Mechanically-driven, sonic toothbrush system

Information

  • Patent Grant
  • 8943634
  • Patent Number
    8,943,634
  • Date Filed
    Wednesday, May 2, 2012
    12 years ago
  • Date Issued
    Tuesday, February 3, 2015
    9 years ago
Abstract
A sonic toothbrush system includes an electric motor, a brush shaft, and a drive assembly. The electric motor includes a drive shaft. When the electric motor is caused to operate, the drive shaft continuously rotates until the motor is caused to stop. The drive assembly is coupled between the drive shaft and the brush shaft. The drive assembly is configured to convert the rotation of the drive shaft into sonic oscillation of a toothbrush head supported on an end of the brush shaft.
Description
TECHNICAL FIELD

The present disclosure relates to oral health products. More specifically, the present invention relates to sonic toothbrush systems.


BACKGROUND

The state of the art in sonic toothbrush technology centers around drive systems that create a desired oscillating toothbrush output motion by using electro-magnetic drivers and centering return springs to directly create oscillating motion. No continuous input rotation or drivers are involved in these electro-magnetic systems and such electro-magnetic systems have a relatively high production cost.


There are also currently many toothbrushes that provide oscillating output brush motion from continuously rotating input drivers. Such mechanically-driven toothbrushes typically have a reduced manufacturing cost as compared to toothbrushes employing electro-magnetic drivers. However, such rotating systems all perform the oscillating function at speeds well below sonic level. There are no continuously rotating input drive systems that operate at sonic speeds.


The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention as defined in the claims is to be bound.


SUMMARY

One exemplary implementation of a mechanically-driven, sonic toothbrush includes an electric motor, a brush shaft, and a drive assembly. The electric motor may be a continuously rotating input driver (e.g., a DC motor) that drives a specifically balanced drive assembly with a linkage system to change the continuous rotation of the input driver into the desired oscillating output motion which drives the attached toothbrush head at a sonic speed(s). The electric motor includes a drive shaft. When the electric motor is actuated, the drive shaft continuously rotates until the motor is arrested. The drive assembly is coupled between the drive shaft and a brush shaft. The drive assembly is configured to convert the rotation of the drive shaft into sonic oscillation of a toothbrush supported on an end of the brush shaft.


In another implementation of the sonic toothbrush system, the drive assembly includes a coupler and an eccentric pin. The coupler has a first end and a second end. The first end is operably coupled to the brush shaft and the eccentric pin is rotationally received within the second end. The rotation of the drive shaft causes the eccentric pin to rotate within the second end. The rotation of the eccentric pin causes the coupler to oscillate.


In a further exemplary implementation, a sonic toothbrush may have an electric motor including a drive shaft, a brush shaft, and a drive assembly. When the electric motor is caused to operate, the drive shaft continuously rotates until the motor is caused to stop. The drive assembly may be coupled between the drive shaft and the brush shaft and configured to convert the rotation of the drive shaft into sonic oscillation of a toothbrush head supported on an end of the brush shaft.


In an additional exemplary implementation, a sonic toothbrush may provide oscillating bristle motion. The sonic toothbrush may include a continuously rotating drive system, a brush shaft, and a linkage between the drive system and the brush shaft that provides oscillating, sonic speed output motion to the brush shaft with an extremely low level of mechanical vibration and noise.


In yet another exemplary implementation, a method of designing a sonic toothbrush is disclosed. The sonic toothbrush may have a continuously rotating drive system, a brush shaft, and a linkage between the drive system and the brush shaft. The method may involve performing a finite element analysis on the linkage and then determining a weight distribution in the linkage based upon the finite element analysis to position a center of mass of the linkage and impart a balance or a selected imbalance to the linkage. The method may further involve adjusting one or more replaceable weights within the linkage to alter the center of mass or alter the selected imbalance.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present invention as defined in the claims is provided in the following written description of various embodiments of the invention and illustrated in the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a brush end isometric view of an exemplary implementation of a mechanically-driven, sonic toothbrush system.



FIG. 2 is a side view of the mechanically-driven, sonic toothbrush system of FIG. 1 with the housing removed.



FIG. 3 is a bottom isometric view of the mechanically-driven, sonic toothbrush system of FIG. 1 with the housing removed.



FIG. 4 is a top isometric view of the drive bracket of the mechanically-driven, sonic toothbrush system of FIG. 1 and the components supported thereon.



FIG. 5 is a bottom isometric view of the drive bracket of the mechanically-driven, sonic toothbrush system of FIG. 1 and the components supported thereon.



FIG. 6 is a top isometric view of the of the mechanically-driven, sonic toothbrush system of FIG. 1 drive bracket and the components supported thereon.



FIG. 7 is a partially exploded view of the drive bracket of the mechanically-driven, sonic toothbrush system of FIG. 1 and the components supported thereon.



FIG. 8 is a front isometric view of the brush shaft, drive assembly, and motor of the mechanically-driven, sonic toothbrush system of FIG. 1 mechanically coupled together for operation.



FIG. 9 is the same view as FIG. 8 with the motor, rear bearing, and bushing removed.



FIG. 10 is an exploded isometric view of the drive assembly and brush shaft of the mechanically-driven, sonic toothbrush system of FIG. 1.



FIG. 11 is an exploded, front isometric view of the main components of the drive assembly of the mechanically-driven, sonic toothbrush system of FIG. 1.



FIG. 12 is an exploded, side isometric view of the main components of the drive assembly of the mechanically-driven, sonic toothbrush system of FIG. 1.



FIG. 13 is an exploded rear isometric view of the main components of the drive assembly of the mechanically-driven, sonic toothbrush system of FIG. 1.



FIG. 14 is generally the same isometric view of the motor, drive assembly, and brush shaft as depicted in FIG. 8, further depicting a cross section extending through the axis of the motor drive shaft and the eccentric pin.



FIG. 15 is generally the same isometric view of the motor, drive assembly and brush shaft as depicted in FIG. 8, further depicting a cross section extending through the axis of the pivot pin of the rocker arm.





DETAILED DESCRIPTION

Several exemplary embodiments of a mechanically-driven, sonic toothbrush system are disclosed herein. The sonic toothbrush system makes use of a continuously rotating input driver (e.g., a DC or AC motor) that operates a balanced linkage system to change the continuous rotation of the input driver into a desired oscillating output motion, which drives the attached toothbrush head at a sonic speed or speeds.


The mechanically-driven, sonic toothbrush system may have a lower production cost than the current electro-magnetic sonic toothbrush systems due to the use of DC drive motors for input drive motion and the use of relatively inexpensive molded plastic components. The mechanically-driven, sonic toothbrush system, due in part to its balance weights, allows its mechanical drive to provide sonic output motion with a low level of vibration and noise. The weights (i.e., plugs or other components of a selected mass) can be tailored to produce these reduced vibration and noise levels at various output oscillation speeds, from sub-sonic through sonic. This tailored weight aspect of the mechanical drive allows a single basic system design to be used for a wide range of sub-sonic through sonic brush outputs and models by changing the balance components during brush manufacture.


Thus, the exemplary mechanically-driven, sonic toothbrush systems disclosed herein may provide a continuously rotating input drive system that provides oscillating, sonic-speed toothbrush output motion with an extremely low level of mechanical vibration and noise. Also, the exemplary mechanically-driven, sonic toothbrush systems disclosed herein provide a sonic toothbrush system at a reduced production cost.


The use of “sonic” or “sonic speed” herein refers to the frequency of oscillation of the brush head of the toothbrush and means that such frequency is within the range of sound frequencies (i.e., between 20 Hz and 20,000 Hz). Typically, sonic toothbrushes operate at a range of between 200 and 300 cycles per second. In exemplary implementations of the disclosed mechanically-driven, sonic toothbrush system disclosed herein, the motor may operate at between 200 and 300 rotations per second (i.e., between 12,000 and 18,000 rpm).


An exemplary embodiment of a mechanically-driven, sonic toothbrush system 10 disclosed herein is depicted in FIG. 1, which is a brush end isometric view of the system 10. As shown in FIG. 1, the system 10 includes a brush end 12, a base end 14 opposite the brush end, a housing 16 extending between the ends 12, 14 and forming the surface of the system 10, and a generally flat base 18 on which the system 10 may be stood upright on a planar surface, such as a countertop. A brush shaft 20 extends out of the housing 16 at the brush end 12 from the system drive assembly enclosed by the housing 16 and discussed below. A shaft seal 21 extends about the shaft 20 between the housing 16 and shaft 20 at the brush end 12 and is configured to allow the shaft 20 to oscillate while preventing the ingress of fluids into the interior of the housing.


