The present invention is generally related to medical devices and apparatus. In particular, the invention provides systems, methods, devices, and kits for treating a patient's ear. In one embodiment, the invention provides a system and method for myringotomy with or without tympanostomy tube placement.
Otitis media is among the most common diagnosis made by pediatricians. A majority of children may have at least one episode of otitis media (“earache”) prior to their third birthday. Otitis media is often caused by an inability of the eustachian tube to drain fluid from the middle ear. Otitis media is often treated with antibiotics.
A significant number of children exhibit recurrent episodes of otitis media and/or otitis media with effusion. Treatment of these more severe cases often involves the placement of a tympanostomy tube through the tympanic membrane so as to provide adequate drainage of the middle ear and reduce the likelihood of future infections. Tympanostomy tubes provide fluid communication between the middle and outer ear, and typically fall out spontaneously within about a year of placement. Tympanostomy tube placement is among the most common surgical procedures performed in the pediatric population. It has been estimated that more than a million tympanostomy tubes may be placed each year, with typical patients being between about 18 months and 3 years of age at the time of the procedure.
Tympanostomy tube placement is typically performed in an out-patient surgery setting under general anesthesia. The external auditory canal and tympanic membrane are examined under microscopic visualization through a hand-held conical shaped speculum. An incision or myringotomy is made in the tympanic membrane, typically using an elongate, small profile scalpel which the physician extends through the conical speculum. Fluid may be aspirated through the myringotomy, and a tympanostomy tube is placed so as to extend through the tympanic membrane.
A wide variety of tympanostomy tubes are commercially available, and a still wider variety of others tubes have been proposed. A number of systems have been proposed to both perform the myringotomy and deploy the tympanostomy tube with a single treatment assembly. In recent years, more complex and expensive systems have been proposed for diagnosis or treatment of the tissues of the ear, including systems using laser energy for forming a myringotomy, video systems for imaging of the ear canal, and the like. These various alternatives have, not surprisingly, been met with varying degrees of acceptance.
A standard tympanostomy tube placement procedure is both effective and quite safe. Nonetheless, further improvements would be desirable. In particular, there are both risks and costs associated with out-patient surgical procedures performed under general anesthesia. For example, a significant portion of the risk and cost of tympanostomy tube placement is associated with the administration of general anesthesia, i.e., the need for an operating room, the presence of an anesthesiologist, and related recovery room time.
In light of the above, it would be desirable to provide improved devices, systems, methods, and kits for treatment of the tissue structures within the auditory canal. It would generally be beneficial if these improvements facilitated myringotomy with or without tympanostomy tube placement without having to resort to general anesthesia, thereby allowing these common procedures to be performed in a doctor's office (rather than in an outpatient surgical facility). It would be further beneficial to maintain or enhance the physician's control over the procedure by, for example, allowing verification of intended and actual tympanostomy tube placement location, enhanced viewing and control, and improved safety. It would further be desirable if these improvements could be provided while decreasing the overall procedure time, and ideally, at a reduced overall procedure cost.
The present invention provides improved devices, systems, methods, and kits for treating the tissue structures of the ear. The invention often makes use of a guide structure that can mechanically register a treatment probe with a target region of the tympanic membrane or eardrum. Mechanical registration may be provided by a structure which is fittingly received in an external auditory canal of the ear. The guide structure will often include a conformable body (typically comprising a compressible foam, or the like) so as to allow the guide structure to accommodate a range of differing auditory canal anatomy. The guide structure may further include an articulating mechanism for selectively orienting the treatment probe toward the target region of the tympanic membrane. The articulating mechanism will often selectively orient a probe lumen, with the treatment probe having a shaft fittingly sliding in the probe lumen so that engagement between a positioning surface of the guide structure and a tissue surface of the patient's ear maintains registration of the treatment probe. The guide structure may also support a videoscopic image capture device, illumination transmitting optical fibers, an aiming beam transmitter, and the like. Advantageously, such structures facilitate performing treatment procedures such as myringotomy, tympanostomy tube placement, and the like, under local (rather than general) anesthesia, often in a doctor's office (rather than an out-patient surgical facility).
In a first aspect, the invention provides a method for treating an ear of a patient. The ear has a tympanic membrane. The method comprise mechanically registering a guide structure with a target region of the tympanic membrane. The target region is treated by actuating a treatment probe while the treatment probe is oriented by the registered guide structure.
Orientational alignment between the guide structure and the tympanic membrane may be maintained by engagement between a surface of the guide structure and an external auditory canal. This engagement may be sufficient to maintain orientation of the treatment probe without manual support of the guide structure or treatment probe. The use of a conformable body of the guide structure can facilitate the orientation maintaining engagement. The conformable body may comprise a compressible foam, a solid elastomer, a balloon, or the like, and may optionally expand radially within the auditory canal. An agent (such as a local anesthesia agent, an antiseptic agent, an antibiotic agent, or the like) may be dispensed from the guide structure, the agent optionally being dispensed from the compressible foam. In alternative embodiments, one or more such agents may be dispensed before insertion of the guide structure and/or after its removal. In some embodiments, registration of the probe and target region may be provided at least in part by engagement (preferable in the form of gentle pressure) between the guide structure and the skull (often the side of the skull) of the patient.
The guide structure may be registered by articulating a treatment lumen of the guide structure relative to a positioning surface of the guide structure. For example, the guide structure may comprise a shaft eccentrically carrying the treatment lumen. The shaft may rotate within the auditory canal about an axis with the treatment probe precessing about the axis so as to orient the probe toward the target region. The positioning surface of the guide structure may be disposed over the shaft with a bearing therebetween to facilitate rotation without injury to the tissue surface engaged by the positioning surface. The shaft may flex during rotation so as to accommodate a bend of the auditory canal. The probe and/or other components of the treatment system within the guide structure may likewise flex during rotation.
