found in many conventional projection systems.
The method uses an adjustable mechanical linkage to close the gap between the display device package, or a heat sink stud attached to the package, and the chassis wall. This provides a good thermal path for the heat to conduct out of the display device and then transfer to the lower temperature ambient air.
According to one embodiment of the present invention, two wedges are positioned to take up the variation in the gap and thereby provide good thermal contact between the display device and the chassis wall. Care is taken to fabricate all mechanical parts along the adjustable thermal path out of thermally conductive material. Thermal grease or other thermal interface substance may be used at all mechanical interfaces.
According to another embodiment of the present invention, a method for transferring heat from a component mounted on a printed wiring board inside a closed chassis to ambient air outside the chassis is provided. The method comprising: providing the component; providing the chassis; and coupling the component to a wall of said chassis by means of an adjustable thermal linkage thereby providing a thermal path between the component and the chassis.
According to yet another embodiment of the present invention, a spatial light modulator projection display system is provided. The display system comprising: a light source for producing a beam of light along a first light path; a spatial light modulator for receiving and modulating the light along the first light path; a system chassis; and an adjustable thermal linkage between the spatial light modulator and the system chassis for conducting heat from the spatial light modulator to the system chassis.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
a and 2b are internal views of a portion of a projection display system illustrating the concept of the present invention for removing heat by conduction from a projection device by means of an adjustable mechanical linkage, to take up the tolerance between the projection device package and the wall of the chassis, and then by transferring heat to the lower temperature ambient air.
a and 3b are internal views of a portion of a projection display system showing one embodiment of the present invention in which an adjustable linkage is comprised of two wedges positioned to expand to bridge the gap and make good thermal contact between the light modulator package and the display system chassis wall.
a is an internal view of a portion of a projection display system showing a fourth embodiment of the present invention in which a threaded device is used to bridge the gap and make good thermal contact between the light modulator package and the chassis wall.
b is a perspective view of the threaded device of
This invention discloses a method and mechanism for cooling a display device by conducting heat from the device to the chassis walls where the heat is then transferred to the lower temperature air of the ambient surroundings. This approach reduces or reduces the need for large heat sinks and noisy cooling fans found in many conventional projection systems. The mechanism uses an adjustable mechanical linkage to bridge the gap between the projection device package and the chassis wall. The adjustable mechanical linkage provides good thermal contact between the projection device package and the chassis wall to enable heat to be conducted to the chassis wall.
a illustrates the concept of the adjustable cooling mechanism of the present invention. This shows the mechanical linkage in an inactivated state, before it has been adjusted. The display device package 200, which usually contains an SLM covered by an optically transparent cover glass 202, is mounted on a printed wiring board (PWB) 204. An adjustable mechanical linkage 208 contacts an optional heat sink stud 206 at interface 216, or contacts the device package 200 directly at interface 217. The linkage 208 is placed between the device package 200, or the stud 206, and the wall 212, and is adjusted to make its length 210 longer to close the gap 214.
b shows the mechanism of
Thermal studs are widely used in prior art embodiments such as that shown in
Once thermal contact has been made at the device package or stud and wall interfaces 216 or 217 and 218, heat from the display device is conducted 220 along this thermal path and out into the chassis wall 212, where it is then transferred 222 to the lower temperature ambient air, thereby effectively removing heat from the display device. All the metal parts along the critical heat path are fabricated from high thermal conductivity materials such as aluminum, aluminum alloys, magnesium, and magnesium alloys. Thermal grease or other thermal interface substance may be used at all mechanical interfaces along the path, although metal-to-metal contact may provide an adequate thermal path in some cases.
a and 3b are drawings showing the adjustable linkage for another embodiment of the present invention, where the adjustable linkage is comprised of two wedges that are positioned to bridge the gap and make good thermal contact between the device package and the chassis wall.
b shows the mechanism of
a and 6b are perspective views showing a fourth embodiment of the present invention. In
To bridge the gap between the heat sink stud 606 and the chassis wall 610, the threaded device 608 is expanded in length 622 by rotating 618 the internally threaded portion 614 relative to the externally threaded portion 616 until firm contact is made at interface 623/624 between the flat end surface 620 of the externally threaded portion 614 and the device package 600 or optional heat sink stud 606, thereby creating a thermal path between the device package 600 and the chassis wall 610. Optionally, the threaded device 608 can make direct contact with the device package 600, eliminating the need for the heat sink stud 606. As in the case of the other embodiments, all the metal parts along the critical heat path are fabricated from high thermal conductivity materials such as aluminum, aluminum alloys, magnesium, and magnesium alloys. Thermal grease or other thermal interface substance may be used at all mechanical interfaces along the path.
Projection displays equipped with the SLM device cooling method of the present invention will be more reliable, and have a longer operating life.
Test results taken for the adjustable wedge linkage according to the embodiment of the present invention shown in
Additionally, an example of thermal resistance data for a 4 Watt thermal load is shown in Table 2.
In this example, where the adjustable thermal linkage of the present invention is used with 4.0 watts of heat dissipation, a temperature differential from stud to chassis wall of 33.7−28.3=5.4° C. and a thermal resistance of 5.4° C./4.0 W=1.35° C./W were measured.
While this invention has been described in the context of several embodiments, it will be apparent to those skilled in the art that the present invention may be modified in numerous ways and may assume embodiments other than that specifically set out and described above. Accordingly, it is intended by the appended claims to cover all modifications of the invention that fall within the true spirit and scope of the invention.
This application claims priority under 35 U.S.C. § 119(e)(1) of provisional application No. 60/325,905 filed Sep. 28, 2001.
Number | Name | Date | Kind |
---|---|---|---|
4298904 | Koenig | Nov 1981 | A |
4751963 | Bui et al. | Jun 1988 | A |
5991153 | Heady et al. | Nov 1999 | A |
6246582 | Habing et al. | Jun 2001 | B1 |
6257328 | Fujiwara et al. | Jul 2001 | B1 |
6428170 | Haba | Aug 2002 | B1 |
6447121 | Woo | Sep 2002 | B1 |
6540364 | Takizawa et al. | Apr 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20030085659 A1 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
60325905 | Sep 2001 | US |