The housing 16 may be generally cylindrically shaped to ergonomically fit in the hand of a user. The cylindrical shape may taper in the direction of the brush end 12 approximately one third the length of the housing 16 from the brush end 12. A control button 22 is supported on the housing 16 and actuates the system drive assembly between on and off and additionally, in some instances, between a range of speeds. A face plate 23 is supported on the housing 16 in a region extending about the control button 22. A toothbrush 25 (shown in phantom lines) is mounted on the end of the brush shaft 20. The toothbrush 25 includes a plurality of bristles 27.


As shown in FIGS. 2 and 3, which are, respectively, a side view and a bottom isometric view of the system 10 with the housing 16 removed, the system 10 includes an internal support structure formed by a chassis 24 extending towards the base end 14 and a drive bracket or chassis 26 extending towards the brush end 12. An induction coil 28 is wound around a bobbin and is located between the interior side of the flat base 18 and a base end 14 side of the chassis 24. A rechargeable battery pack 30 is electrically coupled to the induction coil 28 and supported in a pocket of the chassis 24 on a brush end 12 side of the charger coil 28.


As illustrated in FIGS. 2 and 3, an electric DC motor 32 is supported off of the chassis 24 and drive bracket 26 near the overlap of these structures. The motor 32 is electrically coupled to the battery pack 30 via electrical control circuits 33 of a printed circuit board 34 supported off of the chassis 24 and drive bracket 26. The electrical control circuits 33 are actuated via the control button 22 to cause the motor 32 to operate at different states (e.g., on, off, high speed, low speed, etc.). In one embodiment, the electrical control circuits 33 controlling the motor 32 include one or more trim pots that allow precise control of frequency and motor speed.


As depicted in FIGS. 4 and 5, which are, respectively, a top isometric view and a bottom isometric view of the drive bracket 26 and the components supported thereon, the system drive assembly 36 is supported within a pocket of the drive bracket 26. The drive assembly 36 mechanically couples the output shaft 37 of the motor 32 to the brush shaft 20 to cause the brush shaft 20 to oscillate at sonic speeds when the motor 32 causes its output shaft 37 to continuously rotate.


As illustrated in FIGS. 6, 7 and 10, which are, respectively, a top isometric view and first and second partially exploded views of the drive bracket 26 and the components supported thereon, the drive bracket 26 includes a front bearing ring 38 and a rear bearing ring 40. The rear bearing ring 40 may be multi-piece with a bearing bracket 41 forming the upper portion of the bearing ring 40 mounted to the drive bracket 26, which forms the lower portion of the rear bearing ring 40. The front bearing ring 38 includes a bushing or bearing 42, and the rear bearing ring 40 includes a bushing or bearing 44. The bearings 42, 44 may be ball or roller type bearings in some embodiments. The bearing 44 of the rear bearing ring 40 supports the rear end of the brush shaft 20, and the bearing ring 42 of the front bearing ring 38 supports the brush shaft 20 near the midpoint of the brush shaft 20.


As can be understood from a comparison of FIGS. 4 and 5 to FIG. 6, an isolator damper 46 extends about the front bearing ring 38 and acts to vibrationally isolate the moving components of the system 10 from the housing 16 that surrounds the damper 46 and moving components of the system 10.


As shown in FIG. 8, which is a front isometric view of the brush shaft 20, the drive assembly 36 and the motor 32 are mechanically coupled together for operation. The bearings 42, 44 support the shaft 20 and the rear end of the shaft 20 is received in a rocker arm 48 forming a front end of the drive assembly 36. Also, the motor output shaft 37 extends into a motor crank arm 50 forming a rear end of the drive assembly 36. The motor crank arm 50 is coupled to the rocker arm 48 via a dog bone coupler 52. An eccentric pin 53 extends from the motor crank arm 50 and through a lower portion of the coupler 52 to be received in a support bushing 54. The eccentric pin 53 acts as a cam and causes the lower portion of the coupler 52 to revolve about the axis of the motor shaft 37.


As indicated in FIG. 9, which is the same view as FIG. 8, with the motor 32, the rear bearing 44, and the bushing 54 removed, the front end of the brush shaft 20 is configured to engage with a brush head (not shown). For example, the brush shaft 20 may include a flat region 56 at its front end. The rear end of the brush shaft 20 is configured to engage 48 with the rocker arm 48. For example, the brush shaft 20 may include a flat region 58 at its rear end.


As shown in FIG. 10, which is an exploded isometric view of the drive assembly 36 and the shaft 10, the motor crank arm 50 includes balance weights 60 that are fixedly received in apertures 61 in the motor crank arm 50, as indicated by dashed lines identified at A and A′. Similarly, the rocker arm 48 includes a balance weight 62 that is fixedly received in an aperture 63 in the rocker arm 48, as indicated by the dashed line identified at B. The weights 60, 62 may act to counterbalance the components of the drive assembly 36 on which the weights 60, 62 are mounted to reduce noise and vibration in the drive assembly 36.


As illustrated in FIG. 10, a rearward end 53′ of the eccentric pin 53 is fixedly received in the motor crank arm 50, as indicated by the dashed line identified at C. An enlarged diameter eccentric mid portion 53″ of the eccentric pin 53 is rotationally received in a bearing 66, which is fixedly received in a lower aperture 65 of the dog bone coupler 52, and the forward end 53′″ of the eccentric pin 53 is rotationally received in the bushing 54. All of this indicated by the dashed line identified at D. The pivot pin 67 of the rocker arm 48 is pivotally or oscillatingly received in a bearing 68, which is fixedly received in an upper aperture 69 of the dog bone coupler 52, as indicated by the dashed line identified at E. Finally, as explained above, the brush shaft 20 is pivotally or oscillatingly located within the bearings 42, 44, and the rearward end of the shaft 20 is fixedly received in an aperture 70 the rocker arm 48, all of this indicated by the dashed line identified at F.


For a discussion of the features of some of the main components of the drive assembly 36, reference is made to FIGS. 11, 12 and 13. FIG. 11 is an exploded, front isometric view of the main components of the drive assembly 36. FIG. 12 is an exploded, side isometric view of the main components of the drive assembly 36. FIG. 13 is an exploded, rear isometric view of the main components of the drive assembly 36. As illustrated in FIGS. 11, 12 and 13, the motor crank arm 50 includes a central axis aperture 71, a dual lobe portion 72, a cylindrical portion 74, a conical portion 76, and apertures 61 for receiving the balance weights 60. The lobe portion 72 has a small lobe 78 and a large lobe 80 opposite the central axis aperture 71 from the small lobe 78. The lobes 78, 80 each include a weight-receiving aperture 61, generally centered in the respective lobe 78, 80. The cylindrical portion 74 extends rearward of the lobe portion 72 and the conical portion 76 extends forward of the lobe portion 72. The central axis aperture 71 extends rearward to forward through the motor crank arm 50, starting at the most rearward face of the cylindrical portion 74 and ending at the most forward face of the conical portion 76. The central axis aperture 71 is generally coaxial with the axis of the cylindrical portion 74.


As depicted in FIGS. 11, 12 and 13, the rocker arm 48 includes a lobed portion 82, a cylindrical portion 84, and a central axis aperture 70. The cylindrical portion 84 extends forwardly from the lobed portion 82. The central axis aperture 70 is generally coaxial with the axis of the cylindrical portion 84 and is shaped to fixedly engage the rearward end of the brush shaft 20, for example, the central axis aperture 70 may have a flat region 88 to correspond to the flat region 58 of the brush shaft and may further have a slot or keyway 89 to provide an additional engagement feature). The lobed portion 82 includes a tapered lobe 90 and a rounded lobe 92 opposite the central axis aperture 61 from the tapered lobe 90. The tapered lobe 90 includes a pivot pin 67 extending rearward from the tapered lobe 90 and having an axis generally parallel to the axis of the central axis aperture 70. The rounded lobe 92 includes a weighted region 94 of increased thickness extending rearward from the rounded lobe 92 and having the aperture 63 for receiving the weight 62.


As indicated in FIGS. 11, 12 and 13, the eccentric pin 53 includes a rearward end shaft 53′, an enlarged diameter eccentric mid portion 53″, and a forward end shaft 53′″. The rearward end shaft 53′ extends rearward from the mid portion 53″, and the forward end shaft 53′″ extends forward from the mid portion 53″. As can be understood from FIGS. 11, 12 and 13, the rearward end shaft 53′ and the forward end shaft 53″ share a common pivot axis, while the enlarged eccentric mid portion 53″ is eccentric relative to the forward and rearward end shafts 53′, 53′″ and has a pivot axis offset, but parallel to, the common pivot axis of the forward and rearward end shafts 53′, 53′″.