Registration of the guide structure may be videoscopically directed, the guide structure optionally supporting a video image capture device. The tympanic membrane may be illuminated by the guide structure, typically using an illumination source and/or optics (such as a fiber optic bundle, glass rod, or other optical waveguide). The registration of the probe with the target region may optionally be verified by displaying a marker indicating which portion of the tympanic membrane is aligned with the probe. For example, an aiming beam may be transmitted onto the tympanic membrane from the guide structure to generate the marker or pointer. The aiming beam may comprise, for example, laser light energy having a frequency within the visible range. In some embodiments, a reticule or image template may be superimposed on the image displayed to the system operator to aid registration.
A system operator disposed in front of the patient may view an image of the tympanic membrane while a head of the patient is upright. The system operator may manipulate a handle coupled to the shaft of the guide structure to register the guide structure and actuate the treatment probe. In the exemplary embodiment, the guide structure handle is a large profile body, similar in appearance to an earmuff when in use. The system of the present invention is particularly weft-suited for tympanostomy tube placement without general anesthesia.
The treatment probe will typically pierce the tympanic membrane. A tympanostomy tube may be advanced through the pierced membrane, often while supporting the tympanostomy tube with the guide structure. The treatment probe may carry the tympanostomy tube. Alternatively, separate probes may be used to pierce the membrane and deploy the tympanostomy tube. In still further alternatives, the membrane may be pierced using laser energy or the like. Fluid may be drained from distally of the pierced membrane by the treatment probe, by a separate aspiration structure supported by the guide structure, or the like. Fluid drainage may be effected by an aspiration lumen, by an absorbent structure such as a blotting or wicking element, or the like.
In another aspect, the invention provides a system for treating an ear of a patient. The ear has a tympanic membrane and a tissue surface. The system comprises a guide structure having a proximal orientation and a distal orientation. The guide structure has a positioning surface. A tympanic membrane treatment probe is oriented by the guide structure. The guide structure maintains registration of the treatment probe with a target region of the tympanic membrane when the positioning surface engages the tissue surface of the ear.
The tissue surface typically comprises an auditory canal. The guide structure will often include a conformable body insertable into the auditory canal. A shaft may be rotatably disposed within the conformable body so as to rotate about an axis. The treatment probe can be oriented eccentrically relative to the axis so that rotation of the shaft selectively registers the treatment probe with the target region. The shaft may be laterally flexible to conform with a bend of the auditory canal during rotation of the shaft. Similarly, the treatment probe may also be flexible.
The conformable body may comprise a compressible material such as a foam. In some embodiments, an agent such as a local anesthetic agent, an antiseptic and/or antibacterial agent, an antibiotic agent, and/or the like may be disposed on or in the foam, or the agent may otherwise be dispensed from the guide structure. The guide structure may further include one or more aspiration and/or irrigation lumens, or such lumens may alternatively be incorporated into the treatment probe. Such aspiration and/or irrigation may be used to clear Cerumen (earwax) for imaging of the tympanic membrane, fluid accumulating distally of the tympanic membrane, and the like.
An image capture device may be supported by the guide structure for imaging the tympanic membrane. The image capture device may coupled to a monitor, the image capture device typically comprising a Charge-Coupled Device (CCD) and associated imaging optics (such as a coherent fiber optic bundle, one or more rod or standard lenses, and the like). At least a portion of the image capture device may be removably couplable to the guide structure, which may allow the use of disposable guide structures at a reasonable cost. An illumination source may also be carried on the guide structures for illuminating the tympanic membrane during imaging. The exemplary illumination source may comprise illumination optical fibers.
The system will preferably include aiming means for identifying an orientation of the treatment probe relative to the tympanic membrane. In many embodiments, a light beam (such as from a laser or light-emitting diode) may be directed onto the tympanic membrane at a location aligned with the treatment probe. Alternative embodiments may make use of a reticule superimposed on the image of the tympanic membrane as shown in a monitor to the system operator, a template superimposed on the image to indicate the target region, or the like. Such aiming structures can verify registration of the treatment probe with the target region before, during, and/or after piercing the tympanic membrane, tube deployment, and the like.
The treatment probe will often have a distal tip for piercing the tympanic membrane. Optionally, the distal tip may comprise a cutting edge or blade. A tympanostomy tube may be releasably carried on a shaft of the probe proximally of the tip. An exemplary tympanostomy tube comprises a proximal flange and a distal flange with a tubular body therebetween, the tubular body having an elongate opening with a first cross-sectional dimension and a second cross-sectional dimension greater than the first. The tip of the probe shaft may have a distal edge oriented along the height when the tympanostomy tube is carried on the shaft. The distal surface of the distal flange of the tympanostomy tube may angle proximally and radially outwardly to facilitate advancing the distal flange through the myringotomy.
A limit surface of the treatment probe may engage a limit surface of the guide structure or the tympanic membrane so as to inhibit axial movement of the shaft after the probe pierces the tympanic membrane. This can help avoid inadvertent injury to the middle and/or inner ear structures or undesired positioning of the tube distally of the tympanic membrane within the middle ear. In the exemplary embodiment, engagement of the limit surfaces inhibits movement when the distal end of the probe advances from the guide structure by a distance in a range from about 1.0 mm to about 40 mm.