As shown in FIGS. 11, 12 and 13, the dog bone coupler 52 may have an hourglass shape and include a first rounded end portion 96 (motor crank arm engaging portion) extending into a reduced diameter mid portion 98 that extends into a second rounded end portion 100 (rocker arm engaging portion). The first end portion 96 includes an aperture 65 that receives the conical portion 76 of the motor crank arm 50 and the eccentric pin 53. The second end portion 100 includes an aperture 69 that receives the pivot pin 67 of the rocker arm 48. In one embodiment, the bearing 66 used in the dog bone coupler 52 is a model R 133ZZS and the bearing 44 utilized for the output brush shaft 20 is a model MR 104ZZ ball bearing.


For a discussion of the operation of the drive assembly 36, wherein continuous rotation of the motor drive shaft 37 in a single rotational direction results in the drive assembly 36 causing the brush shaft 20 to oscillate back and forth, reference is made to FIGS. 8, 14 and 15. FIG. 14 is generally the same isometric view of the motor 32, drive assembly 36 and brush shaft 20 as depicted in FIG. 8, except a cross section is shown extending through the axis of the motor drive shaft 37 and the eccentric pin 53. FIG. 15 is generally the same isometric view of the motor 32, drive assembly 36, and brush shaft 20 as depicted in FIG. 8, except a cross section extending through the axis of the pivot pin 67 of the rocker arm 48 is shown.


As can be understood from FIGS. 8 and 14, once the motor 32 is actuated by the control button 22 to turn on and run, the motor drive shaft 37, which is fixedly received in the central axis aperture 71 (see FIGS. 11-13) of the motor crank arm 50, rotates continuously in a single rotational direction until the control button 22 is turned to off to stop the motor 32. The rearward end shaft 53′ of the eccentric pin 53 is fixedly received in the central axis aperture 71 of the crank arm 50. The enlarged eccentric mid portion 53″ of the eccentric pin 53 is rotationally received within the bearing 66, which is fixedly received in the aperture 65 (see FIGS. 11-13) of the dog bone coupler 52. The forward end shaft 53′″ of the eccentric pin 53 is rotationally received in the bushing 54, which is mounterd in a fixed position on the drive bracket 26 as shown in FIG. 3. Thus, the rotating motor drive shaft 37 causes the motor crank arm 50 and eccentric pin 53 to rotate in the same direction. Thus, the enlarged eccentric mid portion 53″ and the forward end shaft 53′″ of the eccentric pin 53 rotate in the same direction, respectively, within the bearings 66, 54. The rotation of the enlarged eccentric mid portion 53″ causes the dog bone coupler 52 to move back and forth or, in other words, oscillate.


As can be understood from FIGS. 8, 14 and 15, the pivot pin 67 is pivotally or oscillatingly received in the bearing 68, which is fixedly received in the aperture 69 (see FIGS. 11-13) of the dog bone coupler 52. Thus, the back and forth or oscillating displacement of the dog bone coupler 52 causes the tapered lobe 90 to displace back and forth or oscillate about the axis of the central axis aperture 70 (see FIGS. 11-13) of the rocker arm 48. As a result, the rocker arm 48 and the brush shaft 20 are caused to pivot back and forth or oscillate about the longitudinal axis of the shaft 20.


As can be understood from the preceding discussion, in some embodiments, the drive assembly 36 used to convert the rotary motor motion into oscillating output brush shaft motion may be a four bar linkage. The required balance/imbalance of the various linkage components is related to the desired operational speed as well as the desired displacement of the oscillating output motion (i.e., different operational speeds and oscillating motion displacements employ different component balance/imbalance). In one embodiment, a design software program (e.g., finite element analysis software) may be used to calculate the desired center of mass locations of the various linkage components to minimize vibration and noise based on the desired design operational speed and displacement. The specific size and location of the balance/counterbalance weights 60, 62 for each component may then be finalized based on the mass of the material used for a component and the space constraints of the mechanism envelope in order to satisfy the desired resultant center of mass locations.


In exemplary embodiments, the motor drive shaft 50, dog bone coupler 52, rocker arm 48, and brush shaft 20 may be formed of a polymer material, while the weights 60, 62 may be formed of a metal material such as, for example, stainless steel, tungsten, etc. In other embodiments, the aforementioned drive assembly components and weights may be formed of other materials.


All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, longitudinal, front, back, top, bottom, above, below, vertical, horizontal, radial, axial, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. The exemplary drawings are for purposes of illustration only and the dimensions, positions, order and relative sizes reflected in the drawings attached hereto may vary.


The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention as defined in the claims. Although various embodiments of the claimed invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of the claimed invention. Other embodiments are therefore contemplated. It is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative only of particular embodiments and not limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.

Claims
  • 1. A toothbrush comprising an electric motor including a drive shaft, wherein, when the electric motor is caused to operate, the drive shaft continuously rotates until the motor is caused to stop;a brush shaft; anda drive assembly consisting of a bar linkage coupled between the drive shaft and the brush shaft, the bar linkage comprising a coupler having a first end operably coupled to the brush shaft and a second end;an eccentric pin rotationally received within the second end of the coupler, the eccentric pin having a rearward end shaft axially aligned with an axis of the drive shaft and a mid-portion axially offset from the axis of the drive shaft, whereinthe rotation of the drive shaft causes the eccentric pin to rotate within the second end; andthe rotation of the eccentric pin causes the coupler to oscillate to convert the rotation of the drive shaft into oscillation of a toothbrush head supported on an end of the brush shaft.
  • 2. The toothbrush of claim 1, wherein the bar linkage-further comprises a crank arm interconnected between the drive shaft and the coupler.
  • 3. The toothbrush of claim 2, wherein the crank arm is fixedly connected to the drive shaft on a first side and fixedly connected to the rearward end shaft of the eccentric pin on a second side opposite the first side.
  • 4. The toothbrush of claim 2, wherein the crank arm further comprises an additional weight component to alter a center of mass of the bar linkage and impart a balance or an imbalance to the bar linkage.
  • 5. The toothbrush of claim 1, wherein the bar linkage further comprises a rocker arm pivotably interconnected between the coupler and the brush shaft.
  • 6. The toothbrush of claim 5, wherein the rocker arm pivotably connects to the coupler at a first axis of rotation and the brush shaft pivotably connects to the coupler at a second axis of rotation.
  • 7. The toothbrush of claim 5, wherein the rocker arm further comprises an additional weight component to alter a center of mass of the bar linkage and impart a balance or an imbalance to the bar linkage.
  • 8. The toothbrush of claim 1, wherein the bar linkage further comprises a crank arm interconnected between the drive shaft and the coupler;a rocker arm interconnected between the coupler and the brush shaft; andone or more additional weight components attached to either the crank arm or the rocker arm, or both, to alter a center of mass of the drive assembly and impart a balance or imbalance to the drive assembly.
  • 9. The toothbrush of claim 1 further comprising a handle portion housing the electric motor; anda power source housed within the handle portion and electrically connected with the electric motor.
  • 10. The toothbrush of claim 1 further comprising a bracket to which the electric motor is attached and to which the brush shaft is rotationally mounted.
  • 11. The toothbrush of claim 1, wherein the electric motor continuously rotates at a speed of between 12,000 rpm and 18,000 rpm.
  • 12. A toothbrush providing oscillating bristle motion comprising a continuously rotating drive system including a output shaft;a brush shaft; anda bar linkage between the drive system and the brush shaft, the bar linkage comprising a coupler having a first end operably coupled to the brush shaft and a second end;an eccentric pin rotationally received within the second end of the coupler, the eccentric pin having a rearward shaft axially aligned with the output shaft of the drive system and a mid-portion axially offset from output shaft of the drive system, whereinthe rotation of the output shaft causes the eccentric pin to rotate within the second end; andthe rotation of the eccentric pin causes the coupler to provide oscillating, sonic speed output motion to the brush shaft.
  • 13. The toothbrush of claim 12, wherein the linkage further comprises one or more removable mass components that may be removed and replaced with other removable mass components of differing mass to alter a center of mass of the linkage and impart a balance or an imbalance to the linkage.
  • 14. The toothbrush of claim 12, wherein the output shaft of the drive system is axially offset from an axis of the brush shaft.
  • 15. The toothbrush of claim 12, wherein the bar linkage further comprises a cam that causes a portion of the bar linkage to revolve about the output shaft of the drive system.
  • 16. The toothbrush of claim 12, wherein the oscillating motion of the brush shaft is between 200 and 300 cycles per second.
  • 17. A method of designing a toothbrush having a continuously rotating drive system, a brush shaft, and a linkage between the drive system and the brush shaft, the method comprising performing a finite element analysis on the linkage; anddetermining a weight distribution in the linkage based upon the finite element analysis to position a center of mass of the linkage and impart a balance or a selected imbalance to the linkage.
  • 18. The method of claim 17 further comprising adjusting one or more replaceable weights within the linkage to alter the center of mass or alter the selected imbalance.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority pursuant to 35 U.S.C. §119(e) to U.S. provisional application No. 61/481,357 filed 2 May 2011 entitled “Mechanically driven sonic toothbrush system,” which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (887)
Number Name Date Kind
669402 Rose Mar 1901 A
684951 Rothkranz Oct 1901 A
914501 McEachern Mar 1909 A
933718 Mahoney Sep 1909 A
958371 Danek May 1910 A
1018927 Sarrazin Feb 1912 A
1033819 McMann Jul 1912 A
1059426 Barnes Apr 1913 A
D45199 McDonagh et al. Feb 1914 S
D45572 Sarrazin Apr 1914 S
1128139 Hoffman Feb 1915 A
D49472 Dierke Aug 1916 S
1251250 Libby Dec 1917 A
1268544 Cates Jun 1918 A
1278225 Schamberg Sep 1918 A
1296067 Fuller Mar 1919 A
D53453 Lloyd Jul 1919 S
1313490 Larson Aug 1919 A
1337173 White Apr 1920 A
1355037 Dziuk Oct 1920 A
D57327 Gibson Mar 1921 S
1382681 Segal Jun 1921 A
1424879 Carlstedt Aug 1922 A
1440785 Levis Jan 1923 A
1456535 Cartwright May 1923 A
1488214 Mason Mar 1924 A
1494448 Sookne May 1924 A
1497495 Fincke Jun 1924 A
1517320 Stoddart Dec 1924 A
1527853 Ferdon Feb 1925 A
1588785 Van Sant Jun 1926 A
1639880 Butler Aug 1927 A
1657450 Barnes Jan 1928 A
1676703 Nuyts Jul 1928 A
1696835 Burnett Dec 1928 A
1703642 Sticht Feb 1929 A
1794711 Jacobs Mar 1931 A
1796641 Zimmerman et al. Mar 1931 A
1800993 Funk Apr 1931 A
1832519 Wheat et al. Nov 1931 A
1880617 White Oct 1932 A
1916641 Seeliger Jul 1933 A
1927365 Frolio Sep 1933 A
1943225 McIntyre Jan 1934 A
1992770 Rathbun Feb 1935 A
2016597 Drake Oct 1935 A
2016644 Luball Oct 1935 A
2042239 Planding May 1936 A
2044863 Sticht Jun 1936 A
D101080 Cosad Sep 1936 S