The treatment probe may comprise a probe shaft disposed in a lumen of the guide structure. The probe shaft may be coupled to an actuator which is accessible when the positioned surface engages the tissue surface. The probe shaft may advance axially with the lumen in response to movement of the actuator. The lumen may be selectively repositionable relative to the positioning surface for selective registration of the treatment probe with the target region. for example, the lumen may be supported by a shaft which rotates relative to the positioning surface, with the lumen being eccentrically oriented and/or eccentrically disposed relative to the axis of rotation of the shaft.
The present invention generally provides improved devices, systems, methods, and kits for treatment of tissue structures of the ear. Myringotomy, tympanostomy tube placement, and other procedures may be performed using a guide structure to register one or more treatment probes relative to the target tissue structure. The guide structure will often be articulatable, allowing selective registration of the treatment probe with a target region of, for example, the tympanic membrane or eardrum. The guide structure may be supported by, for example, a conformable body, such as a compressible foam insertable into the external auditory canal. Engagement between the conformable body and the auditory canal can maintain a position of the guide structure so that the guide structure, in turn, maintains an orientation of the treatment probe. Such a lightweight guide structure may be mountable to the patient, allowing stabilized videoscopic imaging from an image capture device supported by the guide structure. Illumination transmitting optical fibers, an aiming beam transmitter, aspiration/irrigation lumens, and other structures may be supported by a single guide structure. Advantageously, such a stabilized system facilitates performing treatment procedures such as myringotomy with or without tympanostomy tube placement, and the like, under local (rather than general) anesthesia, often in a doctor's office (rather than an operating room).
The structures and methods of the present invention will be particularly useful for accessing and treating the tissue structures of the ear. Using an image capture device which is supported by a guide structure affixable relative to an adjacent tissue surface of the ear, the images of these small tissue structures will remain steady despite movements of the patient's head. A magnified scale of the image may greatly ease viewing of the target tissues, and as the treatment probe can also be supported by the guide structure, procedures may be directed with reference to an enlarged, stabilized image shown in a monitor, with much greater precision than a manual procedure performed under direct optical imaging. Hence, while the invention may find its most immediate application in formation of myringotomies with or without tympanostomy tube placement, and the like, the invention may find further applications in a number of applications of the outer, middle, and or inner ear, including cerumen removal, tympanocentesis, foreign body removal, ear implants, and the like.
Referring now to
Illumination source 18 will generally comprise an incandescent lamp, fluorescent or arc lamp, light emitting diode, or the like, and will often be optically coupled to illuminating optical fibers of cable 16 so as to transmit white imaging light to probe assembly 12. In other embodiments, alternative illumination frequencies and/or sources might be used, ambient light may be sufficient, or non-optical imaging might be applied. Aiming light source 20 may comprise a laser or light emitting diode (or the like) transmitting a light beam with a frequency in the visible spectrum (such as a green light beam, a red light beam, or the like). The aiming light beam will often be transmitted to probe assembly 12 via dedicated optical fibers of cable 16 for directing of an aiming or pointer beam onto the target tissues so as to generate an aiming marker. Image transmission cable 16 may further comprise a coherent fiber optic bundle (particularly for transmission of an image from probe assembly 12 to camera 19), a coaxial electrical cable (particularly for transmission of image date from camera 19 to monitor 14), one or more data transmission optical fibers, and/or the like, and generally transmits an image from probe assembly 12 to monitor 14 for use in videoscopically directing a tympanostomy tube placement procedure. Cable 16 may also have an aspiration and/or irrigation lumen, or one or more separate fluid tubes may optionally be coupled to probe assembly 12 for clearing of cerumen to enhance image quality, aspirating fluids from the middle ear, or the like. Optionally, agents such as antibiotic, antibacterial, cerumenolytics, and/or local anesthetic agents may be included (alone or in combination) with irrigation flow. Suitable local anesthetic agents include lidocaine, bupivacaine, benzocaine, prilocaine, lidocaine/prilocaine in a eutectic mixture, tetracaine, and the like. Suitable antibiotics include neomycin, polymixin B, ciprofloxacin, ofloxin, and the like. Suitable cerumenolytics may include Triethanolamine polypeptide oleatecondensate, hydrogen peroxide, and the like. suitable antibacterial agents include aqueous aluminum acetate, acetic acid, and the like.
Referring now to
Conformable body 34 may comprise a compressible foam, and will preferably comprise a urethane foam. Alternatively, conformable body 34 may comprise a material such as gum rubber compounds, urethanes, fluorocarbon elastomer, butyl rubber, EPDM (Ethylene-Propylene Rubber), latex rubber, neoprene (polychloroprene), nitrile rubber (acrylonitrile), polybutadiene, silicone rubber, SBR (Stryrene-Butadiene Rubber), HNBR (Hydrogenated Nitrile Rubber), fluoroelastomer, fluorosilicone. Conformable body 34 can safely engage the surrounding auditory canal with sufficient force and/or friction to inhibit movement of the guide structure during imaging and treatment. Conformable body 34 may expand resiliently within the external auditory canal, or the conformable body may comprise a selectably expandable body such as a balloon. In other embodiments, conformable body 34 may comprise a soft solid elastomer, a plastically deformable polymer, or the like.