2114947 Warsaw Apr 1938 A
D113743 Kahn Mar 1939 S
D113744 Kahn Mar 1939 S
2158738 Baker et al. May 1939 A
2168964 Strasser Aug 1939 A
2206726 Lasater Jul 1940 A
2209173 Russell Jul 1940 A
2218072 Runnels Oct 1940 A
2226663 Hill et al. Dec 1940 A
2244098 Busick Jun 1941 A
2246523 Kulik Jun 1941 A
2273717 Millard et al. Feb 1942 A
2278365 Daniels Mar 1942 A
2279355 Wilensky Apr 1942 A
2282700 Bobbroff May 1942 A
2312828 Adamsson Mar 1943 A
D136156 Fuller Aug 1943 S
D139532 Trecek Nov 1944 S
D141350 Alexander et al. May 1945 S
D144163 Dolnick Mar 1946 S
2401186 Price May 1946 A
2405029 Gallanty et al. Jul 1946 A
D146271 Stavely Jan 1947 S
2414775 Stavely Jan 1947 A
2429740 Aufsesser Oct 1947 A
2450635 Dembenski Oct 1948 A
D154598 Gass Jul 1949 S
D155668 Zandberg et al. Oct 1949 S
D157669 Graves, Jr. Mar 1950 S
D160101 MacDonald Sep 1950 S
2533345 Bennett Dec 1950 A
2543999 Voss Mar 1951 A
D163707 Pifer Jun 1951 S
2558332 Artale Jun 1951 A
2567080 Pifer Sep 1951 A
2577597 Wright et al. Dec 1951 A
2583750 Runnels Jan 1952 A
2598275 Lakin May 1952 A
2618003 Robey Nov 1952 A
D169131 Fay Mar 1953 S
2651068 Seko Sep 1953 A
D170680 Del Mas Oct 1953 S
D172693 Wibbelsman et al. Jul 1954 S
D173616 Hernandez Dec 1954 S
2705335 Glassman et al. Apr 1955 A
2709227 Foley et al. May 1955 A
2722703 Green Nov 1955 A
2728928 Beeren Jan 1956 A
2734139 Murphy Feb 1956 A
2806235 Carstairs et al. Sep 1957 A
2819482 Applegate Jan 1958 A
2868215 Mechem Jan 1959 A
2875458 Tsuda Mar 1959 A
2917758 Held et al. Dec 1959 A
2931371 Petitta Apr 1960 A
2946072 Filler et al. Jul 1960 A
2962033 Lew Nov 1960 A
2977614 Demanuele Apr 1961 A
2977682 Flatray Apr 1961 A
3103027 Birch Sep 1963 A
3104405 Perrinjaquet Sep 1963 A
3106216 Kirby Oct 1963 A
D197048 Troy Dec 1963 S
D197208 Cassidy et al. Dec 1963 S
3143697 Springer Aug 1964 A
3145404 Fiedler Aug 1964 A
D199560 Thompson Nov 1964 S
D199893 Bond et al. Dec 1964 S
3159859 Rasmussen Dec 1964 A
3160902 Aymar Dec 1964 A
3168834 Smithson Feb 1965 A
3181189 Leyden May 1965 A
3183538 Hubner May 1965 A
3195537 Blasi Jul 1965 A
D202873 Husted Nov 1965 S
3220039 Dayton et al. Nov 1965 A
3229318 Clemens Jan 1966 A
3230562 Birch Jan 1966 A
D204127 Syvertson Mar 1966 S
3258805 Rossnan Jul 1966 A
3270416 Massa Sep 1966 A
3278963 Bond Oct 1966 A
3289681 Chambers Dec 1966 A
3311116 Foster Mar 1967 A
3316576 Urbrush May 1967 A
3335443 Parisi et al. Aug 1967 A
3346748 McNair Oct 1967 A
3358309 Richardson Dec 1967 A
3358314 Matibag Dec 1967 A
3359588 Kobler Dec 1967 A
3364576 Kern, Jr. Jan 1968 A
D210066 Johnson Feb 1968 S
3369265 Halberstadt et al. Feb 1968 A
3371260 Jackson et al. Feb 1968 A
D210349 Boldt Mar 1968 S
3375820 Kuris et al. Apr 1968 A
D212208 Rogers Sep 1968 S
3418552 Holmes Dec 1968 A
3421524 Waters Jan 1969 A
3430279 Hintze Mar 1969 A
3463994 Spohr Aug 1969 A
3466689 Aurelio et al. Sep 1969 A
3472045 Nelsen et al. Oct 1969 A
3472247 Borsum et al. Oct 1969 A
3474799 Cappello Oct 1969 A
3509874 Stillman May 1970 A
3535726 Sawyer Oct 1970 A
3536065 Moret Oct 1970 A
3538359 Barowski Nov 1970 A
3552022 Axelsson Jan 1971 A
3559292 Weissman Feb 1971 A
3563233 Bodine Feb 1971 A
3588936 Duve Jun 1971 A
3590814 Bennett et al. Jul 1971 A
D221823 Cook Sep 1971 S
3608548 Lewis Sep 1971 A
3642344 Corker Feb 1972 A
3651576 Massa Mar 1972 A
3660902 Axelsson May 1972 A
3667483 McCabe Jun 1972 A
3672378 Silverman Jun 1972 A
3676218 Sawyer Jul 1972 A
3685080 Hubner Aug 1972 A
3722020 Hills Mar 1973 A
3742549 Scopp et al. Jul 1973 A
3759274 Warner Sep 1973 A
3760799 Crowson Sep 1973 A
3792504 Smith Feb 1974 A
3809977 Balamuth et al. May 1974 A
3831611 Hendricks Aug 1974 A
3840932 Balamuth et al. Oct 1974 A
3847167 Brien Nov 1974 A
3851984 Crippa Dec 1974 A
D234518 Gerlich Mar 1975 S
3882364 Wright et al. May 1975 A
3902510 Roth Sep 1975 A
3903601 Anderson et al. Sep 1975 A
3939599 Henry et al. Feb 1976 A
3967617 Krolik Jul 1976 A
3973558 Stouffer et al. Aug 1976 A
3978852 Annoni Sep 1976 A
3980906 Kuris et al. Sep 1976 A
4004344 Gold et al. Jan 1977 A
4005722 Bragg Feb 1977 A
4008728 Sanchez Feb 1977 A
4010509 Huish Mar 1977 A
4014354 Garrett Mar 1977 A
4019522 Elbreder Apr 1977 A
4033008 Warren et al. Jul 1977 A
4048723 Thorup Sep 1977 A
4051571 Ayers Oct 1977 A
4064883 Oldham Dec 1977 A
4133339 Naslund Jan 1979 A
4141352 Ebner et al. Feb 1979 A
4156620 Clemens May 1979 A
4177434 Ida Dec 1979 A
D254162 Barker Feb 1980 S
4192035 Kuris Mar 1980 A
4203431 Abura et al. May 1980 A
4205664 Baccialon Jun 1980 A
4219619 Zarow Aug 1980 A
4235253 Moore Nov 1980 A
4245658 Lecouturier Jan 1981 A
RE30536 Perdreaux, Jr. Mar 1981 E
4255693 Keidl Mar 1981 A
4265257 Salyer May 1981 A
4268933 Papas May 1981 A
4271382 Maeda et al. Jun 1981 A
4271384 Beiling et al. Jun 1981 A
4271854 Bengtsson Jun 1981 A
4275363 Mishiro et al. Jun 1981 A
4288883 Dolinsky Sep 1981 A
4289486 Sargeant Sep 1981 A
4303064 Buffa Dec 1981 A
4307740 Florindez et al. Dec 1981 A
4319377 Tarrson et al. Mar 1982 A
4319595 Ulrich Mar 1982 A
4326547 Verplank Apr 1982 A
4326548 Wagner Apr 1982 A
4326549 Hinding Apr 1982 A
4331422 Heyman May 1982 A
4333197 Kuris Jun 1982 A
4336622 Teague, Jr. et al. Jun 1982 A
D265515 Levine Jul 1982 S
4338957 Meibauer Jul 1982 A
D265698 Roth Aug 1982 S
4346492 Solow Aug 1982 A
4347839 Youngclaus, Jr. Sep 1982 A
4353141 Teague, Jr. et al. Oct 1982 A
4356585 Protell et al. Nov 1982 A
4381478 Saijo et al. Apr 1983 A
4395665 Buchas Jul 1983 A
4397327 Hadary Aug 1983 A
D270972 Rosofsky Oct 1983 S
D272565 Levine Feb 1984 S
D272680 Stocchi Feb 1984 S
4429997 Matthews Feb 1984 A
4432729 Fattaleh Feb 1984 A
4434806 Givens Mar 1984 A
4442830 Markau Apr 1984 A
D274018 Usui May 1984 S
4450599 Scheller et al. May 1984 A
4455704 Williams Jun 1984 A
4458702 Grollimund Jul 1984 A
4488327 Snider Dec 1984 A
4490114 Kleesattel Dec 1984 A
4505678 Andersson Mar 1985 A
4517701 Stanford, Jr. May 1985 A
4519111 Cavazza May 1985 A
4522355 Moran Jun 1985 A
4522595 Selvidge Jun 1985 A
4543679 Rosofsky et al. Oct 1985 A
D281202 Thompson Nov 1985 S
4562413 Mishiro et al. Dec 1985 A
4564794 Kilen et al. Jan 1986 A
4571768 Kawashima Feb 1986 A
4576190 Youssef Mar 1986 A
4577649 Shimenkov Mar 1986 A
4578033 Mossle et al. Mar 1986 A
D283374 Cheuk-Yiu Apr 1986 S
4585415 Hommann Apr 1986 A
4586521 Urso May 1986 A
D284236 Collet Jun 1986 S
D284528 Jurado Jul 1986 S
4603448 Middleton et al. Aug 1986 A
4605025 McSpadden Aug 1986 A
4608019 Kumabe et al. Aug 1986 A
4610043 Vezjak Sep 1986 A
4617695 Amos et al. Oct 1986 A
4617718 Andersson Oct 1986 A
D287073 Thompson Dec 1986 S
4634376 Mossle et al. Jan 1987 A
4644937 Hommann Feb 1987 A
4655198 Hommann Apr 1987 A
4672706 Hill Jun 1987 A
D292448 Vianello Oct 1987 S
4698869 Mierau et al. Oct 1987 A
4706322 Nicolas Nov 1987 A
4706695 Urso Nov 1987 A
D294885 Mollenhoff Mar 1988 S