An inner shaft 36 is rotatably disposed within conformable body 34, as can be seen in
A variety of alternative articulatable mechanisms may be included to allow selective repositioning of probe lumen 42 relative to positioning surface 32 in probe assembly 12. In some embodiments, one or more selectively expandable structure (such as angioplasty-like balloons) may be eccentrically disposed about a probe lumen tube within an outer sheath, so that selective expansion of the eccentric structure(s) laterally repositions the probe lumen. More complex eccentric rotation mechanisms may vary the lateral offset of the lumen from shaft axis 40. For example, an intermediate eccentric shaft may be disposed between and selectively rotatable relative to eccentric inner shaft 36 and to an outer sheath. Alignment of the offset of the inner and intermediate eccentric shafts could move the probe lumen farther away from axis 40, while counteracting the eccentricity of inner shaft 36 with that of the intermediate shaft would move the probe lumen closer to axis 40. Still further alternatives are possible, including axial sliding probe lumen supports which vary an eccentric angle of probe lumen 42 relative to axis 40 adjacent distal end 30, steerable articulating probes which can be selectively laterally offset from an axis of the probe lumen 42, and the like.
In the exemplary embodiment, handle 38 of guide structure 22 comprises a body having a larger profile than shaft 26 for selective manual rotation of the inner shaft. Handle 38 (and probe assembly 12 in general) may have an appearance similar to a single earmuff when in use, or a pair of probe assemblies may be coupled together by a headband, giving the appearance of headphones or a helmet. Alternatively, a single probe assembly may be coupled to a headband. Optionally, a noise transmitter may be supported by guide structure 22 to transmit music, white noise, or the like, during treatment with the probe 24. This may help to mask the mechanically transmitted sound perceived by a patient when tool 24 pierces (or otherwise treats) a tympanic membrane, for example. In combination with local anesthesia to inhibit pain, such a masking noise transmitter might avoid alarming pediatric patients who are awake during a tympanostomy tube placement procedure.
Referring to
Referring to
An exemplary probe tip 46 and tympanostomy tube 50 are illustrated in
A variety of alternative tympanic tubes and deployment systems might be used with probe assembly 12 in system 10. For example, a tube with helical thread 50a and probe tip 46a are illustrated in
Referring now to
Lumen 51 provides a passage for introduction of fluids such as saline for irrigation, a local anesthetic agent to prepare the are for the myringotomy and tympanostomy procedure, and the like, as described above. Fluids may be delivered as a stream or as an atomized mist. Lumen 51 can also be used to aspirate fluids from the external auditory canal, the middle ear, or the like.
Lumen 51 can be coupled to fluid delivery or vacuum aspiration sources by tubing 39. For example, tubing 39 may provide fluid communication between lumen 51 and a source of irrigation fluid, typically a syringe 43. Lumen 51 may similarly be coupled to a source of a drug, preferably an anesthetic agent, typically a syringe 45. Lumen 51 may also be attached to a wall vacuum, a vacuum bottle, a vacuum pump unit 43, or any other vacuum source. This vacuum source may also employ a separate fluid collection chamber 47. The lumen can be attached to a plurality of such components by separate tubing 39, or a single connection to the lumen can be used for a plurality of components using a manifold 49.
Referring now to
Tube 39′ can be coupled to a source of irrigation fluid, typically a syringe 43. It can be coupled to a source of a drug, preferably an anesthetic agent, typically a syringe 45. Tube 39′ can also be attached to a wall vacuum, a vacuum bottle, a vacuum pump unit 43, or any other vacuum source. This vacuum source may also employ a separate fluid collection chamber 47. A single tube 39′ can be used for a plurality of fluid manipulation components via a manifold 49, or separate tubes can be sequentially deployed through lumen 97.
Use of system 10 by a system operator O for treatment of a patient P can be understood with reference to
A simplified model of ear E is shown in
With shaft 26 in place, operator O can then examine the tympanic membrane TM image shown in monitor 14, as provided by the image capture device of probe assembly 12 (see imaging lens 60 in
As illustrated in
Inner shaft 26 of guide structure 22 (see
Once treatment probe 24 is properly registered with the target region TR of the tympanic membrane TM as illustrated in
As illustrated in
While the exemplary structure and method have been described in some detail, by way of example and for clarity of understanding, a variety of changes, adaptations, and modifications will be obvious to those of skill in the art. Hence, the scope of the present invention is limited solely by the appended claims.
This patent application is a continuation of U.S. patent application Ser. No. 12/754,304, filed Apr. 5, 2010, now U.S. Pat. No. 8,998,927, issued Apr. 7, 2015; which is a continuation of U.S. patent application Ser. No. 10/841,420, filed May 6, 2004, now U.S. Pat. No. 7,704,259, issued on Apr. 27, 2010; which is a divisional application which claims priority from U.S. patent application Ser. No. 09/843,541, filed Apr. 26, 2001, now U.S. Pat. No. 6,770,080, issued on Aug. 3, 2004, the full disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
858673 | Roswell | Jul 1907 | A |
1920006 | Dozier et al. | Jul 1933 | A |
2162681 | Ryan | Jun 1939 | A |
3473170 | Haase et al. | Oct 1969 | A |
3638643 | Hotchkiss | Feb 1972 | A |
3741197 | Sanz et al. | Jun 1973 | A |
3807404 | Weissman et al. | Apr 1974 | A |
3888258 | Akiyama | Jun 1975 | A |
3897786 | Garnett et al. | Aug 1975 | A |
3913584 | Walchle et al. | Oct 1975 | A |
3948271 | Akiyama | Apr 1976 | A |
3991755 | Vernon et al. | Nov 1976 | A |
4168697 | Cantekin | Sep 1979 | A |
4335713 | Komiya | Jun 1982 | A |
4335715 | Kirkley | Jun 1982 | A |
4380998 | Kieffer, III | Apr 1983 | A |
4406282 | Parker et al. | Sep 1983 | A |
4468218 | Armstrong | Aug 1984 | A |
4473073 | Darnell | Sep 1984 | A |
4552137 | Strauss | Nov 1985 | A |
4564009 | Brinkhoff | Jan 1986 | A |
4712537 | Pender | Dec 1987 | A |
4750491 | Kaufman et al. | Jun 1988 | A |
4796624 | Trott et al. | Jan 1989 | A |
4800876 | Fox et al. | Jan 1989 | A |
4913132 | Gabriel | Apr 1990 | A |
4946440 | Hall | Aug 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
4971076 | Densert et al. | Nov 1990 | A |
5026378 | Goldsmith, III | Jun 1991 | A |
5044373 | Northeved et al. | Sep 1991 | A |
5047007 | McNichols et al. | Sep 1991 | A |
5053040 | Goldsmith, III | Oct 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5107861 | Narboni | Apr 1992 | A |
5135478 | Sibalis | Aug 1992 | A |
5158540 | Wijay | Oct 1992 | A |
5178623 | Cinberg et al. | Jan 1993 | A |
5254120 | Cinberg et al. | Oct 1993 | A |
5261903 | Dhaliwal et al. | Nov 1993 | A |
D352780 | Glaeser et al. | Nov 1994 | S |
5370656 | Shevel | Dec 1994 | A |
5421818 | Arenberg | Jun 1995 | A |
5466239 | Cinberg et al. | Nov 1995 | A |
5489286 | Cinberg et al. | Feb 1996 | A |
5496329 | Reisinger | Mar 1996 | A |
D378611 | Croley | Mar 1997 | S |
5610988 | Miyahara | Mar 1997 | A |
5643280 | Del Rio et al. | Jul 1997 | A |
5645584 | Suyama | Jul 1997 | A |
5658235 | Priest et al. | Aug 1997 | A |
5674196 | Donaldson et al. | Oct 1997 | A |
5676635 | Levin | Oct 1997 | A |
5681323 | Arick | Oct 1997 | A |
D387863 | Herman et al. | Dec 1997 | S |
5707383 | Bays et al. | Jan 1998 | A |
5775336 | Morris | Jul 1998 | A |
5782744 | Money | Jul 1998 | A |
5792100 | Shantha | Aug 1998 | A |
5827295 | Del Rio et al. | Oct 1998 | A |
5893828 | Uram | Apr 1999 | A |
5893837 | Eagles et al. | Apr 1999 | A |
5984930 | Maciunas et al. | Nov 1999 | A |
D418223 | Phipps et al. | Dec 1999 | S |
D420741 | Croley | Feb 2000 | S |
6022342 | Mukherjee | Feb 2000 | A |
6024726 | Hill | Feb 2000 | A |
6039748 | Savage et al. | Mar 2000 | A |
6045528 | Arenberg | Apr 2000 | A |
D424197 | Sydlowski et al. | May 2000 | S |
6059803 | Spilman | May 2000 | A |
D426135 | Lee | Jun 2000 | S |
6077179 | Liechty, II | Jun 2000 | A |
6110196 | Edwards | Aug 2000 | A |
6137889 | Shennib et al. | Oct 2000 | A |
6171236 | Bonutti | Jan 2001 | B1 |
6183469 | Thapliyal et al. | Feb 2001 | B1 |
6200280 | Brenneman et al. | Mar 2001 | B1 |
6206888 | Bicek et al. | Mar 2001 | B1 |
6245077 | East et al. | Jun 2001 | B1 |
6248112 | Gambale | Jun 2001 | B1 |
6251121 | Saadat | Jun 2001 | B1 |
6258067 | Hill | Jul 2001 | B1 |
D450843 | McGuckin, Jr. et al. | Nov 2001 | S |
6319199 | Sheehan | Nov 2001 | B1 |
6358231 | Schindler et al. | Mar 2002 | B1 |
6398758 | Jacobsen et al. | Jun 2002 | B1 |
6416512 | Ellman et al. | Jul 2002 | B1 |
6440102 | Arenberg et al. | Aug 2002 | B1 |
6447522 | Gambale et al. | Sep 2002 | B2 |
6475138 | Schechter et al. | Nov 2002 | B1 |
6512950 | Li et al. | Jan 2003 | B2 |
6514261 | Randall et al. | Feb 2003 | B1 |
6520939 | Lafontaine | Feb 2003 | B2 |
6522827 | Loeb et al. | Feb 2003 | B1 |
6553253 | Chang | Apr 2003 | B1 |
6645173 | Liebowitz | Nov 2003 | B1 |
6648873 | Arenberg et al. | Nov 2003 | B2 |
6663575 | Leysieffer | Dec 2003 | B2 |
6682558 | Tu et al. | Jan 2004 | B2 |