4729142 Yoshioka Mar 1988 A
D297467 McCann Aug 1988 S
4766630 Hegemann Aug 1988 A
4776054 Rauch Oct 1988 A
4787847 Martin et al. Nov 1988 A
4791940 Hirshfeld et al. Dec 1988 A
4800608 Key Jan 1989 A
4802255 Breuer et al. Feb 1989 A
4811445 Lagieski et al. Mar 1989 A
4820153 Romhild et al. Apr 1989 A
4820154 Romhild et al. Apr 1989 A
4827550 Graham et al. May 1989 A
4827552 Bojar et al. May 1989 A
4832063 Smole May 1989 A
D301770 Bethany Jun 1989 S
4844104 Martin Jul 1989 A
4845795 Crawford et al. Jul 1989 A
4856133 Sanchez Aug 1989 A
4864676 Schaiper Sep 1989 A
D303876 Clemens et al. Oct 1989 S
4871396 Tsujita et al. Oct 1989 A
4873496 Ohgihara et al. Oct 1989 A
4875265 Yoshida Oct 1989 A
4877934 Spinello Oct 1989 A
4879781 Desimone Nov 1989 A
4880382 Moret et al. Nov 1989 A
4887052 Murakami et al. Dec 1989 A
4892191 Nakamura Jan 1990 A
4908902 McNab et al. Mar 1990 A
4913133 Tichy Apr 1990 A
4913176 DeNiro Apr 1990 A
4922936 Buzzi et al. May 1990 A
D308765 Johnson Jun 1990 S
4974278 Hommann Dec 1990 A
4984173 Imam et al. Jan 1991 A
4989287 Scherer Feb 1991 A
4991249 Suroff Feb 1991 A
4995403 Beckman et al. Feb 1991 A
5000684 Odrich Mar 1991 A
5002487 Tichy Mar 1991 A
5007127 Paolo Apr 1991 A
5016660 Boggs May 1991 A
5020179 Scherer Jun 1991 A
5033150 Gross et al. Jul 1991 A
D318918 Hartwein Aug 1991 S
D319363 Uemura et al. Aug 1991 S
5046212 O'Conke Sep 1991 A
5050625 Siekmann Sep 1991 A
5054149 Si-Hoe et al. Oct 1991 A
D321285 Hirabayashi Nov 1991 S
5062797 Gonser Nov 1991 A
5067223 Bruno Nov 1991 A
D321986 Snyder et al. Dec 1991 S
5068939 Holland Dec 1991 A
5069233 Ritter Dec 1991 A
5069621 Paradis Dec 1991 A
5071348 Woog Dec 1991 A
5072477 Pai Dec 1991 A
5072482 Bojar et al. Dec 1991 A
5077855 Ambasz Jan 1992 A
5085236 Odneal et al. Feb 1992 A
5088145 Whitefield Feb 1992 A
D324957 Piano Mar 1992 S
5094256 Barth Mar 1992 A
5095470 Oka et al. Mar 1992 A
5100321 Coss et al. Mar 1992 A
5120225 Amit Jun 1992 A
5123841 Millner Jun 1992 A
5125837 Warrin et al. Jun 1992 A
5133661 Euvrard Jul 1992 A
5138733 Bock Aug 1992 A
5145369 Lustig et al. Sep 1992 A
5146643 Bojar et al. Sep 1992 A
5150492 Suroff Sep 1992 A
5151030 Comeaux Sep 1992 A
D330116 Crawford et al. Oct 1992 S
D330286 Curtis et al. Oct 1992 S
D330458 Curtis et al. Oct 1992 S
5152394 Hughes Oct 1992 A
5163375 Withers et al. Nov 1992 A
5165131 Staar Nov 1992 A
5167193 Withers et al. Dec 1992 A
5169313 Kline Dec 1992 A
5170809 Imai et al. Dec 1992 A
5174314 Charatan Dec 1992 A
5176157 Mazza Jan 1993 A
5177826 Vrignaud et al. Jan 1993 A
5180363 Idemoto et al. Jan 1993 A
D332873 Hall Feb 1993 S
5183063 Ringle et al. Feb 1993 A
5183156 Bruno Feb 1993 A
5184368 Holland Feb 1993 A
5184632 Gross et al. Feb 1993 A
5186191 Loubier Feb 1993 A
5188133 Romanus Feb 1993 A
5189751 Giuliani et al. Mar 1993 A
5193678 Janocik et al. Mar 1993 A
5198732 Morimoto Mar 1993 A
D334472 Curtis et al. Apr 1993 S
5201092 Colson Apr 1993 A
D335579 Chuang May 1993 S
5207773 Henderson May 1993 A
5213434 Hahn May 1993 A
5214819 Kirchner Jun 1993 A
5217031 Santoro Jun 1993 A
5224500 Stella Jul 1993 A
5226206 Davidovitz et al. Jul 1993 A
5236358 Sieffert Aug 1993 A
5245117 Withers et al. Sep 1993 A
5246022 Israel et al. Sep 1993 A
5247716 Bock Sep 1993 A
5253382 Beny Oct 1993 A
5261430 Mochel Nov 1993 A
5263218 Giuliani et al. Nov 1993 A
D341943 Si-Hoe Dec 1993 S
D342160 Curtis et al. Dec 1993 S
D342161 Curtis et al. Dec 1993 S
D342162 Curtis et al. Dec 1993 S
5267579 Bushberger Dec 1993 A
D343064 Reno Jan 1994 S
5279314 Poulos et al. Jan 1994 A
5289604 Kressner Mar 1994 A
5293886 Czapor Mar 1994 A
5294896 Kjellander et al. Mar 1994 A
D346212 Hosl Apr 1994 S
5299723 Hempel Apr 1994 A
5305492 Giuliani et al. Apr 1994 A
D346697 O'Conke May 1994 S
5309590 Giuliani et al. May 1994 A
5309591 Hägele et al. May 1994 A
5311632 Center May 1994 A
5311633 Herzog et al. May 1994 A
5315731 Millar May 1994 A
D347943 Perry Jun 1994 S
5323796 Urso Jun 1994 A
5335389 Curtis et al. Aug 1994 A
5337435 Krasner et al. Aug 1994 A
5339482 Desimone et al. Aug 1994 A
5341534 Serbinski et al. Aug 1994 A
5341537 Curtis et al. Aug 1994 A
5351358 Larrimore Oct 1994 A
5353460 Bauman Oct 1994 A
5354246 Gotman Oct 1994 A
5355638 Hoffman Oct 1994 A
5358328 Inoue et al. Oct 1994 A
D352396 Curtis et al. Nov 1994 S
D352829 Perry Nov 1994 S
5359747 Amakasu Nov 1994 A
5365627 Jousson et al. Nov 1994 A
D353490 Hartwein Dec 1994 S
5369831 Bock Dec 1994 A
5371915 Key Dec 1994 A
5373602 Bang Dec 1994 A
D354168 Hartwein Jan 1995 S
5378153 Giuliani et al. Jan 1995 A
5383242 Bigler et al. Jan 1995 A
5392483 Heinzelman et al. Feb 1995 A
5393229 Ram Feb 1995 A
5396678 Bredall et al. Mar 1995 A
5398368 Elder Mar 1995 A
5400811 Meibauer Mar 1995 A
5404608 Hommann Apr 1995 A
5406664 Hukuba Apr 1995 A
5406965 Levine Apr 1995 A
D358486 Loew May 1995 S
D358713 Perry May 1995 S
D358801 Vos May 1995 S
5411041 Ritter May 1995 A
5412827 Muller et al. May 1995 A
5416942 Baldacci et al. May 1995 A
5419346 Tipp May 1995 A
5419703 Warrin et al. May 1995 A
D358938 Schneider et al. Jun 1995 S
5421726 Okada Jun 1995 A
5435032 McDougall Jul 1995 A
5438726 Leite Aug 1995 A
5446940 Curtis et al. Sep 1995 A
D363605 Kou et al. Oct 1995 S
5459898 Bacolot Oct 1995 A
5461744 Merbach Oct 1995 A
5467494 Muller et al. Nov 1995 A
5467495 Boland et al. Nov 1995 A
5482466 Haynes Jan 1996 A
5484281 Renow et al. Jan 1996 A
5496256 Bock et al. Mar 1996 A
5499420 Boland Mar 1996 A
5504958 Herzog Apr 1996 A
5504959 Yukawa et al. Apr 1996 A
5511270 Eliachar et al. Apr 1996 A
5511275 Volpenhein et al. Apr 1996 A
D370125 Craft et al. May 1996 S
5518012 Dolan et al. May 1996 A
D370347 Heinzelman et al. Jun 1996 S
5529494 Vlacancich Jun 1996 A
D371242 Shimatsu et al. Jul 1996 S
5530981 Chen Jul 1996 A
5544382 Giuliani et al. Aug 1996 A
5545968 Hilfinger et al. Aug 1996 A
5546624 Bock Aug 1996 A
5546626 Chung Aug 1996 A
5561881 Klinger et al. Oct 1996 A
D375841 Serbinski Nov 1996 S
5573020 Robinson Nov 1996 A
5577285 Drossler Nov 1996 A
D376695 Tveras Dec 1996 S
5579786 Wolk et al. Dec 1996 A
5584690 Maassarani Dec 1996 A
5588452 Peck Dec 1996 A
5606984 Gao Mar 1997 A
5609170 Roth Mar 1997 A
5613258 Hilfinger et al. Mar 1997 A
5613259 Craft et al. Mar 1997 A
5617601 McDougall Apr 1997 A
5617602 Okada Apr 1997 A
5618275 Bock Apr 1997 A
5619766 Zhadanov et al. Apr 1997 A
5623746 Ichiro Apr 1997 A
5625916 McDougall May 1997 A
5628082 Moskovich May 1997 A
D380903 Moskovich Jul 1997 S
D381468 Dolan et al. Jul 1997 S
5651157 Hahn Jul 1997 A
D382407 Craft et al. Aug 1997 S
5652990 Driesen et al. Aug 1997 A
5653591 Loge Aug 1997 A
5678274 Liu Oct 1997 A
5678578 Kossak et al. Oct 1997 A
D386314 Moskovich Nov 1997 S
5687446 Chen et al. Nov 1997 A
5697117 Craft Dec 1997 A
5700146 Kucar Dec 1997 A
RE35712 Murayama Jan 1998 E