6770080 | Kaplan et al. | Aug 2004 | B2 |
6916159 | Rush et al. | Jul 2005 | B2 |
6962595 | Chamness et al. | Nov 2005 | B1 |
7127285 | Henley et al. | Oct 2006 | B2 |
7137975 | Miller et al. | Nov 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
7160274 | Ciok et al. | Jan 2007 | B2 |
7344507 | Briggs et al. | Mar 2008 | B2 |
7351246 | Epley | Apr 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
D595410 | Luzon | Jun 2009 | S |
7563232 | Freeman et al. | Jul 2009 | B2 |
D598543 | Vogel et al. | Aug 2009 | S |
7654997 | Makower et al. | Feb 2010 | B2 |
7677734 | Wallace | Mar 2010 | B2 |
7704259 | Kaplan et al. | Apr 2010 | B2 |
7749254 | Sobelman et al. | Jul 2010 | B2 |
D622842 | Benoist | Aug 2010 | S |
D640374 | Liu et al. | Jun 2011 | S |
8052693 | Shahoian | Nov 2011 | B2 |
8192420 | Morriss et al. | Jun 2012 | B2 |
8249700 | Clifford et al. | Aug 2012 | B2 |
8282648 | Tekulve | Oct 2012 | B2 |
8409175 | Lee et al. | Apr 2013 | B2 |
8425488 | Clifford et al. | Apr 2013 | B2 |
8498425 | Graylin | Jul 2013 | B2 |
8518098 | Roeder et al. | Aug 2013 | B2 |
8702722 | Shahoian | Apr 2014 | B2 |
8840602 | Morriss et al. | Sep 2014 | B2 |
8849394 | Clifford et al. | Sep 2014 | B2 |
8864774 | Liu et al. | Oct 2014 | B2 |
8998927 | Kaplan et al. | Apr 2015 | B2 |
9011363 | Clopp et al. | Apr 2015 | B2 |
9023059 | Loushin et al. | May 2015 | B2 |
9216112 | Clifford et al. | Dec 2015 | B2 |
9320652 | Andreas et al. | Apr 2016 | B2 |
9387124 | Clifford | Jul 2016 | B2 |
9539146 | Girotra et al. | Jan 2017 | B2 |
9681891 | Andreas et al. | Jun 2017 | B2 |
9707131 | Shahoian | Jul 2017 | B2 |
9770366 | Liu et al. | Sep 2017 | B2 |
9833359 | Clopp | Dec 2017 | B2 |
9833360 | Andreas et al. | Dec 2017 | B2 |
9833601 | Clifford | Dec 2017 | B2 |
20010020173 | Klumb et al. | Sep 2001 | A1 |
20020026125 | Leysieffer | Feb 2002 | A1 |
20020069883 | Hirchenbain | Jun 2002 | A1 |
20020111585 | Lafontaine | Aug 2002 | A1 |
20020138091 | Pflueger | Sep 2002 | A1 |
20020161379 | Kaplan et al. | Oct 2002 | A1 |
20020169456 | Tu et al. | Nov 2002 | A1 |
20030018291 | Hill et al. | Jan 2003 | A1 |
20030040717 | Saulenas et al. | Feb 2003 | A1 |
20030060799 | Arenberg et al. | Mar 2003 | A1 |
20030187456 | Perry | Oct 2003 | A1 |
20030199791 | Boecker et al. | Oct 2003 | A1 |
20040054339 | Ciok et al. | Mar 2004 | A1 |
20040064024 | Sommer | Apr 2004 | A1 |
20050033343 | Chermoni | Feb 2005 | A1 |
20050165368 | Py et al. | Jul 2005 | A1 |
20050182385 | Epley | Aug 2005 | A1 |
20050187546 | Bek et al. | Aug 2005 | A1 |
20050235422 | Wallace | Oct 2005 | A1 |
20050240147 | Makower et al. | Oct 2005 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060095050 | Hartley et al. | May 2006 | A1 |
20060142700 | Sobelman et al. | Jun 2006 | A1 |
20060155304 | Kaplan et al. | Jul 2006 | A1 |
20060161218 | Danilov | Jul 2006 | A1 |
20060163313 | Larson | Jul 2006 | A1 |
20060282062 | Ishikawa et al. | Dec 2006 | A1 |
20070088247 | Bliweis et al. | Apr 2007 | A1 |
20070233222 | Roeder et al. | Oct 2007 | A1 |
20070276466 | Lavelle et al. | Nov 2007 | A1 |
20080027423 | Choi et al. | Jan 2008 | A1 |
20080051804 | Cottler et al. | Feb 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080212416 | Polonio et al. | Sep 2008 | A1 |
20080262468 | Clifford et al. | Oct 2008 | A1 |
20080262508 | Ciifford et al. | Oct 2008 | A1 |
20080262510 | Clifford | Oct 2008 | A1 |
20090163828 | Turner et al. | Jun 2009 | A1 |
20090171271 | Webster et al. | Jul 2009 | A1 |
20090209972 | Loushin et al. | Aug 2009 | A1 |
20090299344 | Lee et al. | Dec 2009 | A1 |
20090299379 | Katz et al. | Dec 2009 | A1 |
20090299433 | Lee | Dec 2009 | A1 |
20100041447 | Graylin | Feb 2010 | A1 |
20100048978 | Sing et al. | Feb 2010 | A1 |
20100061581 | Soetejo et al. | Mar 2010 | A1 |
20100198135 | Morriss et al. | Aug 2010 | A1 |
20100217296 | Morriss et al. | Aug 2010 | A1 |
20100274188 | Chang et al. | Oct 2010 | A1 |
20100324488 | Smith | Dec 2010 | A1 |
20110015645 | Liu et al. | Jan 2011 | A1 |
20110022069 | Mitusina | Jan 2011 | A1 |
20110077579 | Harrison et al. | Mar 2011 | A1 |
20110288559 | Shahoian | Nov 2011 | A1 |
20120179187 | Loushin et al. | Jul 2012 | A1 |
20120265097 | Melchiorri et al. | Oct 2012 | A1 |
20120310145 | Clifford et al. | Dec 2012 | A1 |
20130030456 | Assell et al. | Jan 2013 | A1 |
20130090544 | Clifford et al. | Apr 2013 | A1 |
20130338678 | Loushin et al. | Dec 2013 | A1 |
20140094733 | Clopp et al. | Apr 2014 | A1 |
20140100584 | Konstorum et al. | Apr 2014 | A1 |
20140194891 | Shahoian | Jul 2014 | A1 |
20140276906 | Andreas et al. | Sep 2014 | A1 |
20140277050 | Andreas et al. | Sep 2014 | A1 |
20150142029 | Fahn et al. | May 2015 | A1 |
20150164695 | Liu et al. | Jun 2015 | A1 |