5704087 Strub Jan 1998 A
5709233 Boland et al. Jan 1998 A
5718667 Sugimoto et al. Feb 1998 A
5732433 Göcking et al. Mar 1998 A
5735011 Asher Apr 1998 A
5738575 Bock Apr 1998 A
5742972 Bredall et al. Apr 1998 A
5749380 Zebuhr May 1998 A
5762078 Zebuhr Jun 1998 A
5775346 Szyszkowski Jul 1998 A
5784742 Giuliani et al. Jul 1998 A
5784743 Shek Jul 1998 A
D397251 Eguchi et al. Aug 1998 S
D397254 Moskovich Aug 1998 S
5787908 Robinson Aug 1998 A
5794295 Shen Aug 1998 A
5815872 Meginniss, III et al. Oct 1998 A
5816271 Urso Oct 1998 A
5822821 Sham Oct 1998 A
5827064 Bock Oct 1998 A
D400713 Solanki Nov 1998 S
5836030 Hazeu et al. Nov 1998 A
5842244 Hilfinger et al. Dec 1998 A
5850655 Göcking et al. Dec 1998 A
5851514 Hassan et al. Dec 1998 A
D403511 Serbinski Jan 1999 S
5855216 Robinson Jan 1999 A
5862558 Hilfinger et al. Jan 1999 A
5864911 Arnoux Feb 1999 A
5864915 Ra Feb 1999 A
5867856 Herzog Feb 1999 A
5875797 Chiang et al. Mar 1999 A
5893175 Cooper Apr 1999 A
5896614 Flewitt Apr 1999 A
5896615 Zaksenberg Apr 1999 A
5899693 Himeno et al. May 1999 A
5900230 Cutler May 1999 A
5901397 Hafele et al. May 1999 A
D410787 Barre et al. Jun 1999 S
5908038 Bennett Jun 1999 A
D411769 Wright Jul 1999 S
5921254 Carlucci et al. Jul 1999 A
5927300 Boland et al. Jul 1999 A
5927976 Wu Jul 1999 A
5930858 Jung Aug 1999 A
5931170 Wu Aug 1999 A
5934908 Woog et al. Aug 1999 A
5943723 Hilfinger et al. Aug 1999 A
5944033 Robinson Aug 1999 A
D413694 Bennett Sep 1999 S
D414937 Cornu et al. Oct 1999 S
D414939 Pedro, Jr. et al. Oct 1999 S
5974613 Herzog Nov 1999 A
5974615 Schwarz-Hartmann et al. Nov 1999 A
5980541 Tenzer Nov 1999 A
5987681 Hahn et al. Nov 1999 A
5991957 Watanabe Nov 1999 A
D417960 Moskovich et al. Dec 1999 S
6000083 Blaustein et al. Dec 1999 A
6009589 Driesen et al. Jan 2000 A
6021538 Kressner et al. Feb 2000 A
6026828 Altshuler Feb 2000 A
6032313 Tsang Mar 2000 A
6035476 Underwood et al. Mar 2000 A
6047711 Wagner Apr 2000 A
6050818 Boland et al. Apr 2000 A
RE36699 Murayama May 2000 E
D423784 Joulin May 2000 S
6065176 Watanabe et al. May 2000 A
6081957 Webb Jul 2000 A
6092252 Fischer et al. Jul 2000 A
6095811 Stearns Aug 2000 A
6102700 Haczek et al. Aug 2000 A
6106294 Daniel Aug 2000 A
6138310 Porper et al. Oct 2000 A
6140723 Matsui et al. Oct 2000 A
6148462 Zseng Nov 2000 A
D434563 Lim et al. Dec 2000 S
6154912 Li Dec 2000 A
6162202 Sicurelli et al. Dec 2000 A
6165131 Cuce et al. Dec 2000 A
D437090 Lang et al. Jan 2001 S
D437091 Lang et al. Jan 2001 S
6178579 Blaustein et al. Jan 2001 B1
D437663 Lang et al. Feb 2001 S
D437976 Narayanan et al. Feb 2001 S
D437977 Lang et al. Feb 2001 S
D438306 Narayanan Feb 2001 S
6183254 Cohen Feb 2001 B1
6195828 Fritsch Mar 2001 B1
6202242 Salmon et al. Mar 2001 B1
6203320 Williams et al. Mar 2001 B1
6220857 Abels Apr 2001 B1
6230354 Sproat May 2001 B1
6230717 Marx et al. May 2001 B1
6233773 Karge et al. May 2001 B1
6237178 Krammer et al. May 2001 B1
D444629 Etter et al. Jul 2001 S
6253404 Boland et al. Jul 2001 B1
6267593 Haczek et al. Jul 2001 B1
6299444 Cohen Oct 2001 B1
6308358 Gruber et al. Oct 2001 B2
6308359 Fritsch et al. Oct 2001 B2
6341400 Kobayashi et al. Jan 2002 B1
6343396 Simovitz et al. Feb 2002 B1
6343400 Massholder et al. Feb 2002 B1
6347425 Fattori et al. Feb 2002 B1
6349442 Cohen et al. Feb 2002 B1
6353956 Berge Mar 2002 B1
6360395 Blaustein et al. Mar 2002 B2
6360398 Wiegner et al. Mar 2002 B1
6363565 Paffrath Apr 2002 B1
6365108 Philyaw Apr 2002 B1
6367108 Fritsch et al. Apr 2002 B1
6374448 Seifert Apr 2002 B2
6375459 Kamen et al. Apr 2002 B1
6381795 Hofmann et al. May 2002 B1
6401288 Porper et al. Jun 2002 B1
6421865 McDougall Jul 2002 B1
6421866 McDougall Jul 2002 B1
6421867 Weihrauch Jul 2002 B1
6422867 Lang et al. Jul 2002 B2
6434773 Kuo Aug 2002 B1
D463627 Lang et al. Sep 2002 S
6446294 Specht Sep 2002 B1
6446295 Calabrese Sep 2002 B1
6447293 Sokol et al. Sep 2002 B1
6453497 Chiang et al. Sep 2002 B1
6453498 Wu Sep 2002 B1
6453499 Leuermann Sep 2002 B1
6463615 Gruber et al. Oct 2002 B1
6490747 Metwally Dec 2002 B1
6497237 Ali Dec 2002 B1
6510575 Calabrese Jan 2003 B2
6526994 Santoro Mar 2003 B1
6536066 Dickie Mar 2003 B2
6564940 Blaustein et al. May 2003 B2
6571804 Adler Jun 2003 B2
6574820 DePuydt et al. Jun 2003 B1
6581233 Cheng Jun 2003 B1
6581234 Lee et al. Jun 2003 B2
6588042 Fritsch et al. Jul 2003 B2
6599048 Kuo Jul 2003 B2
6609527 Brown Aug 2003 B2
6609910 Narayanan Aug 2003 B2
6619299 Marcon et al. Sep 2003 B2
6622333 Rehkemper et al. Sep 2003 B1
6647577 Tam Nov 2003 B2
D484311 Cacka et al. Dec 2003 S
6654979 Calabrese Dec 2003 B2
6659674 Carlucci et al. Dec 2003 B2
6665901 Driesen et al. Dec 2003 B2
6691363 Huen Feb 2004 B2
6701565 Hafemann Mar 2004 B2
6709185 Lefevre Mar 2004 B2
6721986 Zhuan Apr 2004 B2
6725490 Blaustein et al. Apr 2004 B2
6735803 Kuo May 2004 B2
6735804 Carlucci et al. May 2004 B2
6739012 Grez et al. May 2004 B2
6751823 Biro et al. Jun 2004 B2
6760945 Ferber et al. Jul 2004 B2
6760946 DePuydt Jul 2004 B2
6766548 Lukas et al. Jul 2004 B1
6766549 Klupt Jul 2004 B2
6766807 Piccolo et al. Jul 2004 B2
6779126 Lin et al. Aug 2004 B1
6779215 Hartman et al. Aug 2004 B2
6785926 Green Sep 2004 B2
6785929 Fritsch et al. Sep 2004 B2
6792640 Lev Sep 2004 B2
6795993 Lin Sep 2004 B2
6798169 Stratmann et al. Sep 2004 B2
6799346 Jeng et al. Oct 2004 B2
6802097 Hafliger et al. Oct 2004 B2
6810550 Wuelknitz et al. Nov 2004 B1
6813793 Eliav Nov 2004 B2
6813794 Weng Nov 2004 B2
6821119 Shortt et al. Nov 2004 B2
6823875 Hotta et al. Nov 2004 B2
6827910 Chen Dec 2004 B2
6829801 Schutz Dec 2004 B2
6832819 Weihrauch Dec 2004 B1
D500599 Callaghan Jan 2005 S
D501084 Schaefer et al. Jan 2005 S
6836917 Blaustein et al. Jan 2005 B2
6845537 Wong Jan 2005 B2
6848141 Eliav et al. Feb 2005 B2
6851150 Chiang Feb 2005 B2
6851153 Lehman Feb 2005 B2
6854965 Ebner et al. Feb 2005 B2
6862771 Muller Mar 2005 B1
6871373 Driesen et al. Mar 2005 B2
6874509 Bergman Apr 2005 B2
6886207 Solanki May 2005 B1
6889401 Fattori et al. May 2005 B2
6889829 Lev et al. May 2005 B2
6892412 Gatzemeyer et al. May 2005 B2
6892413 Blaustein et al. May 2005 B2
6895625 Lev et al. May 2005 B2
6895629 Wenzler May 2005 B1
6902337 Kuo Jun 2005 B1
6907636 Hafemann Jun 2005 B2
6918153 Gruber Jul 2005 B2
6920659 Cacka et al. Jul 2005 B2
6920660 Lam Jul 2005 B2
6928685 Blaustein et al. Aug 2005 B1
6931688 Moskovich et al. Aug 2005 B2
6938293 Eliav et al. Sep 2005 B2
6938294 Fattori et al. Sep 2005 B2
6944901 Gatzemeyer et al. Sep 2005 B2
6945397 Brattesani et al. Sep 2005 B2
6948209 Chan Sep 2005 B2
6952854 Blaustein et al. Oct 2005 B2
6952855 Lev et al. Oct 2005 B2
6954961 Ferber et al. Oct 2005 B2
6955539 Shortt et al. Oct 2005 B2
6957468 Driesen et al. Oct 2005 B2
6957469 Davies Oct 2005 B2
6966093 Eliav et al. Nov 2005 B2
6973694 Schutz et al. Dec 2005 B2
6983507 McDougall Jan 2006 B2
6988777 Pfenniger et al. Jan 2006 B2
6990706 Broecker et al. Jan 2006 B2
D515318 Chan et al. Feb 2006 S
6993803 Chan Feb 2006 B2
6997191 Nudo, Sr. Feb 2006 B2
7007331 Davics et al. Mar 2006 B2
7008225 Ito et al. Mar 2006 B2
7020925 Gitelis Apr 2006 B1
7021851 King Apr 2006 B1
7024717 Hilscher et al. Apr 2006 B2
7024718 Chu Apr 2006 B2
7036180 Hanlon May 2006 B2
7055205 Aoyama Jun 2006 B2
7059334 Dougan et al. Jun 2006 B2
7065821 Fattori Jun 2006 B2
RE39185 Noe et al. Jul 2006 E
7070354 Gutierrez-Caro Jul 2006 B1
7080980 Klupt Jul 2006 B2
7082638 Koh Aug 2006 B2
7082950 Kossak et al. Aug 2006 B2
7086111 Hilscher et al. Aug 2006 B2
7089621 Hohlbein Aug 2006 B2
7120960 Hilscher et al. Oct 2006 B2
7122921 Hall et al. Oct 2006 B2
7124461 Blaustein et al. Oct 2006 B2
7124462 Lee Oct 2006 B2
7128492 Thames, Jr. Oct 2006 B1
7137163 Gatzemeyer et al. Nov 2006 B2
7140058 Gatzemeyer et al. Nov 2006 B2
7146675 Ansari et al. Dec 2006 B2
7162764 Drossler et al. Jan 2007 B2
7162767 Pfenniger et al. Jan 2007 B2
7168122 Riddell Jan 2007 B1
7168125 Hohlbein Jan 2007 B2
7174596 Fischer et al. Feb 2007 B2
7175238 Barman Feb 2007 B1
7181799 Gavney, Jr. et al. Feb 2007 B2
7185383 Gatzemeyer et al. Mar 2007 B2
7186226 Woolley Mar 2007 B2
D540542 Harada Apr 2007 S
7198487 Luettgen et al. Apr 2007 B2
7207080 Hilscher et al. Apr 2007 B2
7210184 Eliav et al. May 2007 B2
7213293 Schraga May 2007 B1
7213995 Bravo-Loubriel May 2007 B2
7217332 Brown, Jr. et al. May 2007 B2
7222381 Kraemer May 2007 B2
7222382 Choi et al. May 2007 B2
7225494 Chan et al. Jun 2007 B2
7228583 Chan et al. Jun 2007 B2
7234187 Blaustein et al. Jun 2007 B2
7234192 Barbar Jun 2007 B2
7554225 Kraus et al. Jun 2009 B2
8032964 Farrell et al. Oct 2011 B2
20010035194 Narayanan Nov 2001 A1
20010039955 Winters et al. Nov 2001 A1
20010054563 Lang et al. Dec 2001 A1
20020017474 Blaustein et al. Feb 2002 A1
20020029988 Blaustein et al. Mar 2002 A1
20020032941 Blaustein et al. Mar 2002 A1
20020039720 Marx et al. Apr 2002 A1
20020059685 Paffrath May 2002 A1
20020078514 Blaustein et al. Jun 2002 A1
20020084707 Tang Jul 2002 A1
20020088068 Levy et al. Jul 2002 A1
20020095734 Wong Jul 2002 A1
20020100134 Dunn et al. Aug 2002 A1
20020106607 Horowitz Aug 2002 A1
20020137728 Montgomery Sep 2002 A1
20020138926 Brown, Jr. et al. Oct 2002 A1
20020152563 Sato Oct 2002 A1
20020152564 Blaustein et al. Oct 2002 A1
20020174498 Li Nov 2002 A1
20020178519 Zarlengo Dec 2002 A1
20030005544 Felix Jan 2003 A1
20030033679 Fattori et al. Feb 2003 A1
20030033680 Davies et al. Feb 2003 A1
20030041396 Dickie Mar 2003 A1
20030064348 Sokol et al. Apr 2003 A1
20030066145 Prineppi Apr 2003 A1
20030074751 Wu Apr 2003 A1
20030079305 Takahata et al. May 2003 A1
20030084525 Blaustein et al. May 2003 A1
20030084526 Brown et al. May 2003 A1
20030084527 Brown et al. May 2003 A1
20030097723 Li May 2003 A1
20030099502 Lai May 2003 A1
20030106565 Andrews Jun 2003 A1
20030140435 Eliav et al. Jul 2003 A1
20030140437 Eliav et al. Jul 2003 A1
20030140937 Cook Jul 2003 A1
20030150474 Doyscher Aug 2003 A1
20030154567 Drossler et al. Aug 2003 A1
20030154568 Boland et al. Aug 2003 A1
20030163881 Driesen et al. Sep 2003 A1
20030163882 Blaustein et al. Sep 2003 A1
20030182743 Gatzemeyer et al. Oct 2003 A1
20030182746 Fattori et al. Oct 2003 A1
20030192139 Fattori et al. Oct 2003 A1
20030196283 Eliav et al. Oct 2003 A1
20030196677 Wiseman Oct 2003 A1
20030213075 Hui et al. Nov 2003 A1
20030221267 Chan Dec 2003 A1
20030221269 Zhuan Dec 2003 A1
20030226223 Chan Dec 2003 A1
20040010870 McNair Jan 2004 A1
20040010871 Nishinaka et al. Jan 2004 A1
20040016068 Lee Jan 2004 A1
20040016069 Lee Jan 2004 A1
20040034951 Davies et al. Feb 2004 A1
20040045106 Lam Mar 2004 A1
20040045107 Egeresi Mar 2004 A1
20040049867 Hui Mar 2004 A1
20040049868 Ng Mar 2004 A1
20040060137 Eliav Apr 2004 A1
20040063603 Dave et al. Apr 2004 A1
20040068811 Fulop et al. Apr 2004 A1
20040074026 Blaustein et al. Apr 2004 A1
20040083566 Blaustein et al. May 2004 A1
20040087882 Roberts et al. May 2004 A1
20040088806 DePuydt et al. May 2004 A1
20040088807 Blaustein et al. May 2004 A1
20040091834 Rizoiu et al. May 2004 A1
20040107521 Chan et al. Jun 2004 A1
20040123409 Dickie Jul 2004 A1
20040128778 Wong Jul 2004 A1
20040129296 Treacy et al. Jul 2004 A1
20040134001 Chan Jul 2004 A1
20040143917 Ek Jul 2004 A1
20040154112 Braun et al. Aug 2004 A1
20040163191 Cuffaro et al. Aug 2004 A1
20040168269 Kunita et al. Sep 2004 A1
20040168272 Prineppi Sep 2004 A1
20040177458 Chan et al. Sep 2004 A1
20040187889 Kemp et al. Sep 2004 A1
20040200016 Chan et al. Oct 2004 A1
20050008986 Sokol et al. Jan 2005 A1
20050189000 Cacka et al. Sep 2005 A1
20050255427 Shortt et al. Nov 2005 A1
20050266376 Sokol et al. Dec 2005 A1
20080213731 Fishburne Sep 2008 A1
20100055634 Spaulding et al. Mar 2010 A1
20110041268 Iwahori et al. Feb 2011 A1
Foreign Referenced Citations (50)
Number Date Country
435553 Oct 1967 CH
609238 Feb 1979 CH
243224 Apr 1910 DE
1766651 Dec 1981 DE
3431481 Feb 1986 DE
3512190 Oct 1986 DE
8626725 May 1987 DE
3736308 Jul 1989 DE
4142404 Jul 1991 DE
4003305 Aug 1991 DE
4223195 Jan 1994 DE
4223196 Jan 1994 DE
4226658 Feb 1994 DE
4226659 Feb 1994 DE
4241576 Jun 1994 DE
4309078 Sep 1994 DE
29715234 Dec 1997 DE
29919053 Dec 2000 DE
19961447 Jul 2001 DE
0210094 Jun 1986 EP
0354352 Feb 1990 EP
0661025 Jul 1995 EP
0704180 Apr 1996 EP
429447 Sep 1911 FR
1171337 Jan 1959 FR
477799 Jan 1938 GB
500517 Feb 1939 GB
899618 Jun 1962 GB
1583558 Aug 1977 GB
2175494 Dec 1986 GB
2250428 Jun 1992 GB
53029847 Mar 1978 JP
53033753 Mar 1978 JP
3222905 Oct 1991 JP
324221 May 1970 SE
WO 9113570 Sep 1991 WO
WO 9119437 Dec 1991 WO
WO 9210146 Jun 1992 WO
WO 9216160 Oct 1992 WO
WO 9310721 Jun 1993 WO
WO 9315628 Aug 1993 WO
WO 9404093 Mar 1994 WO
WO 9426144 Nov 1994 WO
WO 9502375 Jan 1995 WO
WO 9533419 Dec 1995 WO
WO 9847443 Oct 1998 WO
WO 0128452 Apr 2001 WO
WO 0145582 Jun 2001 WO
WO 02071970 Sep 2002 WO
WO 02071971 Sep 2002 WO
Non-Patent Literature Citations (6)
Entry
International Search Report and Written Opinion, PCT Application No. PCT/US2012/036092, 8 pages, Jul. 10, 2012.
Sonex International: Brushing with the Ultima—The World's Only Dual-Frequency Ultrasonic Toothbrush, Jul. 28, 1999, published at Sonipic.com.
Teledyne Water Pik “Plaque Control 3000” plaque removal instrument (Jul. 1991).
American Dentronics Incorporated “Soniplak” sonic plaque removal system (May 1993).
Teledyne Water Pik “Sensonic” Toothbrush, sales brochure (at least as early as Sep. 1994).
Design of a Toothbrush, p. 361, Danish Official Design Gazette, published May 16, 1997.
Related Publications (1)
Number Date Country
20120279002 A1 Nov 2012 US
Provisional Applications (1)
Number Date Country
61481357 May 2011 US