20150209509 | O'Cearbhaill et al. | Jul 2015 | A1 |
20160038341 | Clopp et al. | Feb 2016 | A1 |
20160038342 | Van et al. | Feb 2016 | A1 |
20160045369 | Clopp | Feb 2016 | A1 |
20160045370 | Andreas et al. | Feb 2016 | A1 |
20160045371 | Girotra et al. | Feb 2016 | A1 |
20160213519 | Andreas et al. | Jul 2016 | A1 |
20170209310 | Girotra et al. | Jul 2017 | A1 |
20170281230 | Andreas et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
86105171 | Mar 1987 | CN |
19618585 | Nov 1997 | DE |
199118288 | Oct 2000 | DE |
0214527 | Mar 1987 | EP |
2526656 | Nov 1983 | FR |
H 07-116190 | May 1995 | JP |
WO 9911175 | Mar 1999 | WO |
WO 2006119512 | Nov 2006 | WO |
WO 2008030485 | Mar 2008 | WO |
WO 2008036368 | Mar 2008 | WO |
WO 2008131195 | Oct 2008 | WO |
WO 2009010788 | Jan 2009 | WO |
WO 2011008948 | Jan 2011 | WO |
WO 2014075949 | May 2014 | WO |
WO 2014143543 | Sep 2014 | WO |
WO 2014158571 | Oct 2014 | WO |
WO 2016022899 | Feb 2016 | WO |
WO 2016025308 | Feb 2016 | WO |
WO 2016025309 | Feb 2016 | WO |
WO 2016025310 | Feb 2016 | WO |
WO 2016025453 | Feb 2016 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 10/841,420, dated Aug. 5, 2008, 11 pages. |
Office Action for U.S. Appl. No. 10/841,420, dated Feb. 20, 2008, 11 pages. |
Office Action for U.S. Appl. No. 10/841,420, dated Nov. 17, 2006, 9 pages. |
Office Action for U.S. Appl. No. 10/841,420, dated Jul. 20, 2009, 14 pages. |
Office Action for U.S. Appl. No. 10/841,420, dated May 12, 2009, 13 pages. |
Office Action for U.S. Appl. No. 10/841,420, dated Aug. 22, 2007, 10 pages. |
Office Action for U.S. Appl. No. 12/754,304, dated Sep. 26, 2013, 13 pages. |
Office Action for U.S. Appl. No. 12/754,304, dated Sep. 14, 2012, 15 pages. |
Office Action for U.S. Appl. No. 12/754,304, dated Nov. 9, 2010, 14 pages. |
Office Action for U.S. Appl. No. 12/754,304, dated Apr. 29, 2014, 10 pages. |
Office Action for U.S. Appl. No. 12/754,304, dated Mar. 1, 2013, 13 pages. |
Office Action for U.S. Appl. No. 12/754,304, dated Apr. 28, 2011, 15 pages. |
Patent Examination Report No. 1 for Australian Patent Application No. 2013209354, dated Oct. 13, 2014, 5 pages. |
First Office Action for Chinese Patent Application No. 200880020861.9, dated Jul. 12, 2011, 10 pages. |
Second Office Action for Chinese Patent Application No. 200880020861.9, dated Dec. 31, 2011, 3 pages. |
Search Report for Chinese Patent Application No. 201310047126.X, dated Mar. 6, 2015, 2 pages. |
Second Office Action for Chinese Patent Application No. 201310047126.X, dated Mar. 16, 2015, 10 pages. |
Office Action for European Application No. 08746237.0, dated Mar. 24, 2016, 3 pages. |
Office Action for European Application No. 08746237.0, dated Aug. 4, 2015, 7 pages. |
Supplementary Partial Search Report for European Application No. 08746237.0, dated Jun. 30, 2014, 9 pages. |
Notification of Reasons for Refusal for Japanese Patent Application No. 2010-504267, dated Nov. 20, 2012, 4 pages. |
Notification of Reasons for Refusal for Japanese Patent Application No. 2010-504267, dated Nov. 12, 2013, 4 pages. |
International Search Report for International Application No. PCT/US2008/060779, dated Sep. 3, 2008. |
Written Opinion for International Application No. PCT/US2008/060779, dated Sep. 3, 2008. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/060779, dated Nov. 17, 2009. |
Office Action for U.S. Appl. No. 11/749,729, dated May 26, 2011, 11 pages. |
Office Action for U.S. Appl. No. 11/749,729, dated Jun. 17, 2010, 8 pages. |
Office Action for U.S. Appl. No. 11/749,733, dated Jun. 10, 2009, 13 pages. |
Office Action for U.S. Appl. No. 11/749,733, dated Dec. 2, 2008, 9 pages. |
U.S. Appl. No. 61/085,360, filed Jul. 31, 2008. |
International Search Report for International Application No. PCT/US2009/052395, dated Nov. 6, 2009. |
Written Opinion for International Application No. PCT/US2009/052395, dated Nov. 6, 2009. |
International Search Report for International Application No. PCT/US2010/058718, dated Feb. 17, 2011. |
Written Opinion for International Application No. PCT/US2010/058718, dated Feb. 17, 2011. |
U.S. Appl. No. 61/225,893, filed Jul. 15, 2009. |
Patent Examination Report No. 1 for Australian Application No. 2010273372, dated Nov. 12, 2014, 2 pages. |
First Office Action for Chinese Application No. 201080041755.6, dated Jul. 3, 2013. |
Notification of Reasons for Refusal for Japanese Application No. 2012-520778, dated Feb. 18, 2014. |
Communication of the Substantive Examination Report for Mexican Application No. MX/a/2012/000691, dated Apr. 24, 2014. |
International Search Report for International Application No. PCT/US2010/042128, dated Aug. 27, 2010. |
Written Opinion International Application No. PCT/US2010/042128, dated Aug. 27, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2010/042128, dated Jan. 17, 2012. |
European Search Report for European Application No. 13173409.7, dated Sep. 16, 2013. |
Search Report and Written Opinion for International Patent Application No. PCT/US2015/044179, dated Dec. 18, 2015, 15 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2014/018320, dated Jun. 2, 2014, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2014/018347, dated Apr. 17, 2014, 9 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2015/044173, dated Oct. 12, 2015, 9 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2015/044177, dated Oct. 30, 2015, 10 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2015/044183, dated Nov. 4, 2015, 9 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2015/044610, dated Nov. 5, 2015, 12 pages. |
International Search Report for International Application No. PCT/US2009/069388, dated Jun. 30, 2010. |
Written Opinion for International Application No. PCT/US2009/069388, dated Jun. 30, 2010. |
Comeau, M. et al., “Local Anesthesia of the Ear by Iontophoresis,” vol. 98, Arch. Otolaryngol., pp. 114-120 (Aug. 1973). |
Comeau, M. et al., “Anesthesia of the Human Tympanic Membrane by Iontophoresis of a Local Anesthetic,” The Larynogoscope, vol. 88, pp. 277-285 (1978). |
Echols, D. F. et al., “Anesthesia of the Ear by Iontophoresis of Lidocaine,” Arch. Otolaryngol., vol. 101, pp. 418-421 (Jul. 1975). |
Epley, J. M., “Modified Technique of Iontophoretic Anesthesia for Myringotomy in Children,” Arch. Otolaryngol., vol. 103, pp. 358-360 (Jun. 1977). |
Hasegawa, M. et al., “Iontophorectic anaesthesia of the tympanic membrane,” Clinical Otolaryngoloy, vol. 3, pp. 63-66 (1978). |
Ramsden, R. T. et al., “Anaesthesia of the tympanic membrane using iontophoresis,” The Journal of Laryngology and Otology, 56(9):779-785 (Sep. 1977). |
“Definition of Plenum,” Compact Oxford English Dictionary [online], Retrieved from the Internet: <http://oxforddictionaries.com/definition/english/plenum>, Retrieved on Aug. 6, 2012, 2 pages. |
“Definition of Plenum,” Merriam-Webster's Online Dictionary, 11th Edition [online], Retrieved from the Internet: <http://www.merriam-webster.com/dictionary/plenum>, Retrieved on Aug. 14, 2012, 1 page. |
Medtronic XOMED, “Activent® Antimicrobial Ventilation Tubes,” Rev. 1.1, pp. 1-4, 2002, Jacksonville, FL. |
Micromedics Innovative Surgical Products, “Micromedics Tympanostomy Tubes,” [online], Retrieved on Jul. 15, 2010, Retrieved from the Internet <URL: http://www.micromedics-usa.com/products/otology/micromedicstubes.htm>, 7 pages. |
Rhinology Products, Boston Medical Products, www.bosmed.com [date of publication unknown], pp. 1-16. |
Armstrong, “A New Treatment for Chronic Secretory Otitis Media” A.M.A. Archives of Otolaryngology, pp. 653-654 (1954). |
Feuerstein, “A Split-Tube Prosthesis in Serous Otitis Media,” Sixty-ninth Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 18-23, 1964, Chicago, IL, pp. 343-344. |
Jurgens. et al., “Three New Middle Ear Ventilation Tubes” Seventy-sixth Annual Session of the American Academy of Ophthalmology and Otolaryngology, Sep. 20-24, 1971, Las Vegas, NV, pp. 1017-1019 (1971). |
Lindeman et al., The “Arrow Tube,” Residents in Otolaryngology, Massachusetts Eye and Ear Infirmary, 1 page total (1964). |
Pappas, “Middle Ear Ventilation Tubes,” Meeting of the Southern Section of the American Laryngological, Rhinological and Otological Society, Inc., Williamsburg, VA, Jan. 12, 1974, pp. 1098-1117. |
Per-Lee, “A Wide Flanged Middle Ear Ventilation Tube,” Seventy-first Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 16-21, 1966, Chicago, IL, pp. 358-359. |
Reuter., “The Stainless Bobbin Middle Ear Ventilation Tube,” Seventy-second Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 29-Nov. 3, 1967, Chicago, IL, pp. 121-122. |
Ringenberg, “A New Middle Ear Ventilation Device,” Seventy-second Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 29-Nov. 3, 1967, Chicago, IL, 1 page total. |
Schmidt et al. “Transtympanic Aeration of the Middle Ear With Blocked Eustachian Tube,” Acta Otolaryng., pp. 277-282 (1965). |
Sheehy, “Collar Button Tube for Chronic Serous Otitis,” Sixty-eighth Annual Session of the American Academy of Ophthalmology and Otolaryngology, Oct. 20-25, 1963, New York, NY, pp. 888-889. |
Santa Barbara Medco, Inc. “Otological Ventilation Tubes,” Product Brochure from http://www.sbmedco.com/ptfe_shepard.asp, 8 pages total (Feb. 11, 2001). |
Number | Date | Country | |
---|---|---|---|
20150305944 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09843541 | Apr 2001 | US |
Child | 10841420 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12754304 | Apr 2010 | US |
Child | 14660972 | US | |
Parent | 10841420 | May 2004 | US |
Child | 12754304 | US |